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Abstract: Machine learning (ML) in healthcare data analytics is attracting much attention because of
the unprecedented power of ML to extract knowledge that improves the decision-making process. At
the same time, laws and ethics codes drafted by countries to govern healthcare data are becoming
stringent. Although healthcare practitioners are struggling with an enforced governance framework,
we see the emergence of distributed learning-based frameworks disrupting traditional-ML-model
development. Splitfed learning (SFL) is one of the recent developments in distributed machine
learning that empowers healthcare practitioners to preserve the privacy of input data and enables
them to train ML models. However, SFL has some extra communication and computation overheads
at the client side due to the requirement of client-side model synchronization. For a resource-
constrained client side (hospitals with limited computational powers), removing such conditions is
required to gain efficiency in the learning. In this regard, this paper studies SFL without client-side
model synchronization. The resulting architecture is known as multi-head split learning (MHSL).
At the same time, it is important to investigate information leakage, which indicates how much
information is gained by the server related to the raw data directly out of the smashed data—the
output of the client-side model portion—passed to it by the client. Our empirical studies examine
the Resnet-18 and Conv1-D architecture model on the ECG and HAM-10000 datasets under IID data
distribution. The results find that SFL provides 1.81% and 2.36% better accuracy than MHSL on the
ECG and HAM-10000 datasets, respectively (for cut-layer value set to 1). Analysis of experimentation
with various client-side model portions demonstrates that it has an impact on the overall performance.
With an increase in layers in the client-side model portion, SFL performance improves while MHSL
performance degrades. Experiment results also demonstrate that information leakage provided by
mutual information score values in SFL is more than MHSL for ECG and HAM-10000 datasets by
2× 10−5 and 4× 10−3, respectively.

Keywords: distributed collaborative machine learning; split learning; multi-head split learning;
parameter transmission-based distributed machine learning; privacy-preserving machine learning;
information leakage in distributed learning

1. Introduction

In recent years, the exponential development in healthcare-based sensors and our
capability to handle big data has led to previously unseen growth in data collection [1].
Accumulated big data in the healthcare industry allows us to address healthcare challenges,
such as precision medicine, skin-cancer detection, and stroke detection. However, the
centralization of healthcare data raises privacy concerns and requires laws to regulate
and safeguard them. Moreover, to avoid data misuse, several regulations, such as the
General Data Protection Regulation (GDPR) [2], Personal Data Protection Act (PDP) [3],
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and Cybersecurity Law of the People’s Republic (CLPR) of China [4], have been introduced.
Laws and ethics drafted by these governance frameworks for processing healthcare data
aim to safeguard societal privacy and not hinder healthcare advances. As healthcare
practitioners struggle with the enforced governance framework, they have to formulate
time-consuming strategies to store the patients’ data, write ethics proposals and wait for
long confirmation periods to start collaborative studies.

To accommodate such restrictions and the constraints placed by heterogeneous devices,
improvised machine-learning (ML) approaches that preserve data privacy were sought.
Federated learning [5] and split learning [6] are ML approaches (for training ML models)
that protect the data privacy of the raw input data and offload computations at the central
server by pushing a part of the computation to end devices.

Federated learning (FL) leverages distributed resources to collaboratively train an
ML model (which can be a traditional ML model such as linear regression models or
neuron-based deep-learning (DL)-based models). More precisely, in FL, multiple devices
collaboratively offer resources to train an ML model while keeping the input data to
themselves, as no input data leaves the place of its origin [7]. Recent research has shown that
FL-trained models achieve comparable performance to ones trained on centralized datasets
and perform better than those that only see isolated institutional data [8,9]. A successful
deployment of FL promises to enable precision medicine [10,11] and solutions to healthcare
challenges at a large scale [12], eventually leading to model generation, which yields
unbiased decisions [13]. Federated learning still requires rigorous technical consideration
to ensure the scalability and algorithmic guarantees to ensure no leakage of patients’ private
data/information during or after model development. Firstly, training a large ML model in
resource-constrained end devices is difficult because of limited resources [14,15]. Secondly,
all participating end devices and the server should have a fully trained model. This does
not preserve the model’s privacy between the server and participating clients during
model training.

