
����������
�������

Citation: Chen, L. Intuition and

Ingenuity: Gödel on Turing’s

“Philosophical Error”. Philosophies

2022, 7, 33. https://doi.org/10.3390/

philosophies7020033

Academic Editors: Diane Proudfoot

and Zhao Fan

Received: 31 January 2022

Accepted: 16 March 2022

Published: 18 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

philosophies

Article

Intuition and Ingenuity: Gödel on Turing’s
“Philosophical Error”
Long Chen

School of Philosophy, Beijing Normal University, Beijing 100875, China; long.chen@bnu.edu.cn

Abstract: Despite his unreserved appreciation of Turing’s analysis for being a “precise and unques-
tionably adequate definition” of formal system or mechanical computability, Gödel nevertheless
published a short note in 1972 claiming to have found a “philosophical error” in Turing’s argument
with regard to the finite nature of mental states and memory. A natural question arises: how could
Gödel enjoy the generality conferred on his results by Turing’s work, despite the error of its ways?
Previous interpretative strategies by Feferman, Shagrir and others have mainly tried to resolve the
disparity by distinguishing different types of arguments in Turing and taking Gödel to approve only
some of them. By a more integral examination of their ideas, especially Turing’s response to the
“mathematical objection” based on Gödel’s incompleteness theorem and Gödel’s own conception of
finite yet non-mechanical procedures, and taking some of the main ideas of current developments in
machine learning into consideration, I will try to present a new explanation for the apparent disparity,
arguing that there is no “error” on Turing’s side and the seemingly conflicting views held by Turing
and Gödel should best be seen as complementary, keeping intuition and ingenuity together.

Keywords: intuition; Gödel; Turing; mathematical objection

1. Turing’s “Philosophical Error”

Identifying the informal concept of ‘effective calculability’ with a rigorous mathemati-
cal notion of ‘general recursiveness’ or ‘Turing computability’ is called the “Church-Turing
Thesis” and is usually considered one of the paradigm cases of conceptual clarification
via logical methods. It is well known that Gödel, one of the founders of the theory of
recursive functions, is dissatisfied with Church’s analysis and thus Church’s thesis, and is
only totally convinced by Turing’s analysis and Turing’s Thesis However, despite his unre-
served appreciation of Turing’s analysis for being a “precise and unquestionably adequate
definition” [1] of formal system or mechanical computability, Gödel nevertheless published
a short note in 1972 claiming to have found a “philosophical error” in Turing’s argument:

Turing in his 1937 gives an argument which is supposed to show that mental
procedures cannot go beyond mechanical procedures. However, this argument
is inconclusive. What Turing disregards completely is the fact that mind, in its
use, is not static, but constantly developing, i.e., that we understand abstract
terms more and more precisely as we go on using them, and that more and more
abstract terms enter the sphere of our understanding. There may exist systematic
methods of actualizing this development, which could form part of the procedure.
Therefore, although at each stage the number and precision of the abstract terms
at our disposal may be finite, both (and, therefore, also Turing’s number of
distinguishable states of mind) may converge toward infinity in the course of
the application of the procedure. Note that something like this indeed seems to
happen in the process of forming stronger and stronger axioms of infinity in set
theory. However, today this process is far from being sufficiently understood to
form a well-defined procedure. It must be admitted that the construction of a
well-defined procedure which could actually be carried out (and would yield a
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non-recursive number-theoretic function) would require a substantial advance in
our understanding of the basic concepts of mathematics. [2]

