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Abstract: We provide a critical assessment of the account of causal emergence presented in Erik
Hoel’s 2017 article “When the map is better than the territory”. The account integrates causal and
information theoretic concepts to explain under what circumstances there can be causal descriptions
of a system at multiple scales of analysis. We show that the causal macro variables implied by this
account result in interventions with significant ambiguity, and that the operations of marginalization
and abstraction do not commute. Both of these are desiderata that, we argue, any account of multi-
scale causal analysis should be sensitive to. The problems we highlight in Hoel’s definition of causal
emergence derive from the use of various averaging steps and the introduction of a maximum entropy
distribution that is extraneous to the system under investigation.
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1. Introduction

In “When the Map Is Better Than the Territory”, Erik Hoel provides a formal theory
of how a system can give rise to causal descriptions at multiple levels of analysis [1]. The
proposal has its origins in the formal definition of the measure φ for consciousness in the
Integrated Information Theory of Consciousness [2]. The question of how to describe the
causal relations of a system at different scales is closely related to the debates in mental
causation in philosophy, where the focus has been on whether mental states (thoughts,
beliefs, desires, etc.) can be causes of behavior in their own right, distinct from the phys-
ical quantities (neurons, brain chemistry, etc.) that realize the mental states. Of course,
multi-scale causal analyses are not restricted to the relation between the brain and the
mind. Similar concerns arise in micro- vs. macro-economic theory, or quite generally in
understanding how the life sciences relate to the fundamental natural sciences. In many
domains there is an accepted level of analysis at which the causal processes are described,
while it is understood that these macro-causal quantities supervene on more fine-grained
micro-level causal connections. Hoel provides a precise formal account of this superve-
nience and explains under what circumstances macro-causal descriptions of a system can
emerge. By integrating causal concepts with information theoretic ones, Hoel argues that a
macro-causal account of a system emerges from micro-causal connections when the coarser,
more abstract causal description (the map) is more informative (in a sense that he makes
formally precise) than the micro-causal relations (the territory).

Hoel’s account is one of the very few attempts to provide an explicit formalism of
causal emergence, which one could apply to a (model of a) real system. While we will be
critical of some of the core features of the account, we highly commend Hoel for developing
this theory in precise terms. Unlike many other attempts to explain multi-scale causal
descriptions, this theory is precise enough for us to pinpoint where we disagree. Our
disagreements are not flaws or errors in the account that would refute the theory, but
highlight consequences of the theory that we think violate important desiderata of what an
account of causal emergence should satisfy. Specifically, our examples show that Hoel’s
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theory permits so-called “ambiguous manipulations” with rather significant ambiguity
(Section 3), and that the operations of abstraction and marginalization do not commute in
his theory (Section 4). The latter is a particularly unusual feature for a theory that aims to
describe a system at multiple scales of analysis.

Like many formal accounts, Hoel is silent on the metaphysical commitments of his
theory. That is, it remains open whether the causal emergence he identifies has an indepen-
dent objective reality, carving nature at its joints, or whether it is merely a convenient way
for an investigator to model the system. None of our concerns hinge on this issue and so
we will similarly remain agnostic with respect to the metaphysical commitments. However,
depending on the view one takes, the implications of our formal results are different: To the
extent that one reads Hoel’s account as a description of objective reality, our results show
that the description is not objective, but contains significant modeling artifacts. If instead
one interprets Hoel’s account as merely epistemic, then the results point to an arbitrariness
in the investigator’s model that is not well justified and that has misleading consequences.

We start by describing Hoel’s theory in Section 2. We have adapted Hoel’s notation to
improve clarity. Where we use different notation, we note the mapping to Hoel’s notation
in the footnotes. We then provide our main counter-intuitive examples in Sections 3 and 4
and discuss the implications of our examples for the desiderata of a theory of causal
emergence. In Section 5, we cover a few of further curiosities of Hoel’s account before
closing in Section 6.

2. Hoel’s Theory of Causal Emergence

Similar to other theories of emergence (see, for example, Shalizi and Moore [3]), Hoel
describes his theory in terms of a discrete state space S with a finite number of states
{s1, . . . , sn} that characterize the micro-level states of the system under investigation. Micro
states are connected to one another by state transitions that are fully specified in a transition
probability matrix TPM, whose entry (i, j) specifies the probability P(St+1 = sj | St = si)
of the system being in state sj at time t + 1 given that it was in state si at time t. Given that
there are no unobserved variables and all state transitions are from one time point to the
subsequent one, the transition probabilities correspond to the interventional probabilities
P(St+1 = sj|do(St = si)) that characterize the micro-level causal effect of the system at time
t on the system at time t + 1. We thus have a simple model of the micro-causal relations.

There are various ways of interpreting this model. Hoel’s notation suggests an inter-
pretation of the model in terms of a fully-observed one-step Markov process evolving over
time with one variable that has n states. However, Hoel’s model makes no commitments
about further features that a time series may or may not exhibit, such as stationarity. So,
one can also read the transition probability matrix as simply specifying an input–output
relation of a mechanism (where the input and output have the same state space). For those
more familiar with causal Bayes nets, one could also just think of two variables X and Y
(with the same state spaces) and use P(Y|do(X)) to specify the transition probability matrix.
However, no marginal distribution P(X) is specified.