To overcome these drawbacks, split learning (SL) was introduced. SL enables a model
to be split between the client-side and server-side portions. During training, client-side
and server-side portions sequentially collaborate to develop the model [16]. Model split
happens at the cut layer, a layer after which the remaining network portion goes to a
different client or server. Once the training starts, the clients and the server never have
access to the model updates (gradients) of each other’s model portion. This way, SL enables
the training of large models in an environment with low-end devices such as internet-of-
things and preserves the model’s privacy while training. In addition, it keeps the input
data on its origin device (the analyst never has access to the input data). In recent years,
SL has attracted much attention due to its capability to work well with low-end devices
with limited computational capabilities. In addition, results obtained by split learning
are comparable to models trained in a centralized setting on a healthcare dataset [17–19].
However, SL is only capable of dealing with one client at a time while training. This forces
other clients to be idle and wait for their turn to train with the server [20].

To mitigate the drawback of FL having a lower level of model privacy between the
clients and the server while training, and the inability of SL to train the ML model in parallel
among participating clients, splitfed learning (SFL) has recently been proposed [20,21].
SFL combines the best of FL and SL. In this approach, an ML model is split between the
client and the server (like in SL). In contrast to SL, multiple identical splits of the ML
model, i.e., the client-side model portion, are shared across the clients. The server-side
model portion is provided to the server. All clients perform the forward propagation
in parallel and independently in each forward pass. Then, the activation vectors of the
end layer (client-side model portion) are passed to the server. The server then processes
the forward and back propagation for its server-side model on the activation vectors. In
back propagation, the server returns the respective gradients of their activation vectors
to the clients. Afterward, each client performs the back propagation on the gradients
they received from the server. After each forward and backward pass, all client-side and
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server-side model portions aggregate their weights and form one global model, specifically,
in splitfedv1. The aggregation is carried out independently on the client side (by using a fed
server) and server side. In another version of the SFL called splitfedv2, the authors changed
the training setting for the server-side model. Instead of aggregating the server-side model
at each epoch, the server keeps training one server-side model with the activation vectors
from all the clients.

Despite the improvements in SFL, model synchronization is needed at the client
side, which is obtained through model aggregation and sharing. This is carried out to
make one global model (a joint client-side and server-side model portion) consistent at
the end of each epoch. However, model synchronization shifts the computation and
communication overhead to the client-side. This would be significant if the number of
clients grows significantly. In this regard, this paper studies SFL without client-side model
synchronization. We call the resulting model architecture multi-head split learning (MHSL).
Another aspect worth exploring is quantifying the leakage from smashed data, which flows
between the client-side model portion to the server. In healthcare, any leakage in data
can threaten patients’ privacy. Thereby, it becomes essential to evaluate the settings in
which SFL can provide maximum privacy to patients’ confidential data. In this regard, we
investigate the leakages in SFL and MHSL on the server side. Overall, we summarize our
contributions under three research questions, stated in the following:

Our Contributions

RQ1 Can we allow splitfed learning without client-side model synchronization?
Firstly, we propose MHSL, which removes the client-side model synchronization. Then,
we study the feasibility of MHSL over the healthcare IID distributed dataset ECG and
HAM-10000. The result is extended to MNIST, KMNIST, and CIFAR-10 datasets for
a more comprehensive study. Our empirical studies illustrate that MHSL is feasible;
MHSL performance is comparable to SFL while reducing the communication and
computation overhead on the client side.

RQ2 Is there any effect on the overall performance if we change the number of layers in
the client-side model portions?
For the selected healthcare dataset and the extended datasets, the performance of
SFL and MHSL remains comparable if only the first layer forms the client-side model
portion (i.e., cut-layer is set to 1) and the rest of the layers reside at the server-side
model portion. However, as the number of layers is increased in the client-side model
portion (i.e., cut-layer is set to 2, 3, . . ., 9), the difference in performance between the
SFL and MHSL setup becomes significant. The performance of SFL improves with
the increase in the number of layers in the client-side model portion, whereas MHSL
performance degrades.