As indicated in a footnote by Gödel, this remark may be regarded as a further comment
on his earlier claim in 1965 that the technical results, of the existence of undecidable
arithmetical propositions and the non-demonstrability of the consistency of a system
in the same system for every consistent formal system containing a certain amount of
finitary number theory, do not “establish any bounds for the powers of human reason,
but rather for the potentialities of pure formalism in mathematics” [1]. It is reasonable
to suppose that here Gödel was responding to the claim made earlier by Emil Post that
the generality of the incompleteness for all formal systems and the unsolvability for all
methods of solvability required the Church-Turing Thesis to be seen as a “natural law”,
which exhibits “a fundamental discovery in the limitations of the mathematicizing power
of Homo sapiens” [3]. However, Gödel also realized that as much as it establishes a correct
analysis of mechanical computability, Turing’s argument, mutatis mutandis, would also
imply that mental procedures cannot go beyond mechanical procedures, thus placing the
same kind of limitation on human reason as Post does. The puzzling problem for us is
immediate: as Webb put it, how could Gödel “enjoy the generality conferred on his results
by Turing’s work, despite the error of its ways” [4]?

2. Resolving the Disparity

An obvious and easy way to reconcile Gödel’s seemingly conflicting remarks is to
distinguish different types of arguments in Turing’s claim. Indeed, Turing in his 1936 paper
proposed three types of arguments to support the thesis that his machines could compute
any functions which are calculable by finite and mechanical means. Type I is a direct
analysis of the operations that an ideal human computer can perform and depends on the
assumption, questioned by Gödel, of finitely many “states of mind”. Type II shows that the
entire Hilbertian deductive apparatus of first order predicate logic can be simulated by one
of his machines, i.e., a machine will produce the same theorems as the formal logic system.
Type III is a “modification” of type I argument by replacing the notion of a state of mind by
“a more physical and definite counterpart of it”, namely, a note of instructions explaining
how the work is to be continued if the computer “breaks off from his work, to go away
and forget all about it and later to come back and go on with it” [5]. Since any stage of the
computation is “completely determined” by the instructions and the symbols on the tape
of a previous stage, their relation is expressible in the functional calculus, and the entire
computational history could be formalized in the calculus, therefore carried out by one
of his machines. That is why Turing also regarded his type III argument as a “corollary”
(ibid.) of type II. Thus, according to Webb, Feferman [6] maintains that “Gödel rejected only
Turing’s type I argument, while accepting his ‘more physical’ type III argument” [4]. Under
this interpretation Gödel rejects the type I argument because it associates the finite and
mechanical nature of computational procedures in the assumption that human memory
is necessarily limited, and in particular, the number of states of mind is bounded. He
embraces the type III argument because it does not rest on this dubious assumption but on
a “more physical and definite counterpart of it”. Webb also suggests that Gödel was of the
opinion that “all Turing was really analyzing was the concept of ‘mechanical procedure,’
but in his arguments for the adequacy of his analysis he overstepped himself by dragging
in the mental life of a human computer” (ibid. 302). As Gödel put it, reported by Wang,
that “we had not perceived the sharp concept of mechanical procedures sharply before
Turing, who brought us to the right perspective” [7]. The “memorial” role of mental states,
that they depend on previous states and scanned symbols, is replaced in the more physical
counterpart by instructions so numbered that they can refer to each other. While we may
doubt the total number of states of mind in computing, we cannot doubt the finite feature
of instructions in the outer symbol space.

A similar interpretative strategy is also adopted by Shagrir, whose conclusion to
Gödel’s conflicting response to Turing’s analysis is that “Gödel praised Turing for his analy-
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sis of an ideal human who calculates by means of finite and mechanical procedures. He was
critical of what he deemed Turing’s superfluous assumption that the finite and mechanical
character of computation is somehow anchored in limitations on human cognitive capaci-
ties” [8]. According to Shagrir, the finite and mechanical nature of computation is rooted in
its role of defining a formal system, which is the pivotal concept in foundational debates
and discussions with which Gödel was directly involved. Being finite and mechanical is
exactly the defining characteristic feature of a formal system and is neither open to question
nor needs any justification. Turing’s error is to anchor these two features in the human
condition, especially in the number of states of mind, i.e., Turing’s argument has implicitly
made an extra physical or materialistic assumption about mind.