To simplify subsequent notation, we let the state transition probability matrix TPM
specify the transition probabilities from states xi of input variable X to states yj of output
variable Y, with the understanding that the state spaces of X and Y are identical.1

Now, given a micro-causal system X → Y described by the finite state space X (= Y)
and a transition probability matrix TPMX→Y, under what circumstances does a macro-level
causal description U → V with state space U (= V) and macro-level transition probability
matrix TPMU→V emerge?

Every coarser description of the system has to combine states of X into a smaller
set of macro states U . While any partition that is a coarsening of X is in a trivial sense a
macro-level description of the original system, Hoel’s theory aims at identifying partic-
ular coarsenings that amount to, what he calls, causal emergence. These are coarsenings
of the original state space with distinguishing features that make them intuitively more
appropriate as (macro-)causal descriptions in their own right. Hoel maintains that effec-
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tive information is the relevant measure to identify macro-causal descriptions. Effective
information has a variety of appealing characteristics that permit a connection between
causal and information theoretic concepts. In particular, it specifies the average divergence
that a specific intervention on the system achieves, compared to a reference distribution of
interventions. The underlying idea is that effective information tracks in a precise sense
how causally informative the current state of the system is for its future state. As with
many information theoretic notions, effective information is defined not only in terms of
the transition probabilities, but also in terms of the input distribution for the “sender”,
i.e., in this case, the cause. While Hoel does not discuss his choice of input distribution
extensively, we believe that the selection of a maximum entropy intervention distribution
Hmax over the state space of the cause is motivated by a desire to (a) uniquely determine
the value of the measure, and (b) to use a distribution that explores the full causal efficacy
of the cause without being affected by its states’ observed or marginal probabilities. Given
the finite discrete state space X , the maximum entropy intervention distribution is just the
uniform intervention distribution over the set of micro states:

Hmax = Uni f (do(X)), that is, P(do(X = x)) =
1
n
∀x (1)

Intervening with this distribution on X results in the effect distribution ED(Y) over Y:

ED(Y) = ∑
X

P(Y | do(X))Hmax (2)

=
1
n ∑

x
P(Y | do(X = x)) (3)

In other words, ED simply computes the uniform average over all rows in the transition
probability matrix. To see the effect of each specific intervention do(X = x), we want to
compare ED(Y) with P(Y|do(X = x)), the specific row of the transition probability matrix.
Hoel uses the Kullback–Leibler divergence to compare how different these two distributions
are. The effective information (EI) of a (micro-level) system X → Y then takes the average of
these divergences:

EI(X → Y) = ∑
X

HmaxDKL(P(Y | do(X)) || ED(Y)) (4)

= ∑
x

P(do(X = x))DKL(P(Y | do(X = x)) || ED(Y)) (5)

=
1
n ∑

x
DKL(P(Y | do(X = x)) || ED(Y)), (6)

where DKL is the Kullback–Leibler divergence. As the form of Equation (5) already indicates,
EI is the mutual information between the uniform intervention distribution Hmax over the
cause and the resulting effect distribution ED:

EI(X → Y) = I(X; Y) (7)

where X ∼ Hmax and Y ∼ ED.

One way of thinking about effective information is that it provides a measure of how
distinct the causal effects of X are on Y, using the maximum entropy distribution as a
reference distribution. Consequently, when we now consider a macro-level description
U → V of X → Y, where the state space U of U is a coarsening C(X ) of the state space of
X (recall that the effect always has the same state space as the cause here), then combining
states with similar transition probabilities can lead to an improvement of how distinct the
causal effects of the remaining aggregated states are, i.e., the mutual information between
cause and effect can be increased by abstracting to a macro-level description.
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However, in order to fully determine the effective information of a coarsening of the
micro space X , one has to specify what it means to intervene on a non-trivial macro state
u. That is, one has to specify what do(U = u) is when u = xi ∪ xj, for two distinct micro
states xi and xj. Without much explanation or motivation, Hoel defines the intervention
on a macro state to correspond to a uniform average of interventions on the micro states
that map to the macro state: By slightly overloading notation, let u stand both for a macro
state and for the set of micro states {xi} that correspond to it (similarly for v and {yj} in
the effect). Then the intervention on macro state u is given by:

P(V = v | do(U = u)) = ∑
yj∈v

1
|u| ∑

xi∈u
P(Y = yj | do(X = xi)) (8)

In words: The intervention on macro state u results in a probability of macro state v that is
given by intervening on all micro states xi that correspond to macro state u, averaging the
resulting distributions over Y uniformly, and then summing over those micro states yj that
correspond to macro state v.2

With this definition in hand, the effective information of any coarsening of the micro
state space X of the system X → Y can be determined. According to Hoel then, causal
emergence occurs when a macro state space U that is a strict coarsening of the micro
state space X maximizes effective information. That is, the brute force3 version of the
abstraction operation from micro to macro level is that one searches over all possible
coarsenings of the micro space. The coarsened state space applies to both U and V. For each
such coarsening C(X ), one determines the effective information of C(X ) by considering
a uniform intervention distribution over U , the coarsened state space. This uniform
intervention distribution over the coarsened state space will in general map to a non-
uniform distribution over the micro state space (since the intervention probability on one
macro state is divided up evenly among all the micro states that map to it, and different
macro states may have different numbers of such micro states). There will be at least one
partition that maximizes effective information. Whenever such a partition is coarser than
the micro-level partition, Hoel speaks of causal emergence. See Figure 1.