RQ3 How does mutual information score (measuring information leakage) behave under
the setting of SFL and MHSL?
We observe a relationship between information leakage and the complexity of the
underlying dataset. For example, when the complexity of the dataset was lower
(grayscale image classification, i.e., MNIST and KMNIST), information leakage was
higher in the MHSL than in the SFL. On the other hand, with increased complexity
(RGB image classification, i.e., HAM-10000 and CIFAR-10), information leakage from
SFL was observed to be higher than the MHSL. For example, for HAM-10000, the MIS
value of SFL observed at the epoch’s end was higher than MHSL.

2. Multi-Head Split Learning

For experimental purposes, we chose splitfedv2 in this paper. This makes our analysis
more focused on the split-learning side of SFL. Moreover, we study if the federated learning
part can be removed from SFL’s client-side, resulting in multi-head split learning (MHSL)
for the distributed healthcare dataset.
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The overall architecture of MHSL is depicted in Figure 1. In a simple setup, the full
model W is split into two portions: the client-side model WC portion and the server-
side model WS portion. For the clients, their models are represented by WC

k , where
k ∈ {1, 2, . . . , N} is the client’s label. The global model W is formed by concatenating
the WC and WS, i.e., [WCWS] once the training completes. The details of MHSL are
presented in Algorithm 1.

Algorithm 1: Multi-head split learning (MHSL)
Notations: (1) At time t, St is a set of K clients, and Ak,t is the smashed data of client
k ∈ {1, 2, · · · , K}; (2) for any client k, (a) Yk and Ŷk are the true and predicted labels,
respectively, and (b) O`k is its gradient of the loss.
/* Runs on Server */

EnsureMainServer executes:
if time instance t = 0 then

WS
t (global server-side model) is initialized

else
Global_collector = {}
Gradient_collector = {}
for each client k ∈ St, in parallel do

(Ak,t, Yk)← ClientUpdate(WC
k,t)

Collect (Ak,t, Yk) in Global_collector with the client’s ID k as its key.

/* WS
t is continuously updated */

for each client’s ID k ∈ Global_collector.keys() do
Forward propagation with Ak,t on WS

t , compute Ŷk
Loss calculation with Yk and Ŷk
Back-propagation calculate O`k(WS

t ; AS
t )

Collect dAk,t := O`k(AS
t ; WS

t ) (i.e., gradient of the Ak,t) in Gradient_collector
with the client’s ID k as its key.

for each client’s ID k ∈ Gradient_collector.keys(), in parallel do
Send dAk,t to client k for ClientBackprop(dAk,t)

/* Runs on Client k */

EnsureClientUpdate(WC
k,t):

Start with WC
k,t

Set Ak,t = φ

Forward propagation with the local data Xk up to its final layer in WC
k,t and get the

activations Ak,t (smashed data)
Yk is the true labels of Xk
Send Ak,t and Yk to the main server
Wait for the completion of ClientBackprop(dAk,t)

/* Runs on Client k */

EnsureClientBackprop(dAk,t):
dAk,t ←MainServer()
Back-propagation, calculate gradients O`k(WC

k,t) with dAk,t

Update WC
k,t ← WC

k,t − ηO`k(WC
k,t)
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Figure 1. Multi-head-split-learning architecture.

How Is the Final Full Model Formed in Multi-Head Split Learning?

Unlike SFL, MHSL removes the fed server and the synchronization of WC
k at the end of

each epoch. During the whole training, WC
k are trained independently by their clients with

the server. However, at the end of the full training, the full global model W is constructed
from any one WC

k and concatenated with WS. To enable this way of constructing the final
trained model, the same test data is used to evaluate each client and only keep the training
data localized. Thus, if all clients’ test results are similar, it is reasonable to pick any WC

k for
the final full model.

3. Datasets and Models

We consider image and non-image datasets and two model architectures in our studies.
These are detailed in the following sections.

3.1. Datasets

For our research, we selected two tasks in healthcare: skin-cancer detection (image-
classification problem) and ECG signal classification (time-series-based classification problem).
The skin-cancer classification dataset used in this study is HAM-10000 [22]. HAM-10000 is
an image-based dataset consisting of 9013 images in the training dataset and 1002 images
in the test dataset. The dimension of each image in the HAM-10000 dataset is 810,000
(600× 450). On the other hand, the ECG signal dataset [23] used for experimentation
is a time-series-based dataset that consists of 13,245 instances both in the training and
testing dataset.