The explanations of Feferman and Shagrir have the merit of being neat and are
supported by textural evidence too. In a conversation with Wang, published in Wang’s
1974 book, Gödel made a very similar remark with his 1972 note, but with more details. He
added “Turing’s argument becomes valid under two additional assumptions, which today
are generally accepted, namely: (1) There is no mind separate from matter; (2) The brain
functions basically like a digital computer. (2 may be replaced by: 2′ The physical laws,
in their observable consequences, have a finite limit of precision.)”. According to Wang,
“while Gödel thinks that 2 is very likely and 2′ practically certain, he believes that 1 is a
prejudice of our time, which will be disproved scientifically (perhaps by the fact that there
are not enough nerve cells to perform the observable operations of the mind)” [7]. Thus
Gödel apparently holds that Turing’s constraints, or a version of them, apply to the brain,
but not the mind.

However, to distinguish three types of arguments for Turing and then argue that
Gödel agrees with one but disagrees with another seems too artificial. When Gödel refers
to Turing’s “philosophical error” he does not point to one particular argument among
many but Turing’s arguments as a whole. Moreover, as Turing himself claims, his type I
argument is “only an elaboration of the ideas” presented in Section 1 of his paper, and his
type III argument can be regarded as a modification of type I or as a corollary of type II. So,
after all there is basically one central argument based on the fact that “human memory is
necessarily limited”.

However, not only is the above interpretation artificial, being ad hoc, but it may just
be wrong. For in his argument Turing nowhere denied the possibility of the existence of
an infinite number of mental states, his idea was rather that “if we admitted an infinity
of states of mind, some of them will be ‘arbitrarily close’ and will be confused” [5]. The
real assumption made by Turing under the above restriction is that “we will also suppose
that the number of states of mind which need to be taken into account is finite” [ibid;
my own emphasis]. Even Gödel admitted that this set is finite even for the mind in its
current state of development but envisaged the possibility of “systematic methods” for so
actualizing the development of our understanding of abstract terms that it would “converge
to infinity”. However, the idea of states of mind converging to infinity has not met with
much enthusiasm among logicians. For example, Hao Wang thinks that it is not the number,
but the way in which mind develops, computable or not, that constitutes the crucial point,
for “it remains possible that the different stages of the mind’s development are related in
a computable manner, so that there is a sort of supercomputer which modified itself in
such a way that, at each stage of the mind’s development, the supercomputer functions
like the computer which has the same states as the mind at that stage” [9]. The possibility
mentioned by Gödel in his criticism of Turing was also severely criticized by Kleene, one
of founders of the theory of computability. In his article “Reflection on Church’s Thesis”
he referred to Gödel’s contemplation as “pie in the sky” and as far as he can predict,
“the pie will remain stratospheric”. The main objection of Kleene towards a potential
infinity of states of mind is that “ . . . the idea of ‘effective calculability’ or an ‘algorithm’
involves a set of instructions that is fixed in advance. This condition is motivated by a
publicity constraint, namely, that it must be possible to “convey a complete description of
the effective procedure or algorithm by a finite communication, in advance of performing
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computations in accordance with it. My version of the Church-Turing thesis is thus the
‘Public-Process Version’” [10].

As far as I can see, Kleene’s criticism is based on some misunderstanding on Gödel’s
side. The potential infinite number of states is used by Gödel to show the possibility of
an effective “mental procedure”, not to deny the correctness of Turing’s definition of an
algorithm. It is to be noted that Gödel never used the word “effective” to describe the
explicanda of Turing’s analysis, and on several occasions tried hard to make this distinction.
In his 1965 Postscriptum he says explicitly that “finite procedure” is equivalent to general
recursiveness only if “finite” is understood to be “mechanical procedure” and the “question
of whether there exist finite non-mechanical procedures not equivalent with any algorithm,
has nothing whatsoever to do with the adequacy of the definition of “formal system” and
of “mechanical procedure” [1]. The real problem, I think, is Gödel’s challenge to Turing’s
claim that allowing a finite number of states in computation does not make a serious
difference, “since the use of more complicated states of mind can be avoided by writing
more symbols on the tape” [5]. To see this point more clearly, we turn back to Turing’s basic
fact about memory.

