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Abstract: The drug combination of rosuvastatin (ROS) and ezetimibe (EZE) is used to treat hyper-
cholesterolemia. In this work, a simultaneous electrochemical examination of ROS and EZE was
conducted for the first time. The electrochemical determination of ROS and EZE was carried out
using adsorptive stripping differential pulse voltammetry (AdSDPV) on a glassy carbon electrode
(GCE) in 0.1 M H2SO4. The effects of the pH, scan rate, deposition potential, and time on the detection
of ROS and EZE were analyzed. Under optimum conditions, the developed sensor exhibited a linear
response between 1.0 × 10−6 M and 2.5 × 10−5 M for EZE and 5.0 × 10−6 M, and 1.25 × 10−5 M for
ROS. The detection limits for ROS and EZE were 3.0 × 10−7 M and 2.0 × 10−6 M, respectively. The
developed sensor was validated in terms of linear range, accuracy, precision, the limit of determina-
tion (LOD), and the limit of quantification (LOQ), and it was evaluated according to ICH Guidelines
and USP criteria. The proposed method was also used to determine ROS and EZE in human urine
and serum samples, which are reported in terms of recovery studies.

Keywords: rosuvastatin; ezetimibe; glassy carbon electrode; adsorptive stripping differential pulse
voltammetry

1. Introduction

Rosuvastatin (ROS) is a hypercholesterolemia drug that lowers plasma cholesterol
levels (Scheme 1a) [1]. ROS has a structure that is similar to most other synthetic statins,
but unlike other statins, it contains sulfur. ROS is a competitive inhibitor of the enzyme
HMG-CoA reductase [2–4]. Ezetimibe (EZE) is a drug that the FDA has confirmed as
curing hypercholesterolemia (Scheme 1b). EZE is the first lipid-lowering drug that reduces
the amount of lipoprotein cholesterol by preventing the absorption of cholesterol at the
brush-border level of the intestine. It prevents the intestinal uptake of dietary and bile
cholesterol [4,5].
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Scheme 1. The chemical structures of (a) rosuvastatin and (b) ezetimibe. 
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potentiating the lipid-lowering effects. The combination of ROS and EZE decreases lipid 
levels and the plaque burden. The combination of a statin and EZE has a greater effect on 
coronary plaque regression in patients with acute coronary syndrome [6,7]. Adding EZE 
to ROS significantly improves many more lipid parameters than does doubling the ROS 
dose [8]. The literature includes descriptions of patients who received 5, 10, 20, or 40 mg 
of ROS every day, and the average plasma concentration for ROS was 1.6 ng/mL, 3.5 
ng/mL, 6.3 ng/mL, and 9.8 ng/mL, respectively [9]. For patients taking one dose of 10 mg 
of ezetimibe, average ezetimibe peak plasma concentrations (Cmax) of 3.4 to 5.5 ng/mL 
were acquired within 4 to 12 h [10]. 

The two major fields of the natural sciences, chemistry and electrical science, came 
together in the 19th century to form electrochemistry [11]. Electrochemical techniques are 
extensively used in drug analysis. Among all of the electrochemical methods, stripping 
analysis is one of the most sensitive electrochemical techniques, and it is therefore used in 
quantitative determinations, especially in drug analysis. In recent years, stripping 
voltammetry has been used in the analysis of many drug substances [12]. The reason for 
this great sensitivity is the combination of an efficient accumulation phase with advanced 
measurement processes that produce an excellent signal [13,14]. The adsorptive 
accumulation is intended to deposit the analyte present in the solution on an electrode 
surface with a small surface area. Stripping voltammetry is also used in clinical practice 
and allows the conduct of various analyses of human blood, urine, and tissues [15]. 

The literature reveals some analytical techniques for the simultaneous detection of 
ROS and EZE. These methods are reverse-phase high-performance liquid 
chromatography [16,17], micellar liquid chromatography [18], high-performance column 
liquid chromatography, high-performance thin-layer chromatography [19], 
spectrophotometry [20,21], and liquid chromatography/mass spectrometry [22,23]. In this 
work, EZE and ROS were electrochemically analyzed using the AdSDPV technique at 
GCE. The efficacy of the electrochemical method was fully analyzed for the detection of 
ROS and EZE in commercial human serum and in urine samples, and we report on it in 
terms of recovery studies. 

