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Abstract: Cell-free RNAs (cfRNAs) are promising analytes as non-invasive biomarkers and have even
greater potential if tied in with metabolomics. Plasma is an optimal source for cfRNAs but is often
derived from a variety of anticoagulants. Plasma obtained in heparin is suitable for metabolomics but
is difficult to utilize for qPCR-based downstream analysis. In the present study, we aimed to develop
a simple, time-efficient, and cost-effective heparinase protocol, followed by library preparation and
sequencing of human plasma cfRNAs drawn and stored in heparin at −80 ◦C for several years.
Blood was collected in CPT™ sodium heparin tubes from patients with chronic HCV infection
(NCT02400216) at the National Institutes of Health (NIH) Clinical Center. Plasma cfRNAs were
treated with heparinase I and used for library preparation and next-generation sequencing (NGS).
Heparinase treatment maintained RNA integrity and allowed for successful library preparation for
all the study subjects even with 7 ng of cfRNAs as starting material. The classification report derived
from Pavian R package v1.2.0 showed no artificial reads. The abundance of chordate over microbial
reads suggests no addition of experimental error through heparinase I treatment. We report a novel
and practical approach to heparinase treatment for human plasma collected and frozen in sodium
heparin for several years. This is an effective demonstration of utilizing heparin plasma for NGS and
downstream transcriptomic research, which could then be integrated with metabolomics from the
same samples, maximizing efficiency and minimizing blood draws.

Keywords: cfRNAs; cell-free RNAs; qPCR; quantitative polymerase chain reaction; RT-qPCR; reverse
transcription–quantitative polymerase chain reaction; NGS; next-generation sequencing; HCV;
hepatitis C virus; cDNA; complementary DNA

1. Introduction

Advancements in technology have led to a revolution in metabolomics, transcrip-
tomics, and proteomics, all now possible utilizing small amounts of plasma. A significant
challenge is the choice of anticoagulant to derive the plasma, with ethylenediaminete-
traacetic acid (EDTA), heparin, fluorides, and anticoagulant citrate dextrose (ACD) all
widely available. Plasma drawn and stored in heparin is most similar to serum when
utilized for metabolomics as compared to other anticoagulants such as ACD, EDTA, and
fluorides [1]. On the other hand, heparin interferes with reverse transcriptase and restricts
downstream analysis, such as qPCR and sequencing [2,3].
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Cell-free RNAs (cfRNAs) are increasingly promising analytes in both cancer- and non-
cancer-related research [4–7]. Successful removal of heparin and subsequent qPCR have
been highly challenging, limiting use for the study of cfRNAs. Though heparinase enzymes
can degrade heparin and thus allow downstream analysis, RNA often becomes denatured
during incubation. RNAse inhibitors, MgCl2, and different buffers could potentially prevent
the degradation of cfRNAs. Successful heparinase treatment along with qRT-PCR and
microRNA profiling in different body fluids and disease conditions has been previously
demonstrated [3,8–10]. However, to the best of our knowledge, there has not yet been a
study that has examined heparinase treatment on cell-free plasma RNA followed by library
preparation and next-generation sequencing (NGS) in humans.

In the present study, we aimed to develop a simple, time-efficient, and cost-effective
heparinase protocol, followed by library preparation and sequencing of plasma drawn and
stored in heparin at −80 ◦C for several years from patients with chronic hepatitis C virus
(HCV) infection.

2. Experimental Design

We have used human plasma from patients infected with HCV for different exper-
iments in this study. Patients with chronic HCV infection were assessed and enrolled
(NCT02400216) at the National Institutes of Health (NIH) Clinical Center [11]. The study
was approved by The National Institute of Diabetes, Digestive and Kidney Diseases, the
National Institute of Arthritis and Musculoskeletal Diseases, and the Institutional Review
Board at NIH.