In addition, we selected three widely used image datasets, MNIST, KMNIST, and
CIFAR-10, for our extended experiments. Moreover, these datasets maintain our results’
closeness (as the splitfed paper uses the same datasets) with the reported results in the
original paper detailing splitfedv2. The MNIST [24] dataset consists of 60,000 images in the
training dataset and 10,000 images in the test dataset. The dimension of each image in the
MNIST dataset is 784 (28× 28) in grayscale. KMNIST [25] is another dataset used in this
study that is adapted from the Kuzushiji Dataset. KMNIST consists of 60,000 images in the
training dataset and 10,000 in the test dataset. The dimension of each of the images in the
KMNIST dataset is 784 (28× 28) in grayscale. Another dataset used for experimentation
is CIFAR-10 [26], consisting of 50,000 images in the training set and 10,000 images in the
test dataset. Each image corresponds to the dimension of 3072 (32× 32). For the summary,
refer to Table 1. All of the datasets have ten classes for prediction.
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Table 1. Datasets used in our experiment setup.

Dataset Training Samples Testing Samples Image Size Dataset Type Number of Labels

ECG 13,245 13,245 NA Time series Dataset 5

HAM-10000 9013 1002 600× 450 Image Dataset 7

MNIST 60,000 10,000 28× 28 Image Dataset 10

KMNIST 60,000 10,000 28× 28 Image Dataset 10

CIFAR-10 50,000 10,000 32× 32 Image Dataset 10

For the experimentation, horizontal flipping, random rotation, normalization, and
cropping on HAM-10000, MNIST, KMNIST, and CIFAR-10 were conducted to avoid the
problem of over-fitting. Whereas, for ECG, no transformations were applied. In addition,
for all our experiments, data was assumed to be uniformly, independently, and identically
distributed (IID) amongst five clients.

3.2. Models

The Resnet-18 [27] network architecture was used for the primary experimentation on
the HAM-10000, MNIST, KMNIST, and CIFAR-10 datasets. The Resnet-18 network was
selected because of the discrete “blocks” structure in every layer of the architecture [27],
and it is a standard model for image processing. Resnet-18 blocks were used to split Resnet-
18 between the clients and server to form the client-side and server-side models. Each
block performs an operation; an operation in a block refers to passing an image through
a convolution, batch normalization, and a ReLU activation. Resnet-18 in the experiment
is initialized with a learning rate of 1× 10−3 and the mini-batch size of B.N. was set to
256 based on the initial experimentation, Section 6.1. In addition, the first convolutional-
layer kernel size was set to 7 × 7, remaining convolutional layers used 3 × 3 kernels, as
shown in the model architecture in Table 2.

Table 2. Model architecture used in the experimental setup.

Architecture No. of Parameters Layers Kernel Size

Resnet-18 [27] 11.7 million 18 (7× 7), (3× 3)

Conv1-D architecture [28] 55, 989 8 (7× 7), (5× 5)

The Conv1-D architecture [28] was used for the primary experimentation of the ECG
time-series dataset. Regarding architecture selection for ECG, the Conv1-D architecture
was selected because of its efficiency in dealing with sequential data [29,30]. Another
determining factor for selecting the Conv1-D architecture instead of sequential models (such
as LSTM, GRU, and RNN) is that there is no effective approach for splitting the sequence
model between the client and server in the SFL setting. The Conv1-D architecture comprises
the discrete “blocks”. Conv1-D blocks were used to split the Conv1-D architecture between
the clients and server to form the client-side and server-side models. Each block performs
an operation; an operation in a block refers to passing an image through convolution and
a ReLU activation. The Conv1-D architecture, in the experiment, was initialized with a
learning rate of 1× 10−3, and the mini-batch size of B.N. was set to 32 based on the initial
experimentation (see Section 6.1). In addition, the kernel size of the first convolutional
layer was set to 7 × 7, while a kernel size of 3 × 3 was used for all remaining convolutional
layers (full architecture detail in Table 2).

Our program was written using Python 3.7.6 and PyTorch 1.2.0 libraries. The experi-
ments are conducted in a Tesla P100-PCI-E-16GB GPU machine system. We observe the
training and testing loss and accuracy at each global epoch (once the server trains with all
the activation vectors received from all clients). We considered the client-level performance.
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All the clients were selected to participate at least once at a global epoch without repetition
for the current setup.