2. Experimental Design 
2.1. Materials 

Different supporting electrolytes of H2SO4 solutions (0.1 and 0.5 M), acetate (pH 3.7–
5.7), and phosphate (pH 2.0–8.0) buffers were prepared for electrochemical 
measurements. AdSDPV voltammogram recordings were obtained after the addition of 
each aliquot. Drug-free human serum from male AB plasma was purchased from Sigma-
Aldrich (St. Louis, MO, USA). Acetic acid, acetonitrile, methanol, phosphoric acid, sodium 
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Statins and EZE have different lipid-lowering mechanisms of action, and combining
them can obtain the strongest impact on lowering lipids and stabilizing plaque areas [6].
In the literature, it has been found that the combination of ROS and EZE further lowers
total cholesterol and LDL cholesterol, clearly lowering triglyceride levels, and potentiating
the lipid-lowering effects. The combination of ROS and EZE decreases lipid levels and the
plaque burden. The combination of a statin and EZE has a greater effect on coronary plaque
regression in patients with acute coronary syndrome [6,7]. Adding EZE to ROS significantly
improves many more lipid parameters than does doubling the ROS dose [8]. The literature
includes descriptions of patients who received 5, 10, 20, or 40 mg of ROS every day, and
the average plasma concentration for ROS was 1.6 ng/mL, 3.5 ng/mL, 6.3 ng/mL, and
9.8 ng/mL, respectively [9]. For patients taking one dose of 10 mg of ezetimibe, average
ezetimibe peak plasma concentrations (Cmax) of 3.4 to 5.5 ng/mL were acquired within 4 to
12 h [10].

The two major fields of the natural sciences, chemistry and electrical science, came
together in the 19th century to form electrochemistry [11]. Electrochemical techniques are
extensively used in drug analysis. Among all of the electrochemical methods, stripping
analysis is one of the most sensitive electrochemical techniques, and it is therefore used in
quantitative determinations, especially in drug analysis. In recent years, stripping voltam-
metry has been used in the analysis of many drug substances [12]. The reason for this great
sensitivity is the combination of an efficient accumulation phase with advanced measure-
ment processes that produce an excellent signal [13,14]. The adsorptive accumulation is
intended to deposit the analyte present in the solution on an electrode surface with a small
surface area. Stripping voltammetry is also used in clinical practice and allows the conduct
of various analyses of human blood, urine, and tissues [15].

The literature reveals some analytical techniques for the simultaneous detection of
ROS and EZE. These methods are reverse-phase high-performance liquid chromatogra-
phy [16,17], micellar liquid chromatography [18], high-performance column liquid chro-
matography, high-performance thin-layer chromatography [19], spectrophotometry [20,21],
and liquid chromatography/mass spectrometry [22,23]. In this work, EZE and ROS were
electrochemically analyzed using the AdSDPV technique at GCE. The efficacy of the elec-
trochemical method was fully analyzed for the detection of ROS and EZE in commercial
human serum and in urine samples, and we report on it in terms of recovery studies.

2. Experimental Design
2.1. Materials

Different supporting electrolytes of H2SO4 solutions (0.1 and 0.5 M), acetate (pH 3.7–5.7),
and phosphate (pH 2.0–8.0) buffers were prepared for electrochemical measurements. AdS-
DPV voltammogram recordings were obtained after the addition of each aliquot. Drug-free
human serum from male AB plasma was purchased from Sigma-Aldrich (St. Louis, MO,
USA). Acetic acid, acetonitrile, methanol, phosphoric acid, sodium acetate trihydrate,
sodium dihydrogen phosphate dihydrate, sodium hydroxide, sodium phosphate monoba-
sic, sodium phosphate, and sulfuric acid were purchased from Sigma-Aldrich. All reagents
were of analytical grade and were used without pre-processing. All measurements were
realized at room temperature; all solutions were kept from light and used within 24 h to
prevent degradation.

2.2. Equipment

A Bioanalytical Systems (BAS 100W) electrochemical analyzer with a standard three-
electrode system was used for the voltammetric measurements. The three-electrode system
included a platinum-wire counter electrode, an Ag/AgCl-saturated KCl reference electrode,
and a GCE (GC, BAS; 3 mm, diameter), which served as a working electrode. The surface
of the GCE was polished with an aqueous slurry of alumina powder (Φ: 0.01 µm) on a
damp, smooth polishing cloth just before each experiment. The pH was checked using a
pH meter Model 538 (Weilheim, Germany). Operating conditions for AdSDPV were as
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follow: pulse amplitude, 50 mV; deposition time, 15 s; scan rate, 20 mV/s; pulse width,
50 ms; sensitivity, 10 µA/V; sample width, 17 ms; pulse period, 200 ms; quiet time, 10 s.