2.1. Materials
Human Plasma

Seven to eight mL of peripheral blood samples was obtained from an antecubital
vein and drawn into CPT™ sodium heparin tubes (BD Biosciences, Ann Arbor, MI, USA,
Cat# 362753) and spun down at 1600 rpm for 10 min at 4 ◦C for plasma. Then, 1 mL of
plasma was aliquoted in multiple Eppendorf tubes, and all the samples were stored at
−80 ◦C until analysis was complete. Plasma samples collected in sodium EDTA as well as
in sodium heparin from anonymized healthy donors were obtained from the NIH Clinical
Center Blood Bank.

3. Procedure
3.1. Extraction of RNA

cfRNAs were extracted from 1 mL plasma using a previously published method [7]. Per
mL frozen plasma samples were mixed with 2 mL of RNAzol BD (MRC, Cat# RB192, Cincinnati,
OH, USA) and 20 µL of Acetic acid (Sigma-Aldrich, Cat# A6283, St. Louis, MO, USA) in 5 mL
DNA LoBind® Tubes (Eppendorf, Cat# 0030122348, Hamburg, Germany), shaken vigorously
for 30 s and incubated for 15 min. After that, 150 µL of 1–bromo–3–chloropropane (MRC,
Cat# BP 151, Cincinnati, OH, USA) was added to the tubes, shaken vigorously for 30 s,
and re-incubated for another 15 min in RT. Then, the mixture was centrifuged at 12,000× g
(Centrifuge 5427 R, Rotor FA-45-12-17) for 15 min at room temperature, and the upper
phase was placed in new 5 mL DNA LoBind® Tubes for 2-propanol (Sigma-Aldrich, Cat#
I9516-500ML, St. Louis, MO, USA) precipitation. Next, 1 µL of UltraPure™ Glycogen
(Thermo Fisher Scientific, Cat# 10814010, Carlsbad, CA, USA) and 4 µL of UltraPure™
DNase/RNase-Free Distilled Water (Thermo Fisher Scientific, Cat# 10977023-10 × 500 mL,
Grand Island, NY, USA) were added into the upper phase and 2-propanol mixture (1:1) to
increase the recovery of cfRNAs during 2-propanol precipitation. After washing the pellet
with 75% ethanol (Sigma-Aldrich, Cat# E7023-500ML, St. Louis, MO, USA) 4 times, it was
dried in room temperature for 5 min and suspended in UltraPure™ DNase/RNase-Free
Distilled Water. The concentration of extracted cfRNAs was measured using Quant-iT™
RNA Assay Kits and Quant-iT RNA HS Reagent (Cat# Q33225, Eugene, OR, USA) in a
TBS-380 Mini-Fluorometer (Turner BioSystems, Sunnyvale, CA, USA).
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3.1.1. Treatment with Heparinase I Enzyme

cfRNAs suspended in UltraPure™ DNase/RNase-Free distilled water were incubated
with Bacteroides heparinase I (NEB, Cat# P0735L, Ipswich, MA, USA) enzyme, 10X hepari-
nase buffer (supplied with the Bacteroides heparinase I enzyme, NEB, Cat# P0735L, Ipswich,
MA, USA), RNAse inhibitor (Applied biosystem, Cat# N8080119, Carlsbad, CA, USA), and
NEBNext First Strand Synthesis Reaction Buffer (NEB, Cat# E7770L, Ipswich, MA, USA) for
1 h at 37 ◦C in a thermomixer (Eppendorf™ Thermomixer™ R, 9.75 L × 8.75 W × 4.75 H
(25 cm × 22 cm × 12 cm)). Detailed concentrations and volumes added are displayed in
Table 1.

Table 1. Experimental conditions for heparinase treatment.

Concentrations or Units Volume Added (µL) Final Volume per Sample (µL)