Figure 1. Hoel’s theory: Causal emergence occurs whenever effective information EI is maximized
for a strict coarsening C(X ) of the state space X of the underlying system. Note that X and Y are
required to have the same state spaces (similarly, for U and V). Setting macro variable U to state u by
intervention do(U = u) maps to a uniform average over the interventions do(X = x) for those values
x that correspond to the value u.

This approach has many attractive features. In particular, it builds a close connection
between macro-causal descriptions and channel capacity in information theory. Channel
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capacity is defined in terms of the input distribution that maximizes the mutual information
between sender and receiver across a noisy channel:

C(S, R) = max
P(S)

I(S; R) (9)

Hoel’s search for causal emergence is similar: It is a search over intervention distributions
over the micro states in X for the intervention distribution that maximizes the mutual
information between the intervened macro cause U and the resulting effect V. However,
as the differing notation already suggests, the maximization of effective information is
a maximization of mutual information subject to two constraints: First, only a subset of
possible distributions over X is considered—namely those that correspond to maximum
entropy distributions (i.e., uniform distributions in this case) over some coarsening U of
the micro space X . And second, rather than just maximizing mutual information between
the sender and receiver, the maximization of effective information requires identical state
spaces for the cause and effect.4

Hoel refers to the maximization of effective information as achieving the causal capacity:5

CC(X → Y) = max
U=C(X )

EI(U → V) (10)

Thus, a macro-level causal description U → V emerges from a micro-level causal system
X → Y whenever the effective information matches the causal capacity. This is when the
map is better than the territory.

Despite the suggestive connection to information theory, several aspects of the def-
initions give reason for pause: Maximum entropy distributions are theoretically useful
distributions, but they are an artificial addition to the analysis of a natural system. It
remains an empirical question of whether such distributions have any relevance to the
actual system one is investigating. Moreover, averages can obscure significant discrepan-
cies, and in Hoel’s account of causal emergence there are at least two averaging steps: A
macro-intervention is a uniform(!) average over the micro interventions that map to it, and
effective information is a maximum entropy mixture (so, here again, a uniform average)
over a set of KL divergences. Our examples in the following highlight what features of the
territory are obscured by a map that uses maximum entropy and averaging of this kind.

3. Ambiguity: Merging States with Different Causal Effects

When two different micro states have the same transition probabilities, it is generally
uncontroversial that they should (or at least, can) be combined to form a coarser macro state.
The micro states do the same thing, so there is little point in distinguishing them. Indeed,
effective information generally6 does just that, as is illustrated by Hoel’s first example of
causal emergence where he considers a micro state space with n = 8 possible states and a
transition probability matrix given by

TPMX→Y =



1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0

0 0 0 0 0 0 0 1


(11)
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The first seven states have identical effects, so the EI is only 0.55. Unsurprisingly, the EI
is maximized when the first seven states are collapsed, such that the macro state space U
consists only of two states and the corresponding TPMU→V is given by

TPMU→V =

[
1 0
0 1

]
(12)

This two-state macro representation has effective information of 1. More interestingly, as
Hoel points out with his second example, the micro states need not have identical transition
probabilities in order for a causal macro description to emerge. The following transition
probability matrix over 8 states has effective information of 0.81, but collapsing the first
seven states as above still maximizes effective information at 1.

TPMX→Y =



1/5 1/5 1/5 1/5 1/5 0 0 0
1/7 3/7 1/7 0 1/7 0 1/7 0

0 1/6 1/6 1/6 1/6 1/6 1/6 0
1/7 0 1/7 1/7 1/7 1/7 2/7 0
1/9 2/9 2/9 1/9 0 2/9 1/9 0
1/7 1/7 1/7 1/7 1/7 1/7 1/7 0
1/6 1/6 0 1/6 1/6 1/6 1/6 0

0 0 0 0 0 0 0 1


(13)

Obviously, combining states 1–7 into a single state aggregates micro states with quite
different causal effects. For example, state x1 has zero causal effect on states x5 and x6,
while state x4 loads 1/7 and 2/7 of its probability on states x5 and x6, respectively. Defining
macro variables, whose micro-level instantiations have different causal effects, results
in macro variables that have so-called ambiguous manipulations [5]. Spirtes and Scheines
illustrate ambiguous manipulations with the toy example of the effect of total cholesterol on
heart disease. If total cholesterol is constituted of high-density lipids (HDL) and low-density
lipids (LDP), and HDL and LDL have different (say, for the sake of argument, opposing)
effects on heart disease, then an intervention on total cholesterol is ambiguous, because its
effect on heart disease depends on the ratio of HDL to LDL in the intervention on total
cholesterol. Unless HDL and LDL have the quantitatively identical effect on heart disease,
total cholesterol appears to be an over-aggregated variable. Indeed, there is reason to think
that it was this sort of ambiguity that historically led to a revision of total cholesterol as a
relevant causal factor of heart disease. Instead, the causal relation was re-described in terms
of its components, namely, HDL and LDL. The effect of total cholesterol is just a mixture of
two distinct finer-grained causal effects.