4. Total Cost Analysis

Assuming K to be the number of clients participating in training, p represents the
accumulated size of the data, and |A| is the size of the activations passing through the
smashed layer from the client side to the server side for a single client considering one
input sample. Similarly, R is the communication rate of the data transfer from the client to
the server, T is the computation time incurred in one forward propagation (accumulative
time taken for client-side and server-side forward propagation), and backward propagation
(accumulative time taken for client-side and server-side backward propagation) with a
dataset of size p. In addition, Tfedavg is the time required by fed server to perform the
client-side model aggregation for all participating clients K (for any architecture). Let |W|
be the size of the full model distributed between the client side and server side, and β
defines the fraction of the full model’s size available in a client in SFL, i.e.,

∣∣WC
∣∣ = β|W|.

One forward and backward propagation requires a client to upload and download the
client-side model to and from the fed server to aggregate the client-side model weights;
hence, communication size becomes 2β|W| per client.

The above assumptions were used to define the communication size per client, total
communication size, and overall training time for SFL and MHSL. All the related costs are
presented in Table 3.

Table 3. Communication size and model-training-time equations for SFL and MHSL for one
global epoch.

Method Comms. Size per Client Total Comms. Size Total Model Training Time

SFL
(

2p
K

)
|A|+ 2β|W| 2p|A|+ 2βK|W| T + 2 p|A|

KR + 2 β|W|
R + Tfedavg

MHSL
(

2p
K

)
|A| 2p|A| T + 2 p|A|

KR

As seen in Table 3, in contrast to SFL, MHSL avoids the extra communication cost in
terms of data traversal (communication size) through the network by 2βK|W|, as no client-
side model aggregation is required. It also saves the computational time needed by fed
server to aggregate the client-side weights by Tfedavg. For our analysis of computation time,
we performed computation-time measurements in our experiments. Figure 2 illustrates
the average computation time logged by all the client-side and server-side model portions
during one epoch. The client-side and server-side time required for one forward and
backward propagation remained computationally alike when SFL was compared with
MHSL. The only difference arose with additional computation requirements by fed server
in order to complete the client-side model aggregation in SFL. In Figure 2, the computation
time (in seconds) required by fed server (to carry out aggregation of client-side model
portion) is represented as the exponential of Tfedavg . It was carried out to scale up the
values Tfedavg , so that it can be visible in the chart. A more considerable computation time
over the client-side and server-side model portion for HAM-10000 can be noticed compared
to the other datasets because each image is of significantly high dimension. In addition,
in MHSL, one can observe that there is no value for computation time required by fed
server. No value for fed-server computation time is because of the MHSL setup in which we
removed the client-side model-portions weight’s aggregation by fed server as compared
to SFL setup. In addition, the computation time of SFL is comparable in all the datasets
because fed server is only responsible for the aggregation of the client-side model portion,
as at no point did we change the architecture (Resnet-18) and the number of clients (being
5) participating in SFL. This is the expected behavior of the fed server.
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Figure 2. Computation time (in seconds) for SFL and MHSL.

5. Threat Model

We considered the privacy of raw input data (e.g., training data) in the ML training. In
other words, we aim to stop the server, which is assumed to be an honest-but-curious entity,
inferring knowledge about the raw data from the intermediate latent vectors, i.e., smashed
data, passed to it in SFL and MHSL. Moreover, the honest-but-curious server performs all
operations as intended, but it only tries to infer more information about the raw data from
the smashed data it receives. The server does not run any reconstruction attacks on the
clients in order to generate back the raw data; instead, it can utilize some function that can
reveal more information about the raw data from the smashed data. In our threat model,
all the participating clients are assumed to be honest entities.

As the similarity of the smashed data to the raw input data reveals more of its informa-
tion to the server, the best ML approach aims to keep the closeness between the smashed
data and the raw data as far apart as possible. In other words, the information gained at
the server, given the smashed data, is kept as low as possible. We call such information
gain information leakage at the server side. We measured the leakage by leveraging the
information-theoretic metric, which is presented in the following.