3. Procedures
3.1. Standards and Sample Preparation

The 1 × 10−3 M stock solution of ROS and EZE was prepared in methanol and kept in
a refrigerator (+4 ◦C). The solutions of ROS and EZE for the voltammetric measurements
were prepared by direct dilution of the stock solution with 0.1 M H2SO4, and they included
a constant amount of methanol (20%, v:v). Analytical curves were obtained by adding
aliquots of the stock solutions of ROS and EZE into the electrochemical cell containing
10.0 mL of the 0.1 M H2SO4 with a constant amount of methanol.

3.2. Biological Sample Preparation

The applicability of the developed procedure to human urine samples was also inves-
tigated. Drug-free urine samples were collected from a healthy laboratory employee on the
day of the experiment. To prepare a stock urine solution, 5.4 mL of acetonitrile, 3.6 mL of
the drug-free urine samples, and 1 mL of the ROS/EZE stock solution (1 × 10−3 M) were
placed in a 10 mL centrifuge tube. First, the mixture was vortexed for 10 min, and then it
was centrifuged at 3500 rpm for 30 min. The supernatant part was carefully transferred
to a distinct, clean tube. In this procedure, acetonitrile acted as a precipitating agent. A
ROS/EZE-free sample of the same urine was used as a blank solution. All measurements
were performed at least in triplicate, and the standard addition technique was performed
for the determination of ROS/EZE.

Synthetic human serum was kept frozen at −20 ◦C in a freezer until analysis. For
the preparation of a stock serum sample, a standard procedure was followed. Quantities
of 1 mL of ROS/EZE, 5.4 mL of acetonitrile, and 3.6 mL of synthetic human serum were
added to a centrifuge tube to prepare a stock serum solution. First, it was vortexed for
10 min and then centrifuged at 3500 rpm for 30 min, and later, the supernatant was taken.
Here, acetonitrile was used to precipitate serum proteins. The supernatant was diluted
with 0.1 M H2SO4 to prepare certain concentrations for the recovery measurements. All of
the experiments were performed at least three times for calibration and five times for the
recovery experiments.

Analytical curves were obtained by adding aliquots of the stock solutions of ROS and
EZE from synthetic human serum or human urine into the electrochemical cell containing
10.0 mL of the 0.1 M H2SO4 with a constant amount of methanol.

4. Results and Discussion
4.1. Voltammetric Behavior of ROS and EZE

The voltammetric behavior of ROS and EZE was examined on a GCE in detail. In the
first step, the behavior of ROS and EZE was investigated by CV studies to characterize their
electrochemical oxidation behavior in the range of 0 V to 1.6 V. The CV results indicated
the irreversible nature of the oxidation process of ROS and EZE. Moreover, the adsorptive
stripping differential pulse voltammetric (AdSDPV) technique was further used, and the
anodic oxidation was observed until reaching a potential of about 0.9 V, and 1.2 V; there
was a single well-defined and sharp oxidation peak for EZE and ROS, respectively, using
the AdSDPV technique on a GCE in 0.1 M H2SO4 (Figure 1).
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Figure 1. The AdSDPV voltammograms of 5.0 × 10−6 M EZE and 7.5 × 10−6 M ROS in 0.1 M H2SO4

(stripping conditions: accumulation potential of 0.0 V and accumulation time of 15 s).

4.2. Influence of the pH

The electrochemical behavior of ROS and EZE was studied within a wide pH range
(pH 0.3–7.0) using the DPV technique on a GCE. With the DPV method, the maximum
current occurred in the 0.1 M H2SO4 medium. The following equation followed the effect of
pH on the peak potential. The Ep-pH plots indicated that a pH increase caused the shifting
of peak potentials to less positive values (Figure 2).

Ep (mV) = 1354.24 − 22.79 pH; R2 = 0.997 for ROS

Ep (mV) = 998.49 − 50.99 pH; R2 = 0.998 for EZE
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4.3. Influence of the Scan Rate

Scan rate experiments were performed to understand the electrochemical oxida-
tion/reduction mechanisms, such as adsorption or diffusion. The influence of the scan rate
between 5 and 1000 mV/s on the peak current and potential was investigated in 0.1 M
H2SO4 using CV, where the highest peak was obtained in pH studies using a GC electrode.