On Hoel’s account, the proportion of each of the micro state interventions is fixed
by the uniform distribution over micro interventions described in (8), which ensures a
well-defined intervention effect, despite it being a mixture of different causal effects. It is as
if an intervention on total cholesterol always corresponded to a 50/50 intervention on HDL
and LDL. Defining the macro intervention as the average over the micro interventions is, of
course, possible, but entirely ad hoc. Why does an intervention on a macro state correspond
to many different, presumably simultaneous, interventions on the corresponding micro
states? Moreover, why should these micro-state interventions all be weighted equally?
For example, when we set a thermostat to 80 ◦F (macro state), then Hoel’s theory claims
that the resulting effect is the uniform average over all ways that one could have set the
gas particles’ kinetic energies such that their mean is 80 ◦F. This includes micro states
with highly uneven distributions over the kinetic energies of the particles, which can have
causal consequences that are very different from those we typically associate with 80 ◦F.
It seems more realistic to instantiate such a macro intervention in terms of one specific
micro state that corresponds to 80 ◦F at the macro level—for example, it could be the micro
state corresponding to 80 ◦F that is closest to the actual state of the system at the time
of intervention. Moreover, Hoel’s definition implies that one may have to average over
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completely contradictory micro-level effects: If we have two micro states that map to the
same macro state, but one has the effect that the animal in a cage remains alive, whereas
the other has the effect that it is killed, then the intervention on the macro state implies that
the animal is half-dead, not that it is either dead or alive.

There are various ways one might respond. Some of the responses depend on whether
one thinks of Hoel’s theory as describing what is actually happening in a given system
or whether one thinks of it as a model of the investigator’s knowledge of the particular
system. In the latter case the average over possible micro interventions can be construed as
a strategy to handling the epistemic uncertainty about which micro state it might be that
instantiated the macro intervention. We will not pursue these routes given that Hoel does
not indicate whether the theory should be understood epistemically or metaphysically, but
they are discussed in greater detail in Dewhurst [6]. We only note that if one indeed views
Hoel’s account as a model of the epistemic state of the investigator, then the investigator
might deserve some freedom of thought: Maybe they prefer distributions other than the
uniform one over the micro interventions because they have domain knowledge. Maybe
they would update their distributions as more evidence comes in? Maybe they are aware
of the critiques of objective Bayesianism and its use of uninformative priors. If one allowed
for any such epistemic freedom, then the entire story would need to change because
there would not be one causally emergent system, but a whole set of admissible macro
descriptions.

One can try to avoid philosophical debates, by holding out hope that such dramatic
cases as the above examples suggest, do not arise in the first place: If indeed the transition
probabilities of the micro states are very different from one another (such as states 1–7 vs.
state 8 above), then they would not be collapsed into one macro state, because that may
not maximize the effective information. Indeed, in extreme cases, this is true—after all, the
remaining two states in the matrix in (12) are kept distinct.

So, how different can the causal effects of two micro states be such that they still end
up being collapsed on Hoel’s theory?

Of course, any answer to this question has to specify a distance metric between causal
effects (represented here by the rows in the transition probability matrix) and then has
to maximize the distance between the two causal effects while ensuring that maximizing
effective information of the system still collapses them into the same macro state. Even for
systems with three micro states, we are not aware of any analytical solution to this problem
for any non-trivial distance-measure. Given a 3× 3 transition matrix, there would be six
unknowns: a r 1− a− r

b s 1− b− s
c t 1− c− t


Each possible macro description of the system leads to combining these unknowns in differ-
ent ways to determine the macro transition probabilities. Setting the effective information of
one of these macro descriptions to be the maximum determines which macro description is
chosen. Due to the definition of effective information (and the chosen distance metric), this
gives inequality constraints in which the involved fractions and logarithms have different
arguments depending on how many micro states are being collapsed. Even for these simple
systems, we only have numerical results.

Consider a micro-level state space with three states X = {x1, x2, x3} and a transition
probability matrix given by

TPMX→Y =

0.7 0.1 0.2
0.4 0.5 0.1
0 0 1

 (14)
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The effective information for this matrix is 0.6787, but effective information is maximized
when the first two states are collapsed, resulting in a macro state space U = {u1, u2} =
{x1 ∪ x2, x3} and a corresponding transition probability matrix

TPMU→V =

[
0.85 0.15

0 1

]
(15)

Its effective information is 0.6788, slightly higher than for the micro level. In this case, the
absolute distance dabs(x1, x2) = ∑n

j=1 |x1(j)− x2(j)| between the two rows of the collapsed
states x1 and x2 in the transition probability matrix is 0.8. The maximum difference one
can achieve using this distance measure is slightly higher, since one can still adjust the
transition probabilities by tweaking further digits after the decimal point. Moreover, this
matrix is not unique in having an absolute distance of 0.8 between the causal effects of
two states and yet collapsing them. In Appendix A, we give additional examples. We
also consider what happens when one uses other distance metrics, such as the standard
Euclidean distance, the maximum difference between any single transition probability from
one state, the maximum of the minimum difference between any transition probability
from any state, or—if one instead thinks of these causal effects as distributions—one could
use the KL divergence as distance metric.

We give examples for all these cases (and one could pursue many more), but the upshot
is the same: The examples have two states with rather different transition probabilities that
are collapsed according to Hoel’s account. In what sense can we speak in these cases of
causal emergence? At what point are micro-causal effects so different that grouping them
together as a macro-effect does not amount to describing the system causally at the macro
level, but instead amounts to describing mixtures of lower-level effects? In the example
in (14) above an intervention on state x2 has a small chance in resulting in state x3 and a
roughly even chance in resulting in state x1 or x2. In contrast, an intervention on state x1
results with probability 0.7 in state x1, and roughly equal small probability in state x2 and
x3. Given the distinct causal effects of states x1 and x2, it makes the choice of collapsing
them very counter-intuitive despite the information theoretic result. Yet, on Hoel’s account,
which intervenes on all states with equal probability, these two states are grouped together
and the example would constitute a case of the emergence of a macro-causal description.