Webb, in his insightful introduction to this note in Gödel’s collected work, also claimed
that “in fact, Turing has one basic argument, which is presented in Section I and whose
central premise is “the fact that human memory is necessarily limited”. The heart of his
argument was a novel abstract logical analysis of what it means to “effectively remember”
things relevant to computation, such as symbols or how many times one has executed a
subroutine: to do so one must be able to change from one distinguishable state to another,
whether you are human or a machine. We presume indeed that states of mind may also
carry memories beyond the wildest dreams of machines, but the only ones relevant to
effective computation are those you are put into by symbols and processes arising in
the course of computation. However, our memory is just as “necessarily limited” as a
machine’s—in either case, to a finite number of recognizable state changes [4]. In other
words, if we agree with Turing that what can be done effectively by the mind concerns
memory, and since human memory is necessarily limited for otherwise some of them will
be “arbitrary close” and confused, any effective procedure by the mind shall have the
condition of finite number of states. However, a crucial difficulty of “second order” that
might appear here is that, as the number of states increases, we can effectively number all
the Turing machines, and as a result a human mind becomes a “universal” mind in that it
can take any machine and imitate it. It is not obvious at all that any machine can exist that
is as powerful as this “universal mind”. It is exactly this point that shows the enormous
significance of Turing’s discovery of his universal machine which can take the code of
any other arbitrary machine as input and imitate it on any other input. That is to say, the
universal Turing machine, being infinite complex, can still exist with an internal memory
of bounded complexity (finite of number of states), compensated by an external tape of
symbols of unbounded size. This is exactly what Turing means when he writes that “the use
of more complicated states of mind can be avoided by writing more symbols on the tape”.
It is exactly here that Gödel expresses his doubt as to whether any effective state, no matter
how complex, could always be compensated for in a purely symbolic way. Gödel would
think that certain effective procedures involving understanding an abstract concept and its
meaning would resist this symbolization, while all formal operations “whose essence is that
reasoning is completely replaced by mechanical operations on formulas” [1] disregarding
their meaning will do. That is to say, the real problem is whether in order for a state to be
effectively distinguishable, it has to depend purely on remembering some symbol or it can
also exist in a non-mechanical way by understanding an abstract concept. I think Webb was
right in seeing Gödel’s criticism of Turing as based on the complexity of states rather than
the potential number of states, and he is also right to point out that “it is really this kind
of possibility [of a procedure involving a state exploiting meaning of abstract terms thus
grasping infinitely complicated combinatorial relations] more than any convergence to an
infinity of states that could undermine Turing’s argument”. However, I think he is too hasty
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in saying that “once he [Turing] discovered the universal machine he saw that it could
indeed compensate symbolically for a surprisingly wide class of increasingly complicated
machine states” [4]. As we will see, both Gödel and Turing will have more to say about
what stands above Turing machines, i.e., above the mechanic method.