The plot of Ep vs. log v was linear; this attitude is coherent with the EC nature of the
reaction in which the electrode reaction is coupled with an irreversible follow-up chemical
step in CV. According to [24], Ep can be defined by the following equation;

Ep = E0′ − 2.303RT
αnF

log
RTk0

αnF
+

2.303RT
αnF

log v

where E0 is the formal potential, R is the gas constant, T is the temperature, k0 is the
standard heterogeneous rate constant, α is the transfer coefficient of the oxidation of ROS
and EZE, v is scan rate, F is the Faraday constant, and n is the number of electrons that are
involved in the electrooxidation of ROS and EZE [22].

In general, α is used as 0.5 for irreversible processes. Since α is 0.5 for irreversible
systems, n can be calculated from

Ep (V) = 0.046 log v (V·s−1) + 1.312 (r = 0.997) (0.1 × 10−3 M ROS), and n is found to
be 2.36 for ROS, and

Ep (V) = 0.049 log v (V·s−1) + 1.066 (r = 0.997) (0.1× 10−3 M EZE), and n was calculated
as being 2.38 for EZE (Figure 3a,b).
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Moreover, the logarithm of peak current vs. the logarithm of scan rate gives more
detailed information about the electrochemical mechanisms. When these graphs were
plotted, for EZE, from the slope of the equation log (Ip) = 0.783 log v − 1.186 (r = 0.998),
it can be concluded that the reaction is adsorption-controlled since the slope was close
to 1. Thus, as a result of the scan rate experiments, in the 0.1 M H2SO4 medium, the
electrochemical behavior of EZE was found to be adsorption-controlled (Figure 3d).

For ROS, the slope of the equation log (Ip) = 0.582 log v − 1.008 (r = 0.992), and the
electrochemical behavior of ROS was found to be diffusion-controlled (Figure 3c). As we
aimed to determine these two drug-active compounds simultaneously, we applied the
adsorptive stripping method, which enabled us to assess ROS and EZE precisely.

In the literature, the electrochemical determination of ROS and its possible oxida-
tion mechanism have been studied. The authors suggested an electrooxidation mecha-
nism involving a Kolbe electrolysis reaction of the carboxylic acid group localized at the
dihydroxyhept-6-enoic acid portion of the rosuvastatin calcium molecule [25–27]. In the
literature, the electrochemical behavior and possible oxidation mechanism of EZE was also
reported by the authors as being due to the inductive effect of the fluoride group in the
aromatic rings of the EZE molecule; oxidation takes place in the hydroxyl group of phenol
(EC mechanism) and the main voltammetric behavior of aromatic hydroxyl derivatives,
which are structurally related to the mechanism of oxidation of EZE, may be postulated by
the oxidation of the hydroxyl group on the aromatic ring [28,29].

4.4. Effect of Deposition Time and Potential

Parameters, such as deposition time and potential, significantly affect the AdSDPV
peaks of the analytes. Hence, these parameters as related to AdSDPV were optimized to
obtain the best results for the determination of ROS and EZE. The effect of the deposition
time on stripping peak current was studied in the range of 0 s to 50 s, with 0 V deposition
potential. It was observed that the peak current increased between 0 and 15 s (Figure 4).
However, after 15 s, a decrease was observed in the peak current. As a result, 15 s was
selected as the optimum deposition time. The effect of deposition potential, which is another
important parameter, on stripping peak currents was studied in deposition potentials
ranging from −0.1 V to +0.1 V, with a constant accumulation time of 15 s (Figure 4). A
decrease in stripping peak currents was observed after the 0 V deposition potential, with
an accumulation time of 15 s. A deposition time of 15 s and a deposition potential of 0 V, at
which the maximum peak current was observed, were used in all subsequent experiments
(Figure 4).
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4.5. Analytical Characterization and Validation

Under optimum deposition potential and time conditions using the AdSDPV, samples
with increasing concentrations of EZE and ROS were prepared. Analytical characterization
in terms of LOD and LOQ based on 3 s/m and 10 s/m, respectively, were achieved using
linear curves; where m is the slope of the related calibration curves and s is the standard de-
viation of the peak currents of the lowest concentration of the analyte. EZE was determined
in the linear range between 1.0 × 10−6 M to 2.5 × 10−5 M, with a LOD of 3.0 × 10−7 M and
a LOQ of 1.0 × 10−6 M. ROS was determined in the linear range between 5 × 10−6 M to
1.25 × 10−5 M, with a LOD of 2.0 × 10−6 M and a LOQ of 6.6 × 10−6 M. For the validation
of the developed method, accuracy and precision were investigated by analyzing five
replicate experiments between days and within days. Relative standard deviations (RSD%)
were determined to control the precision of the technique. As summarized in Table 1,
the results after statistical evaluation indicate that the technique is analytically acceptable
(Figure 5 and Table 1).