Of course, there is no contradiction in Hoel’s claims, and indeed state x3 provides a
starker contrast to both x1 and x2 than they do to each other. But note that if we changed
the first row of the transition probability matrix in (14) to (0.8, 0.1, 0.1), i.e., shifting just 0.1
of probability from the P(y3|x1) to P(y1|x1), then the transition probabilities of states x1
and x2 would still look more similar to each other than either does to those of x3, and yet
states x1 and x2 would not be collapsed by maximizing effective information. So, it is not as
if the causal emergence as defined here tracks any sort of intuitive clustering of close states.
Maximizing effective information results in a very specific mixture of states and it remains
quite unclear why the resulting clustering is privileged over any other intermediate (or
additional) clustering.

The goal, we think, of identifying causally emergent macro descriptions is that we do
not just have mixtures of underlying causal effects, but that the identified macro variable can
be described as a cause in its own right, and that its micro instantiations are distinguished
by differences that are in some sense negligible or irrelevant. This requirement will come
as no surprise to those familiar with the literature on mental causation in philosophy, since
it is closely related to the demand that macro causes be proportional to their effect (see, e.g.,
Yablo [7]). Although Yablo uses somewhat different terminology, a proportional cause is the
coarsest description of the cause that screens off any finer-grained description of the cause
from the effect. That is, it is the coarsest description of the cause for which all interventions
are unambiguous.

However, from the formal perspective the absence of ambiguous interventions is a
more delicate desideratum. We expect that few would disagree that maximally coarsening
while maintaining unambiguity indeed results in a macro-level model with all the features
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one would expect of a causal model. But the concern is whether the requirement is
too strong: If one can only have macro states with unambiguous manipulations, then,
for example, the system described by the transition probability matrix in Hoel’s second
example (see (13)) could not be coarsened at all.

There are two responses to this: First, indeed the perfect lack of ambiguity is too
demanding, so one should permit the collapsing of states that have very similar causal
effects, as defined by some distance metric between causal effects. This is exactly what is
done for the identification of macro-causal effects in the Causal Feature Learning method
of [8,9]. But second, beyond the slight distinctions in causal effect, one might want to
bite the bullet on this concern: If the effect granularity is very fine, then indeed it seems
appropriate that one should not coarsen the cause, since small changes in the cause may
result in fine changes in the effect. But if the effect granularity is coarse, then automatically,
it will be possible to also coarsen the cause while preserving unambiguity. For example,
in order to predict where exactly the soccer ball will hit the goal, one might need the
very precise description of the cause and, consequently, no coarsening (without violating
ambiguity) is possible. But if one only wants to know whether the ball is going left or right
(like a goalie during a penalty kick), then even a very coarse description of the cause can
remain unambiguous.

This suggests a different modeling approach to Hoel’s: While Hoel described the
system in terms of one state space that causally influences itself over time, the present
considerations suggest that one should disentangle the coarsening of the cause from that of
the effect. There can be cases where one can be coarsened while the other cannot. This is in
contrast to Hoel’s case where the cause and effect always get coarsened together, because
they are described by the same state space.

4. Commutativity: Abstraction and Marginalization

A macro description of a system is an abstraction of the underlying system [10]. Hoel’s
account focuses on coarsenings of the state space, but he explicitly notes at the beginning
of his Section 3 that such an abstraction can also occur over time and space [1]: “Macro
causal models are defined as a mapping M : Sm → SM, which can be a mapping in space,
time, or both”. The discrete time steps t, t + 1, etc., used to define the Markov process are of
arbitrary, but fixed, length. As in any time series, these are features of the model reflecting
the rate of measurement. Of course, we would expect different causal processes to emerge
if we consider longer or shorter time scales, just as we expect different causal descriptions
for coarser or finer state spaces. But the marginalization of time steps and the abstraction
over the state space should commute: Aggregating to coarser state spaces and then looking
at the system at different time scales should result in the same macro-level description
as looking at the system at different time scales, and then aggregating.7 Similarly, if we
view Hoel’s model only as specifying the input–output relations of a mechanism, then
the concatenation of mechanisms (even of identical mechanisms) and abstraction should
commute: Aggregating each mechanism by its own lights and then concatenating the
aggregated mechanisms vs. concatenating the mechanisms and then aggregating the joint
mechanism should result in the same macro-level description.

This is not the case for Hoel’s account: Let A(TPMX→Y) = TPMU→V denote the
abstraction operation, i.e., the transition probability matrix of the corresponding macro
state space U which maximizes the EI. If abstraction and marginalization commute, then
the following equation has to be satisfied:

A(TPMX→Y × TPMX→Y) = A(TPMX→Y)× A(TPMX→Y) (16)

That is, finding the macro description of the effect over two time steps should be the same
as evolving the macro description for two time steps.
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Consider the following transition probability matrix for a micro state space X with
three states:

TPMX→Y =

0.3 0.2 0.5
0.4 0.1 0.5
0.5 0.5 0

 (17)

The left hand side of Equation (16) becomes

A(TPMX→Y × TPMX→Y) = A(TPM2
X→Y)