Mutual Information Score

The mutual information score (represented as I, in further equations) measures how
much information a random variable X (e.g., smashed data in our case) can reveal about
another random variable Y (e.g., raw data in our case). For X and Y with joint distribution
of p(x, y), it is defined as follows:

I(X, Y) = ∑
x∈X,y∈Y

p(x, y)log
p(x, y)

p(x)p(y)
= H(Y)− H(Y|X).

Some important properties of the mutual information score are the following:

1. I(X, Y) ≤ 0 if X and Y are independent;
2. I(X, Y) ≥ 0 if X and Y are dependent;
3. I(X, Y) = I(Y, X);
4. It is invariant to invertible re-parametrization, which means that for two invertible

functions φ and ω, I(X, Y) = I(φ(X), ω(Y)).

In neural network layers, considering the data processing inequality and processes,
we have the following:

I(X, Y1) ≥ I(Y1, Y2) ≥ I(Xi, Yi) ≥ I(X, Y),

where X represents the input image and Yi is the output of the layer i, for i ∈ {1, 2 · · · , N},
and Y is the output of the final layer of the model. A small I(X, Y) is better from the
information-leakage perspective. Unlike other metrics such as correlation, it can capture
linear and non-linear associations between the random variables.
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The following equation estimates the mutual information score (MIS):

I(X, Y) =
|X|

∑
i=1

|Y|

∑
j=1

∣∣Xi ∩Yj
∣∣

N
log

N
∣∣Xi ∩Yj

∣∣
|Xi|

∣∣Yj
∣∣ , (1)

where | · | indicates the number of unique samples in that random variable, and N is the
total samples.

We used the scikit-learn package and the mutual information score metric to evaluate
MIS for calculating MIS against each dataset [31]. To compute MIS, only one channel was
considered for the image-based dataset (i.e., HAM-10000, MNIST, KMNIST, and CIFAR-10).
Furthermore, as MIS is only calculated on similar length vectors, to make the length of the
input image the same as that of the smashed data, rescaling transformation on the smashed
data before computing the MIS was performed. In the case of the ECG dataset, the smashed
data were zero-padded.

6. Results

The results are divided into four parts. First, Section 6.1 presents the results obtained
while training the centralized version of the Resnet-18 on the HAM-10000, MNIST, KMSNIT,
and CIFAR-10 datasets and the results of a Conv1-D architecture on the ECG dataset.
Secondly, in Section 6.2, we compare the results of splitfedv2 and MHSL on the HAM-
10000, ECG, MNIST, KMSNIT, and CIFAR-10 datasets. We consider five clients participating
in model training in order to remain consistent with the approach adopted in splitfedv2 [20].
In both architectures (Resnet-18 and Conv1-D), we kept the initial layer inside the clients (as
a client-side model portion) and the rest of the layers residing in the server (as a server-side
model portion). Thirdly, in Section 6.3, we present our empirical results indicating the
impact of selecting different split positions in each model on the overall performance of
the Resnet-18 and Conv1-D architecture. Finally, in Section 6.4, we analyze the behavior
exhibited in terms of mutual information score by the SFL and MHSL setups. All the
experiments are carried out for 50 epochs, excluding the one carried out on HAM-10000
dataset. The training of Resnet-18 on HAM-10000 was carried out for 15 epochs due to
limited computational power.

6.1. Baseline Result

For the baseline, HAM-10000, MNIST, KMSNIT, and CIFAR-10 were run on the Resnet-
18 architecture, whereas ECG was run on the Conv1-D architecture. Data-augmentation
techniques were the same as discussed in Section 3.1, for all the datasets. Training of the
Resnet-18 and Conv1-D architecture was performed in a centralized manner, i.e., the whole
model resided in the server without any split, and all data were available to the server.
The train and test accuracies for all datasets and corresponding models are summarised in
Table 4.

Table 4. Training and testing accuracy for centralized architecture.