3. Gödel’s Conception of Finite Effective yet Non-Mechanical Procedure

Gödel’s idea that mental procedure, or mind infinitely surpassing the power of any
finite machine is explored in detail in his own comprehensive reflection about the philo-
sophical significance of his own incompleteness theorems, namely, the Gibbs lecture in 1951.
There is the famous disjunctive conclusion, which for him is an inevitable mathematically
established fact, first appears: “Either mathematics is incompletable in this sense, that its
evident axioms can never be comprised in a finite rule, that is to say, the human mind (even
within the realm of pure mathematics) infinitely surpasses the powers of any finite machine,
or else there exist absolutely unsolvable Diophantine problems of the type specified” [11].
Although not specified in this lecture, Gödel was definitely certain of the falsity of the
second disjunct. In a lecture given around 1938, when discussing Hilbert’s famous idea
that every precisely formulated mathematical question has a unique answer, i.e., a proof
or disproof can always be found, Gödel points out that proof in Hilbert’s sense should
be understood as “something which starts from evident axioms and proceeds by evident
inferences” [12]. If, however, we formalize the notion of proof as given in the usual logical
sense as a sequence of formulas then Hilbert’s idea becomes amenable to mathematical
treatment and the answer turns out to be negative, due to his incompleteness theorem.
However, this result only shows that (1) there may exist absolutely unsolvable problems
or (2) in the transition from evidence to formalism (about the notion of proof) something
is lost. Additionally, Gödel was quick to point out that “it is easily seen that actually the
second is the case, since the number-theoretic questions which are undecidable in a given
formalism are always decidable by evident inferences not expressible in the given formal-
ism” (ibid.) and which has the same evident character as those in the old formalism. The
right conclusion to draw here is that it is not possible to formalize mathematical evidence
or mechanize mathematical reasoning even in the domain of number theory, and Hilbert’s
conviction remains entirely untouched. So, the natural question is which aspects of mathe-
matical reasoning or evidence defy formalization? In his 1974 discussion with Wang, Gödel
mentioned two “vaguely defined” effective but non-mechanical procedures: the process of
defining recursive well-orderings of integers representing larger and larger ordinals and
the process of forming stronger and stronger axioms of infinity in set theory. The second
procedure, of forming axioms of large cardinal numbers in set theory was Gödel’s favorite
example and he reiterated it again in the same 1972 note about “another version of” his
first completeness theorem where he invoked as an example against the idea of absolutely
unsolvable problems for the human mind: “There do exist unexplored series of axioms
which are analytic in the sense that they only explicate the concepts occurring in them”,
just like the axioms of infinity, which “only explicates the content of the general concept of
set” [2]. This emphasis on meaning and explication of abstract concepts, rather than the
mere combinatorial properties of concrete symbols, lies at the heart of Gödel’s conception of
an effective non-mechanical procedure, which is unique for the human mind. As we noted
earlier Gödel praised Turing’s analysis for mechanical procedures because “this meaning
[mechanical], however, is required by the concept of formal system, whose essence it is
that reasoning is completely replaced by mechanical operations on formulas”. Note that
the question of whether there exist finite non-mechanical procedures not equivalent with
any algorithm, has nothing whatsoever to do with the adequacy of [Turing’s] definition
of ‘formal system’ and of ‘mechanical procedure’ . . . (For theories and procedures in this
more general sense [those involving the use of abstract notions] the situation [with respect
to complete formal systems and deciding procedures for arithmetic relations] may be differ-
ent.) Note that the results do not establish any bounds for the powers of human reason, but
rather for the potentialities of pure formalism in mathematics” [1]. The example Gödel gave
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here is his Dialectica Interpretation [13,14], where he used finite types of primitive recursive
functionals to prove the consistency of Peano arithmetic. Gödel considered this method
as “an extension of finitary method” that involved the use of abstract terms on the basis
of their meaning. Abstract notions, for Gödel are “those that are essentially of second or
higher order, that is, notions that do not involve properties or relations of concrete objects
(for example, of combinations of signs), but that relate to mental constructs (for example
proofs, meaningful statements and so on); and in the proofs we make use of insights, into
these mental constructs, that spring not from the combinatorial (spatiotemporal) properties
of the sign combinations representing the poofs, but only from their meaning”. (Ibid.) It is
exactly this characteristic ability of the human mind, the process of forming indefinitely
new axioms based on the understanding and deepening of the meaning of abstract concepts
that resist mechanization and formalization and make possible the existence of effective
yet not mechanical procedures 1.