= A


0.3 0.2 0.5

0.4 0.1 0.5
0.5 0.5 0

2
= A

0.42 0.33 0.25
0.41 0.34 0.25
0.35 0.15 0.5


=

0.42 0.33 0.25
0.41 0.34 0.25
0.35 0.15 0.5


None of the states are collapsed, and the EI is 0.0524. If we now consider the right hand
side of Equation (16), then

A(TPMX→Y)× A(TPMX→Y) = (A(TPMX→Y))
2

=

A

0.3 0.2 0.5
0.4 0.1 0.5
0.5 0.5 0

2

=

([
0.5 0.5
1 0

])2

=

[
0.75 0.25
0.5 0.5

]
This resulting transition probability matrix collapses states 1 and 2 and has EI 0.0488.
Not only does the EI not match, but the resulting systems have different state spaces
depending on whether one marginalizes first and then abstracts, or abstracts first and then
marginalizes.

Unlike in Section 3, where we give specific transition probability matrices that maxi-
mize the distance between two states that get collapsed, this sort of failure of commutativity
occurs in general for Hoel’s account. Only very specific transition probability matrices
satisfy commutativity of abstraction and marginalization, most violate it. We note that
in this case we have used a Markov process over the same variable X with transition
probabilities given in (17). If one considered a causal system with three micro variables X,
Y and Z, each with their own state spaces, connected in a causal chain X → Y → Z, then
marginalizing Y could result in even more extreme discrepancies, because the transition
probability matrices TPMX→Y and TPMY→Z would not have to be the same.

Thus, in Hoel’s account, whether causal emergence occurs at all and what the resulting
macro description looks like depend on the order in which state space and time evolution
are considered. Ultimately, this should not come as a surprise. Hoel’s account of causal
emergence depends not only on the causal relations from one time step to another (which
are described by the conditional distribution P(Y|X) = P(Xt+1|Xt)), but also on the
injection of the input distribution P(Xt). Since Hoel’s input distribution has nothing to
do with the system in question, but is an exogenous maximum entropy distribution, a



Philosophies 2022, 7, 30 11 of 15

discrepancy arises when one marginalizes time points whose marginal distribution does
not correspond to the maximum entropy distribution naturally.

If abstraction and marginalization do not commute, then the macro-causal account
does not actually describe features of the underlying system in question, but features that
crucially depend on the rate of measurement (if we think in terms of time series) or on the
input–output points (if we think of X → Y as a mechanism) chosen by the investigator. A
macro-level description of the system would be, so to speak, “bespoke” for the specific
start and endpoint, but would not be generalizable or extendable. It would confirm the
view of those who hold little regard for causal models in economics or psychology because
(they think) their macro-level causes lack a degree of objectivity. This sort of reasoning
quickly risks implying the impossibility of causal modeling quite generally in all but the
most fundamental sciences. Consequently, for those who are more optimistic about causal
models in the special and life sciences, it should come as no surprise that the demand for
commutability of abstraction and marginalization is explicit in [11] (in fact, their consistency
demands are even stronger) and [10]. The account of natural kinds in Jantzen [12] pursues a
somewhat different goal, but the core feature of the natural kinds is also the commutability
of intervention and evolution of a system.

Even if one does not require that abstraction and marginalization commute at all time
points, at the very least, they should commute at some suitably large intervals to ensure
that the macro level description does not completely diverge from the micro level one.
Given the sensitivity of Hoel’s account to the intervention distributions, even “occasional
commutativity” (however one might reasonably define that) is generally not possible.

5. Further Comments

One of the attractive features of Hoel’s account of causal emergence is the integration of
causal with information theoretic concepts. We noted in Section 2 the theoretical similarities
between Hoel’s causal capacity and the information theoretic channel capacity. Indeed,
Hoel shows with several examples that as the number of possible micro states increases, that
the causal capacity can approximate the channel capacity, because the uniform intervention
distribution at the macro level generally results in a “warped” distribution over the micro
states.8 We are not aware of any formal characterization or proof of this convergence claim.9

But even if we grant that suitably general conditions can be found to support the claim
that reaching causal capacity closely corresponds to exploiting channel capacity, then this
is still a peculiar macro description of a natural system: Channel capacity in information
theory is a normative concept. It describes the input distribution the sender ought to be
using in order to optimize information transmission. But a sender who does not use the
optimal input distribution obviously does not exploit the channel capacity. The situation
applies analogously to causal capacity: If we describe the micro state space of a system and
its transition probabilities, then we can determine the causal capacity analytically. If there
is causal emergence, then there is a coarsening of the micro state space that maximizes
effective information. But whether or not the system actually exploits that causal capacity
is an empirical question: It may not employ a maximum entropy distribution over the
coarsened state space to maximize its causal effectiveness, just like an inexperienced sender
may not use the optimal distribution for the noisy channel they are communicating over.
Hoel seems to recognize this concern in the following passage from his paper:

“Another possible objection to causal emergence is that it is not natural but rather
enforced upon a system via an experimenter’s application of an intervention
distribution, that is, from using macro-interventions. For formalization purposes,
it is the experimenter who is the source of the intervention distribution, which
reveals a causal structure that already exists. Additionally, nature itself may
intervene upon a system with statistical regularities, just like an intervention
distribution. Some of these naturally occurring input distributions may have a
viable interpretation as a macroscale causal model (such as being equal to Hmax
at some particular macroscale). In this sense, some systems may function over
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their inputs and outputs at a microscale or macroscale, depending on their own
causal capacity and the probability distribution of some natural source of driving
input.” (emphasis added) [1]

Thus, Hoel’s account is about potential causal emergence of a system, but not about
actual causal emergence.10 So, even if we otherwise accept the account as a correct formal-
ization of causal emergence, it remains an empirical question of whether a system actually
exhibits its potential causal emergence of the form Hoel describes or not. Just like channel
capacity in information theory, causal capacity is a normative concept.