Dataset Model Testing Accuracy Training Accuracy

ECG Conv1-D architecture 83.56 81.72

HAM-10000 Resnet-18 74.67 80.26

MNIST Resnet-18 99.15 99.31

KMNIST Resnet-18 95.74 99.31

CIFAR-10 Resnet-18 78.02 97.52
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6.2. Experiment 1: Corresponding to RQ1

This section evaluates SFL and MHSL. In this regard, the model was split at the
first layer. The first layer resides on the client side (client-side model portion) and the
remaining on the server-side (server-side model portion). Experimental results in terms
of test accuracy on ECG, HAM-10000, MNIST, KMSNIT, and CIFAR-10 datasets with and
without client-side aggregation are provided in Table 5.

Table 5. Training and testing accuracy for centralized, SFL and MHSL architectures.

Dataset Testing Accuracy Training Accuracy

Centralized SFL MHSL δ (MHSL-SFl) Centralized SFL MHSL

ECG 83.56 81.37 79.56 −1.81 81.72 80.98 79.43

HAM-10000 74.67 73.40 71.04 −2.36 80.26 78.80 77.77

MNIST 99.15 98.50 98.99 0.49 99.31 98.99 99.11

KMNIST 95.74 96.23 96.17 −0.06 99.31 98.98 98.99

CIFAR-10 78.02 76.25 73.75 −2.5 97.52 97.10 96.95

Our empirical results, as shown in Table 5, demonstrate that the healthcare-based
distributed dataset has not suffered a significant drop in accuracy. The difference in the
performance of SFL over MHSL for the ECG dataset is 1.81%, whereas, for HAM-10000,
it increases to 2.36%. For the healthcare dataset and CIFAR-10 datasets, we see that SFL
outperforms MHSL by over 2%. In contrast, MNIST with an MHSL setup performed well
and improved by 0.49% over the counterpart SFL setup. For KMNIST, although the SFL
setup obtained higher accuracy, the difference between the SFL and MHSL was merely
0.06%. For CIFAR-10, the performance between SFL and MHSL was highest compared to
any other dataset, which was observed to be 2.5%.

6.3. Experiment 2: Corresponding to RQ2

This section evaluates the impact of the model’s portion size on the client side on the
overall performance. Test accuracy on ECG, HAM-10000, MNIST, KMNIST, and CIFAR-10
datasets is shown in Table 6.

Table 6. Test accuracy with respect to the model split at different layers.

Dataset Architecture ↓ Split at Layer → L1 L2 L3 L4 L5 L6 L7 L8 L9

ECG SFL 81.37 73.45 76.57 83.90 - - - - -

ECG MHSL 79.56 83.78 86.44 80.03 - - - - -

HAM-10000 SFL 73.40 77.25 76.59 75.46 76.45 75.43 76.35 70.89 76.69

HAM-10000 MHSL 71.04 71.63 73.26 71.17 72.18 72.53 71.63 71.73 68.47

MNIST SFL 98.50 98.94 99.04 99.06 99.11 99.31 99.28 99.20 99.21

MNIST MHSL 98.99 98.97 98.92 98.43 98.50 98.37 98.19 98.15 98.18

KMNIST SFL 96.23 96.56 96.17 96.60 96.57 96.83 96.36 96.61 97.13

KMNIST MHSL 96.17 96.07 95.60 95.11 93.89 92.56 92.87 92.77 91.86

CIFAR-10 SFL 76.25 76.10 75.73 76.76 76.72 77.60 78.06 79.04 78.82

CIFAR-10 MHSL 73.75 72.37 70.94 66.83 66.47 64.91 64.58 65.70 65.58

From Table 6, it is evident that SFL and MHSL show a comparable test performance
at cut-layer 1. MNIST is the dataset where MHSL performed better than SFL, but only
when the cut-layer value was 1 or 2. In addition, a significant difference is seen in the
performance of HAM-10000 and CIFAR-10 over cut-layer 6, 7, 8, and 9. SFL performance
was better than MHSL by a difference of approximately 10–15% for CIFAR-10 and 4–8% for
HAM-10000. Other datasets also exhibit the same behavior, excluding ECG, where, when a
higher number of layers were introduced over the client-side, the model portion improved
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the performance of SFL and, at the same time, MHSL performance deteriorated. This
observation helps us conclude that having more layers inside the client side significantly
improves the performance of SFL but simultaneously deteriorates the MHSL performance.
Overall, for IID datasets among the clients, our empirical results (both under RQ1 and RQ2)
demonstrate that multi-head split learning (MHSL) is feasible (it can be used to develop a
production-level ML model). However, as more layers are shifted towards the client-side
model part, the difference in performance becomes significant.