Table 1. Statistical assessment of the calibration data for determination of ROS and EZE by the AdS-
DPV method in 0.1 M H2SO4 (stripping conditions: accumulation potential of 0.0 V and accumulation
time of 15 s).

Buffer Serum Urine

Compounds EZE ROS EZE ROS EZE ROS

Linearity range
(M)

1 × 10−6–2.5 ×
10−5

5 × 10−6–1.25
× 10−5

3.0 × 10−6–1.0
× 10−5

2.0 ×10−5–6.0
× 10−5

3.0 × 10−6–1.0
× 10−5

2.0 × 10−5–6.0
× 10−5

Slope (µA/mM) 76.93 24.20 30.54 11.31 49.05 14.19
Intercept (mM) −0.03 −0.08 0.03 −0.12 0.09 −0.05
Determination
coefficient 0.999 0.999 0.999 0.999 0.999 0.999

LOD (M) 3.0 × 10−7 2.0 × 10−6 1.0 × 10−6 1.0 × 10−6 3.0 × 10−7 1.0 × 10−6

LOQ (M) 1.0 × 10−6 6.6 × 10−6 2.0 × 10−6 4.0 × 10−6 1.0 × 10−6 4.0 × 10−6

Within-day
Repeatability
(RSD %) *

1.20 1.74 1.45 1.42 1.68 1.67

Between-day
Repeatability
(RSD %) *

1.48 1.72 1.83 1.51 1.87 1.98

* Average of the five values.
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4.6. Determination of Ezetimibe and Rosuvastatin in Biological Samples

In optimized conditions, the electrochemical method was also applied for the detection
of EZE and ROS in buffer, spiked human serum, and urine samples, and reported in terms of
recovery. Using the suggested method, the purified samples were used for the simultaneous
determination of EZE and ROS. Recovery studies were performed by adding ROS and
EZE in certain amounts to the human urine samples and serum samples by the proposed
technique. The recovery studies of ROS and EZE were assessed based on the data given
in Table 1. The proposed technique of RSD% and the average recovery results confirmed
suitable accuracy and precision. The applicability of the developed method was indicated
by constituting calibration graphs for ROS and EZE in the presence of spiked urine and
serum samples. The developed technique was used for the accurate determination of ROS
and EZE in biological samples without any pretreatment procedure. The outcomes of
the calibration calculations and related parameters obtained in human urine and serum
samples are given in Table 1. Recovery results of ROS and EZE were controlled with the
corresponding calibration equations, obtained in human urine and serum samples, and
found acceptable (Table 2). All results indicated the potential applicability of the developed
method for evaluating human urine and serum samples.

Table 2. Recovery results obtained from the analysis of ROS and EZE in human urine and serum
samples by AdSDPV method in 0.1 M H2SO4 (stripping conditions: accumulation potential of 0.0 V
and accumulation time of 15 s).

ROS EZE

Human Urine Human Serum Human Urine Human Serum

Added (mg) 5.00 5.00 5.00 5.00
Found (mg) * 4.87 4.92 4.82 4.89
Recovery (%) * 97.4 98.4 96.4 97.8
RSD (%) 1.10 0.80 1.30 0.90
Bias (%) 2.60 1.60 3.60 2.20

* Average of the five values.

5. Conclusions

In this study, the electrochemical behavior of ROS and EZE was studied simultane-
ously for the first time. AdSDPV was used for the reliable detection of ROS and EZE
in a 0.1 M H2SO4 solution with commercial deproteinated human serum samples and
human urine samples using a GCE, and results were reported in terms of recovery. The
developed simple and low-cost method showed high sensitivity, a low limit of detection,
good repeatability, and good linearity. In the proposed technique, we monitored linear
relationships varying from 1.0 × 10−6 M to 2.5 × 10−5 M for EZE concentrations and from
5.0 × 10−6 M to 1.25 × 10−5 M for ROS concentrations. LOD values were found for ROS
and EZE as 3.0 × 10−7 M and 2.0 × 10−6 M, respectively. As is stated in the literature, for
patients taking 40 mg ROS daily, the average plasma concentration of ROS (Cmax) was
9.8 ng/mL (0.0098 µg/mL) [9]. Furthermore, after one dose of EZE, average EZE peak
plasma concentrations (Cmax) of 3.4 to 5.5 ng/mL (0.0055 µg/mL) were obtained within 4
to 12 h (Tmax) [10]. These values are higher than our limit of detection value, indicating
that the proposed method can be used to detect ROS and EZE in real samples.
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