A second consideration is that while the maximum effective information (EI) of a
system is always unique, it is far from clear whether the corresponding partition that
maximizes EI is unique. That is, there may be multiple equally appropriate macro-level
descriptions of the same system. Sometimes cases like this are inevitable given the definition
of causal emergence: Given a partition with three states, one can generally make the
transition probabilities of two states more and more similar such that at some point the
two-state partition maximizes the EI. Along the way, there will be a point where the two-
state and the three-state partition will both maximize EI. Such cases are expected as there
has to be a transition point from micro-level description to causal emergence, and the
two partitions with equal maximum EI are hierarchical (one is a coarsening of the other).
However, we postulate that it is also possible that two different-sized partitions of the same
micro space, neither of which is a coarsening of the other, may both maximize EI. That is, we
postulate that there exist state transition probabilities for, say, a 5 state micro system such
that its 3 state coarsening, the partition [(x1, x2), (x3, x4), x5], and its 2-state coarsening,
the partition [(x1, x3), (x2, x4, x5)], both maximize EI. In this case, two macro descriptions
emerge that both describe the system macroscopically, but in entirely different ways. If such
cases indeed exist as we suggest11, then one can, of course, still dismiss them as inevitable
edge cases. However, with an increasing number of states, one may want to make sure that
such cases are not common. Moreover, even if there is no exact equality in the maximized
EI of two very different partitions, or if such cases are rare, a near-match would already
appear to make the causal emergence highly unstable. It would be interesting to have
examples of real cases where such “incommensurate” macro descriptions seem plausible
or appropriate.

Finally, science studies systems at many different scales: Economic theory supervenes
on the interactions of the individual economic agents, those agents’ behavior supervenes on
the underlying biology, which in turn supervenes on chemical and physical processes. We
describe the causal interactions of this system at all of these scales, and at several in between.
Yet, causal emergence, as Hoel has defined it, picks out one scale beyond the microscopic
one (and perhaps other closely related macro scales that happen to result in the same
effective information; see previous point). But it does not explain causal descriptions at
multiple (>2) significantly different scales: How should we think about these intermediate
scales? Do they not constitute a form of causal emergence? Are there any restrictions of
which meso-scale descriptions of a system actually describe genuine causal relations?

These questions interact with the concern about causal capacity mentioned before:
Given that causal capacity is not optimal from an information theoretic point of view (but
at best approximates channel capacity) and that the system may not actually be exploiting
the causal capacity in the first place, then what distinguishes the particular coarsening
that Hoel identifies? Why is such a coarsening then still privileged over all the other
intermediate coarsenings, or even those that constitute an over-aggregation according to
Hoel’s account?

6. Conclusions

We have been critical of Hoel’s theory of causal emergence. While we indeed disagree
with the proposal for the reasons stated, the precision and the detail of the account, with its
many very attractive features, have advanced the discussion and allowed us to articulate
more clearly what we deem to be important desiderata of a macro-level causal description
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and causal emergence. We agree with Hoel that a macro-level description needs to be
sensitive to the causal relations at play, and that interventional probabilities are crucial to
getting the abstraction right. But, as we have argued, the introduction of the extraneous
maximum entropy intervention distribution can obscure significant distinctions in the
causal effects and introduce artifacts that a real system may never exhibit. Moreover, it
unnecessarily destroys the possibility for the operations of abstraction and marginalization
to commute. These problems can be avoided if the account of causal emergence builds only
on the conditional interventional probabilities P(Y|do(X)) and does not also use the marginal
distribution P(do(X)) over the intervened variable X. These ideas have been developed
further in Chalupka et al. [8]. Their approach, we believe, also addresses the question of
why there can be causal analyses at many different scales: If the effect phenomena are of
different granularity, then aggregations in the cause emerge naturally [16].

And finally, of course it can be of interest to explore what a system could achieve and
what sort of causes could emerge if only the system were fully optimized. But we need to
clearly separate possibility from actuality.
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Appendix A. Examples of Ambiguous Macro States for Different Distance Metrics

We focus on micro systems with three states and report examples where the transition
probabilities for the first two states are very different to one another according to a variety
of metrics, and yet the effective information is maximized if the first two states are collapsed.
The examples were obtained by a grid search on a grid of probabilities with step size 0.1 in
each of the six free dimensions. So, they do not represent the absolute maximal differences
that can be obtained between states that collapse, but instead give a sense for each distance
metric of how different the states can be that are still collapsed.