4. Turing and the “Mathematical Objection”

The problem of whether mental procedures can go beyond mechanical procedures, or
whether mathematical reasoning can be fully mechanized takes a more concrete form in
the question “Can machines be intelligent?” in the case of Turing. In his post-war program
of constructing an “intelligent machine” Turing had already anticipated an objection based
on the limitative logical result, which he called “the Mathematical Objection”. In a 1948
report “Intelligent Machinery”, Turing said that

The theorem of Gödel and related results have shown that if one tries to use
machines for such purposes as determining the truth or falsity of mathematical
theorems and one is not willing to tolerate an occasional wrong result, then any
given machine will in some cases be unable to give an answer at all. On the other
hand, the human intelligence seems to be able to find methods of ever-increasing
power for dealing with such problems “transcending” the methods available to
machines. [16]

Take the theorem of the undecidability of first order logic as an example: Turing and
Church had shown that there is no mechanical uniform method, i.e., no machine that can
tell whether an arbitrary formula of the system is a theorem or not, in some cases (when
given an unprovable formulae) it must fail to give an answer. On the other hand, if an able
mathematician is confronted with such a problem he can search around and find whatever
new methods of proof available so that he ought eventually to be able to reach a correct
decision about any given formula. This possibility, even if not conclusively, should still
make Gödel’s claim very plausible that the human mind infinitely surpasses any machine
and at the same time, make Turing’s conception of “intelligent machinery” doubtful. Before
we turn to Turing’s reply to this seemingly very powerful mathematical objection, we will
have a brief look at some of Turing’s earlier considerations, especially in his conception of
“ordinal logic”, which gives us the impression that Turing did consider the possibility of a
humanly effective yet non-mechanical procedure.

Already in his 1936 paper where he argued for the synonymous of a “machine process”
and a “rule of thumb or mechanical” process, he also hinted at the possibility of the
existence of a non-machine-computable but humanly computable number δ:

It is (so far as we know at present) possible that any assigned number of figures
of δ can be calculated, but not by a uniform process. When sufficiently many
figures of δ have been calculated, an essentially new method is necessary in order
to obtain more figures. [5]

This raises the problem whether there are essential differences between the power of
human effective procedures, where new mathematical methods can always be created and
found, and power of formal mechanical system, which can only embody a fixed set of rules
and methods.
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In his PhD dissertation “Systems of Logic Based on Ordinals”, written under the
supervision of Church during between 1936 and 1938 in Princeton, Turing took on the
arduous task of overcoming Gödel’s incompleteness through an infinite sequence of logical
systems based on ordinals. Gödel had already proved his famous incompleteness results
in 1931 that in any single logical system containing a certain amount of arithmetic like
Principia Mathematica or other related systems there exists true but unprovable propositions.
Turing’s basic idea was to form stronger and stronger logical systems by adding the true
yet provable proposition in the previous system to the next new ones as an axiom. By
iterating this process infinitely many times he achieved a certain completeness result for the
resulting sequence of logical systems, i.e., any true arithmetic sentences could be derived
within one or another system of the sequence 2. However, the whole sequence of logical
systems was non-constructive in the sense that there exists no uniform method (or a Turing
machine) that could generate all of them. Turing was fully aware that his ordinal logic was
not a formal system in the proper sense, since the axioms and thus proofs in his sequence
of systems are not decidable. In Section 11 of his dissertation where he explained “the
purpose of ordinal logics”, he introduced the interesting comparison of “intuition” and
“ingenuity” in mathematical reasoning:

Mathematical reasoning may be regarded rather schematically as the exercise
of combination of two faculties 3, which we may call intuition and ingenuity.
The activity of the intuition consists in making spontaneous judgments which
are not the result of conscious trains of reasoning. These judgments are often
but by no means invariably correct (leaving aside the question what is meant by
“correct”). Often it is possible to find some other way of verifying the correctness
of an intuitive judgment. We may, for instance, judge that all positive integers are
uniquely factorizable into primes; a detailed mathematical argument leads to the
same result. This argument will also involve intuitive judgments, but they will
be less open to criticism than the original judgment about factorization. [17]