6.4. Experiment 3: Corresponding to RQ3

This section analyzes the MIS of the smashed data at the cut layer on the ECG, HAM-
10000, MNIST, KMNIST, and CIFAR-10 datasets.

For the ECG dataset, it was observed that the MIS score oscillated within epochs.
However, after the full training process, the MIS value for SFL was found to be more than
the MHSL value (see Figure 3). In addition, a non-positive value of MIS was observed
during the experiment, which indicates that the range of values of smashed data and
input data were significantly different, which could be a case of naively padding 0 to the
smashed data.

Figure 3. Mutual information score across the epochs for SFL and MHSL for the ECG dataset.

For HAM-10000 and CIFAR-10, the MIS values or information leakage was higher in
SFL than MHSL, as seen in Figure 4. In contrast, MIS values for the MNIST and KMNIST
datasets showed more leakage through the cut layer in MHSL when compared to SFL,
which can be seen in Figure 5. Furthermore, the mutual information score (MIS) seems
to exhibit a relationship with the dataset complexity. For example, for low-complexity
datasets (grayscale image classification, i.e., MNIST and KMNIST), the MIS was higher
for MHSL when compared with SFL. On the other hand, with increased complexity (RGB
image classification, i.e., HAM-10000 and CIFAR-10), the MIS score of SFL was higher
than MHSL.

(a) (b)

Figure 4. Mutual information score across the epochs for SFL and MHSL for three-channel datasets
(a) HAM-10000 and (b) CIFAR-10.
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(a) (b)

Figure 5. Mutual information score across the epochs for SFL and MHSL for one-channel datasets
(a) MNIST and (b) KMNIST.

The visual output of smashed data from SFL and MHSL at the cut layer is provided in
Table 7 for visual inspection, along with the corresponding input images. Smashed data
plotted in Table 7 is captured at the last epoch of the training phase. In addition, Resnet-18
architecture with a cut-layer value set to 3 was selected for the visualization task. One can
observe that the image formed from the cut-layer’s smashed data is more visually distorted
in MHSL than in SFL.

Table 7. Visual comparison of input images against SFL and MHSL at cut-layer three during an
evaluation phase.

Dataset Input Image SFL MHSL

HAM-10000

CIFAR-10

MNIST

KMNIST

7. Conclusions and Future Works

This paper studied performance and information leakage in the distributed learning
of healthcare data and other commonly used datasets with splitfed learning (SFL) and
multi-head split learning (MHSL).

Our experiment results with Resnet-18 on HAM-10000, MNIST, KMNIST, and CIFAR-
10 demonstrated that MHSL is applicable as an alternative to SFL-based ML model de-
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velopment for the IID distributed data. The results indicate that removing the client-side
aggregation ML model can achieve comparable results to the ML model when retaining
client-side aggregation. Furthermore, this approach reduces the requirement of an addi-
tional server for performing FL for client-side model aggregation. For healthcare-based
datasets, ECG and HAM-10000, SFL is seen to be marginally better than MHSL (by 1.81%
and 2.36%), which remained the case for extended datasets, with MNIST being the only
exception, where MHSL showed a marginal improvement (of 0.49%) over SFL.

Our results demonstrated that adopting different layers to act as a split point for the
network has a significant effect on overall performance. Empirical configurations with a
higher number of layers located at the client-side model resulted in improved performance
for SFL. In contrast, increasing the number of client-side layers led to a deterioration in
the performance of MHSL. In addition, our experiments also favor the MHSL over SFL for
three-channel datasets, where information leakage was found to be less in MHSL than SFL
while the performance remained comparable.

This paper is the initial step in investigating the feasibility of MHSL in terms of
the effect of split-network portion sizes on the overall performance and low information
leakage from a cut layer in the distributed learning of various datasets, including healthcare
datasets. It will be interesting to see more exhaustive experiments and theoretical analysis
on the convergence guarantee with the different models, various datasets, and under a more
significant number of clients in the experimental setup. In addition, experimenting with
the setup for non-IID data distribution is another research direction that can be explored.
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