In Section 3, we gave the example of a matrix that maximized the absolute distance
dabs(s1, s2) = ∑n

j=1 |s1(j)− s2(j)| between two causal effects (on the 0.1 grid). Other matri-
ces that also achieve a distance of 0.8 between states on this measure are the following (and
their rotations): 0.3 0.6 0.1

0.6 0.2 0.2
0 0 1

 0.6 0.3 0.1
0.2 0.7 0.1
0 0 1

 0.4 0.3 0.3
0.8 0.1 0.1
0 0 1


0.2 0.5 0.3

0.6 0.2 0.2
0 0 1

 0.7 0.1 0.2
0.4 0.5 0.1
0 0 1

 0.6 0.2 0.2
0.2 0.4 0.4
0 0 1

 0.3 0.7 0
0.6 0.3 0.1
0 0 1


0.7 0.3 0

0.3 0.7 0
0 0 1

 0.2 0.5 0.3
0.6 0.3 0.1
0 0 1

 0.4 0.4 0.2
0.8 0.1 0.1
0 0 1
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If instead one uses squared Euclidean distance, then the following two matrices (and
their rotations) maximize the distance between states s1 and s2 at 0.32 (on the 0.1 grid):0.6 0.3 0.1

0.2 0.7 0.1
0 0 1

 0.7 0.3 0
0.3 0.7 0
0 0 1


If we instead want to maximize the minimum difference between the transition proba-

bilities from two states, we can choose our distance metric to be the minimum of the absolute
value difference between components. That is, let dmin(s1, s2) = mini |s1(j)− s2(j)|. If we
maximize this distance, then two states will not be close together on any one component.
Below, the maximum distance (on the 0.1 grid) that each pair of components can be kept
apart is 0.2. 0.2 0.5 0.3

0.6 0.3 0.1
0 0 1

 0.6 0.2 0.2
0.2 0.4 0.4
0 0 1


Alternatively, we may just want to know how different any one transition probability
(rather than the whole set) between two states that are collapsed can be. Maximizing this
maximum difference between any transition probability is 0.4 (on the 0.1 grid), and is achieved
for: 0.3 0.4 0.3

0.1 0.8 0.1
0 0 1

 0.7 0.1 0.2
0.4 0.5 0.1
0 0 1

 0.4 0.4 0.2
0.1 0.8 0.1
0 0 1


To maximize the KL divergence, we maximize dKL(s1, s2) + dKL(s1, s2) since the KL

divergence is not symmetric. Moreover, we have to decide how to handle zeroes in this
measure. Usually, for distributions p and q, if p(i) is 0 then it contributes 0 to the KL
divergence because we take the limit of x log x = 0 as x → 0+. Since we take the sum of KL
divergences in both directions, we assumed that if q(i) is also 0, then it contributes 0, too,
to avoid a divide-by-0 error. With these adjustments, the KL divergence between the first
two states is maximized (over the 0.1 grid) for0.4 0.5 0.1

0.7 0.1 0.2
0 0 1


and its rotations.

For all the above matrices, effective information is maximized when state s1 and s2 are
collapsed.

Of course, the maxima that can be achieved also depend on the number of micro states
one starts off with. We have not explored this extensively, since Hoel’s 8-state example
repeated above in (13) already indicates how difficult it is to judge intuitively whether these
causal effects are very different.

Notes
1 So, X in our notation corresponds to the micro-level variable at time t in Hoel’s notation. There it is referred to as S or Sm at t. Y

describes the micro-level system at time t + 1, which Hoel denotes by SF.
2 Hoel writes our Equation (8) in his Equation (7) as

do(SM = sM) =
1
n ∑

sm,i∈sM

do(Sm = sm,i).

But this notation is not precise, since the do-operator cannot actually be the object of a summation.
3 Note that in Griebenow et al. [4], various more efficient algorithms are explored.
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4 See also footnote 6 and the end of Section 3 for comments on this peculiar requirement that the state spaces match. We consider it
to be an undesirable, but largely artificial constraint in the account resulting from the specific set-up of a system influencing itself.
The constraint could easily be abandoned.

5 Recall that the state space of X and Y is X , that the state space of U and V is U and that U is a coarsening C(X ) of the state
space X .

6 For the specific way that Hoel has set up the determination of causal emergence, it is not always the case that two states that have
identical transition probabilities are collapsed into one macro state through abstraction. For example, consider the following

system with three micro states and a transition probability matrix of TPM =

0 0.2 0.8
0 0 1
0 0 1

, where states x2 and x3 have

identical transition probabilities. In this case, the effective information is maximized by keeping all three states distinct, rather
than collapsing states x2 and x3 into one macro state, despite their identical transition probabilities. This is purely an artifact
of Hoel’s set-up: Rather than having a separate cause and effect variable, each with its own state space that one can coarsen
independently of the other, the cause and effect variable are the same system at different time points. Consequently, a collapse of
the cause state space necessitates a collapse of the effect state space. Given that the transition probabilities from state x1 to states
x2 and x3 in the effect are sufficiently different, these two states are kept distinct in the cause as well. But cases like this could
easily be avoided in Hoel’s account by separating the coarsening of the cause state space from that of the effect state space. One
could then still have the abstraction operation be a search for the maximum effective information.

7 We do not consider continuous time, since that would require a completely different model in the first place.
8 Note the discussion in Aaronson [13] that views this sort of inconsistency between a maxEnt distribution at the macro level that

corresponds to a non-maxEnt distribution at the micro level rather critically.
9 We thank an anonymous reviewer for drawing our attention this point.

10 See Rosas et al. [14], who raise similar concerns about this account, and Janzing et al. [15], p. 6, for an analogous argument in the
context of the use of channel capacity to quantify causal influences.

11 We have not (yet?) been able to solve this system, even numerically, due to the complex nature of EI and the number of inequality
constraints required by the postulated example. A proof one way or the other would provide an interesting insight on the nature
of EI.
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