According to Turing, the exercise of ingenuity in mathematics was to verify the
intuitive results by “suitable arrangements of propositions, and perhaps geometrical figures
or drawing”, i.e., to find the necessary proof for the intuitive result and to turn the intuitive
judgment into a theorem by eliminating the doubt of every inferential step. Although
not an absolute distinction, we can nearly always tell in particular cases the different
roles played by these two faculties. Through the introduction of a formal system for the
corresponding mathematical field, these two faculties take an even more definite shape:
intuition is reduced by setting down the axioms and formal inferential rules which are
always considered to be intuitively valid while ingenuity determines which steps, among
the considerable variety of possible steps in any stage of a proof, are the more profitable for
the purpose of proving the desired proposition. Under this distinction, the significance of
Gödel’s incompleteness is even more striking:

In pre-Gödel times it was thought by some that it would probably be possible to
carry this program to such a point that all the intuitive judgments of mathematics
could be replaced by a finite number of these rules. The necessity for intuition
would then be entirely eliminated. (ibid. 209)

What Turing was saying, probably with Hilbert in mind, was that a single formal
complete system for mathematics, where for each proposition either itself or its negation
was provable, was just not possible. For the existence of such a system would eliminate
intuition once and for all, leaving only the task for searching the proof, i.e., ingenuity
behind. What Turing was proposing was rather the opposite by eliminating ingenuity
and seeing “how far it is possible to eliminate intuition, and leave only ingenuity”. Of
course, the possibility of not considering ingenuity is only conceivable in a formal system
in a theoretical sense in that we can always, due to the recursive nature of a formal
system, effectively enumerate all the possible proofs and the corresponding theorems,
thus replacing ingenuity with, so to speak, brutal patience. Since it is impossible to find a
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formal logic that wholly eliminates the necessity of using intuition, “we naturally turn to
‘non-constructive’ systems of logic with which not all the steps in a proof are mechanical,
some being intuitive” [17]. What this amounts to is that in Turing’s (partial) complete
system of ordinal logic some steps are non-mechanical in the sense that their validity is
equivalent to the verification that some particular formulae are ordinal formulae, which
again is equivalent to the truth of some number-theoretic statement. Its non-mechanical
nature lies in the fact that, although being true, their truth cannot be established in a fixed
system with limited methods of proof, i.e., they have to be invoked sometimes as a “oracle”.
The wording here might suggest to some [18] that Turing was endorsing, at least for this
period of his life, an anti-mechanist view and hence, agreeing with Gödel that mental
procedures surpass the machine. However, what Turing was really stressing was only
that “we want it to show quite clearly when a step makes use of intuition, and when it is
purely formal. The strain put on the intuition should be a minimum” [17]. That is to say,
even though any single formal system would not suffice for solving arithmetic problems, a
system of them might do; by the same token, any single machine might not decide some
propositions, many of them together might do. This fits well into the idea that although it is
impossible to formalize and mechanize all mathematical intuition and its methods of proof
in one single formal system, nonetheless it is possible that every mathematical intuition
or method of proof is formalizable, thus allowing more and more powerful machines
approximating truth by provability as well as anyone desires.

The same strategy, by inventing stronger and stronger formal systems/machines
rather than creating a machine with a faculty for intuition, is adopted again in Turing’s
conception of “intelligent machinery” and lies at the heart of his reply to the mathematical
objection. The key assumption in the mathematical objection is that “the machine must
not make mistakes. However, this is not a requirement for intelligence” [16]. If indeed a
machine is expected to be infallible, it cannot also be intelligent, for discipline alone can
never produce intelligence. Turing made the observation that:

If the untrained infant’s mind is to become an intelligent one, it must acquire
both discipline and initiative . . . But discipline is certainly not enough in itself to
produce intelligence. That which is required in addition we call initiative. This
statement will have to serve as a definition. Our task is to discover the nature of
this residue as it occurs in man, and to try and copy it in machines. (ibid.)