Sample 1.7–27.3 ng/mL plasma 4

11.8

Bacteroides Heparinase I 12,000 Units/mL 1.5

Heparinase Buffer 10X 1.2

RNAse inhibitor 20 Units/mL 0.5

NEBNext First Strand
Synthesis Reaction Buffer 5X 4.6

3.1.2. cDNA Synthesis, Library Preparation, and Sequencing

After 1 h of incubation at 37 ◦C, samples treated with Bacteroides heparinase I were
taken for cDNA synthesis, followed by library preparation according to the manufac-
turer’s recommendations (NEB, Cat# E7770, Ipswich, MA, USA). Then, 4 µL of Bacteroides
heparinase-I-treated sample was mixed with 4.6 µL of NEBNext First Strand Synthesis
Reaction Buffer (5X) and 1.15 µL of NEBNext Random Primers followed by 15 min incuba-
tion at 94 ◦C in a pre-heated thermal cycler (BIO-RAD, Hercules, CA, USA, C1000 Touch
Thermal Cycler) and then immediately placed on ice. After that, 2 µL of NEBNext First
Strand Synthesis Enzyme Mix and 8 µL of nuclease-free water (supplied with the kit, NEB,
Cat# E7770, Ipswich, MA, USA) were added to each sample and placed on the pre-heated
thermal cycler for following cycles: 25 ◦C for 10 min, 42 ◦C for 50 min, 70 ◦C for 15 min,
and 4 ◦C hold for 10 min. For second-strand cDNA synthesis, a master mix was made
using NEBNext Second Strand Synthesis Reaction Buffer (10X) (8 µL), NEBNext Second
Strand Synthesis Enzyme Mix (4 µL), and nuclease-free water (48 µL) for each sample.
After adding the second-strand master mix to the sample, the mixture was well mixed
with a pipette and incubated in the thermal cycler at 16 ◦C for 1 h. Then, the cDNAs
were purified using SPRIselect beads (Beckman Coulter; Cat# B23317, Brea, CA, USA) and
used for library preparation. Each library was mixed with 25 µL of NEBNext Ultra II Q5
Master Mix (provided with the kit, NEB, Cat# E7770, Ipswich, MA, USA) and was tagged
using NEBNext Multiplex Oligos for Illumina (NEB, Cat# E6609) for PCR (Table 2) in the
pre-heated thermal cycler.

Table 2. Conditions for PCR enrichment during library preparation.

Step Temperature Time Cycles

Initial Denaturation 98 ◦C 30 s 1

Denaturation 98 ◦C 10 s
14

Annealing/Extension 65 ◦C 75 s

Final Extension 65 ◦C 5 min 1

Hold 4 ◦C 10 min

All the RNA libraries were checked using a High Sensitivity D5000 ScreenTape® kit
(Agilent, Cat#5067-5592, Santa Clara, CA, USA) in TapeStation (Agilent 4200 TapeSta-
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tion System) for quality purposes and quantified using Quant-iT™ PicoGreen™ dsDNA
Assay Kits (Thermo Fisher Scientific, Cat# P7581, Eugene, OR, USA) in a TBS-380 Mini-
Fluorometer (Turner BioSystems, Sunnyvale, CA, USA). Libraries were sequenced on a
NovaSeq6000 System (Illumina, San Diego, CA, USA) for 50 base pair (bp) paired-end
reads from The National Heart, Lung, and Blood Institute (NHLBI, Bethesda, MD, USA)
DNA Sequencing and Genomics Core.

3.1.3. Data Analysis

Reads were initially trimmed for quality and adapter removal using fastp v0.23.2 [12].
Trimmed reads were then analyzed for microbial and viral reads using Kraken2 v2.1.2 [13]
and the precompiled Standard database (https://benlangmead.github.io/aws-indexes/k2
(accessed on 1 December 2022)). Kraken2 reports were combined and analyzed using
Pavian v1.2.0 [14].

4. Expected Results

Current Bacteroides heparinase I treatment is well-suited for a wide range of cfRNA
concentrations.

In this study, the average concentration of extracted cfRNA was 78.09 ± 10.66 ng/mL
of heparin plasma with a range of 10.59–164.04 ng/mL of heparin plasma. The average
amount of RNA used for Bacteroides heparinase I treatment was approximately 52 ± 7.11 ng
(range is 7.06–111.76 ng) (Figure 1).
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Bacteroides heparinase-I-treated libraries were suitable for metagenomic analysis.
The High Sensitivity D5000 ScreenTape® Report showed that the average RNA library

size was 259 ± 7.21 bp, ranging from 194 to 302 bp (Figure 2C). The classification report
from Pavian R package v1.2.0 showed no artificial reads in the samples. Average classified
reads were 98.85 ± 0.0006%, and the rest were unclassified (1.05 ± 0.006%). Similar to
previous studies [7,15], most of the classified reads belonged to chordates (~59 ± 0.025%),
and the rest were microbial reads (~41 ± 0.024%) (Figure 2D).
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5. Discussion

Plasma cfRNAs are considered non-invasive markers in different diseases and a
potential source for both human and microbial signatures in blood [16–18]. Many pre-
vious studies analyzing cfRNAs used EDTA plasma, as heparin is a known inhibitor of
qPCR-based downstream analysis. As a result, blood is usually collected into various types
of tubes, increasing the risk of sampling error, contamination, burden of work, and cost.
In the present study, we have designed a cost-effective and straightforward protocol for
heparinase treatment (using Bacteroides heparinase I enzyme) of plasma stored in sodium
heparin for many years at −80 ◦C followed by next-generation sequencing (NGS) to show
feasibility for qPCR-based downstream analysis.
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Instability and low concentrations are two significant challenges for the study of
heparinized plasma cfRNAs, making it harder to incubate samples for a long time with
heparinase enzymes [2]. Plasma cfRNA concentrations depend on the plasma volume, type
of subjects, and the extraction procedures. As reported by other studies, a 1 h incubation
with enzyme mixtures [8,19] helps in the removal of heparin and also allows successful
library preparation, even with meager quantities of starting cfRNAs (~7 ng). Use of the
buffer from the same cDNA synthesis and library preparation kit makes this method of
heparinase treatment far more time- and cost-efficient than others [8,19]. Furthermore,
many of the previously published heparinase treatment studies were performed with fresh
plasma, whereas the described approach is suitable for frozen plasma stored for at least up
to 6 years at −80 ◦C.

Though there are differences in the read count and reproducibility in NGS data, it has
been well established that a far greater number of plasma cfRNAs align with the human
genome compared to microbial genomes [7]. This finding is consistent with the present
study. It has been difficult to find studies that deal with plasma stored in sodium heparin,
which were then utilized for NGS to analyze both human and microbial sequences, making
the described protocol a novel approach for heparinase treatment and subsequent NGS.

There are a few limitations of the current study. To minimize the degradation of
cfRNAs, no experiments were performed to investigate the heparin concentration in the
samples before and after heparinase treatment. No comparison was performed between
EDTA plasma, non-treated heparin plasma, and treated heparin plasma in the present study
in terms of extracted cfRNA concentrations and NGS. As a result, the effect of different
anticoagulants on plasma cfRNA populations is not addressed in this manuscript. Multiple
library samples stored in EDTA and heparin (treated and non-treated with heparinase)
plasma from healthy blood donors were analyzed through the 2100 expert_High Sensitivity
DNA Assay kit to confirm successful library preparation (Figure 3) after heparinase treat-
ment. As our goal is to establish an authentic approach for heparinase treatment only, we
do not present any analysis of microbial species in this paper. Clinical and epidemiological
studies can continue over the span of several years, with multiple time points and inter-
ventions. It would be efficient and effective if there were one suitable anticoagulant for
preserving plasma to perform metabolomics and transcriptomics. Here we present a simple
and authentic approach to removing heparin from frozen, heparinized plasma stored for
several years and subsequent use for qPCR-based downstream analysis.
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Figure 3. cfRNA libraries from healthy blood donors. Panel (A) and (B) represent library from
Bacteroides heparinase-I-treated and non-treated heparin plasma, respectively, and (C) represents
libraries from EDTA plasma. Experiments were carried out in multiple batches in multiple days. A
cfRNA amount of ~8–50 ng per 1 mL of plasma was used for the upper experiments. Green and
Purple color lines indicate lowest and highest ladder respectively present in bioanalyzer.

6. Conclusions

The current study is a novel and practical approach to heparinase treatment for human
plasma collected and frozen in sodium heparin for several years. The protocol is an effective
demonstration of the removal of heparin in plasma as a barrier to transcriptomic research.
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