What Turing wrote in the rest of that paper concerned the possible ways to “copy”
the initiative in machine, notably by “learning” through various methods of “educating”
or “teaching” or “searching”, or by placing a random element in machines. The result
would be a machine able to alter its own instruction tables through experience and learning,
transcending the original methods available to it and thus displaying intelligence. As
Copeland points out correctly: “In his post-war writing on mind and intelligence . . . the
term “intuition” drops from view and what comes to the fore is the closely related idea of
learning—in the sense of devising and discovering new methods of proof” [19].

5. Mechanizing Mathematical Intuition: Gödel and Turing Reconciled?

Whether Turing really meant to argue for the claim that “mental procedures cannot go
beyond mechanical procedures”, either in 1936 or later when he was more concerned with
the possibility of “learning machines”, and whether Gödel’s criticism and his opposing
position was right or not, do not seem, from our discussion above, to be as urgent a
problem as it looks. What is certain is that both realized there is a “residue” part in human
thinking which transcends the limitations of any particular formalism or machine, be
it “intuition”, “abstract understanding”, or “initiative”, although the way they would
develop it was different. Gödel was certain about the extent of mechanical procedures
with Turing machines and explored the possibility of the existence of humanly finite
effective, yet non-mechanical procedures based on an understanding of abstract concepts
with the help of mathematical intuition, and which also provide sufficient evidence for
his conviction that human minds infinitely surpasses any finite machine. Turing, on the
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other hand, being more practical rather than speculative, tried to embody the “initiative”
in machines too, thus making them intelligent. Notwithstanding the differences, Gödel’s
more philosophical conception of number and precision of states converging toward
infinity and Turing’s more practical idea of devising stronger and stronger machines
endowed with more and more powerful capacities for approximating truth and capturing
intuition may just be seen as complementary ways to realizing the “residue” part in human
intelligence, thus there is an ultimate agreement between Gödel and Turing. The great
successes we recognize of Turing’s insights and ideas today definitely prove them to
be a very fruitful philosophical program. The correctness of Gödel’s own philosophical
position will depend, on the one hand, on the extent of the success of Turing’s program,
and, on the other hand the power of Gödel’s own arguments and the developments of
mathematics itself 4. Latest developments in Artificial Intelligence, using models more
sophisticated than Turing machines by combining the idea of making mistakes and learning
with the more mechanical part, proves to be extremely powerful in helping mathematicians
solve old problems. Relying on its unparalleled ability in generating large datasets of the
representations of objects and searching for detectable patterns, AI can help mathematicians
see the connection that would normally go unnoticed and nearly impossible to understand,
as the recent two examples in mathematical theories of knots and symmetries show 5. As
the authors indicate, their main motivations are not to “use machine learning to directly
generate conjectures”, but “focus on helping guide the highly tuned intuition of expert
mathematicians, yielding results that are both interesting and deep” [20]. After all, rather
than contrasting intuition with mechanical methods, they might benefit each other in a
reciprocal way by development of “an artificial style of intuition”. We cannot conclude our
discussion better than by quoting Turing: “We can only see a short distance ahead, but we
can see plenty there that needs to be done” [22].
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Notes
1 We cannot but hint at several central points of Gödel’s discussion here. For more see [15].
2 Turing’s partial completeness results only apply to sentences of the same logical form as Gödel’s original undecidable sentence,

i.e., formulas with only universal quantifiers in front of the them.
3 In a footnote Turing said that he didn’t consider the most important faculty “which distinguishes topics of interest from others”,

since he was here regarding the function of the mathematician as simply to determine the truth or falsity of propositions.
4 Such as the possibility of deciding CH based on large cardinals in set theory, and the already successful example of proving the con-

sistency of Peano arithmetic using the abstract notion of primitive recursive functionals in Gödel’s famous “Dialectica interpretation”.
5 For more details, see [20,21].
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