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Abstract: An effective method is a computational method that might, in principle, be executed by a
human. In this paper, I argue that there are methods for computing that are not effective methods.
The examples I consider are taken primarily from quantum computing, but these are only meant to
be illustrative of a much wider class. Quantum inference and quantum parallelism involve steps that
might be implemented in multiple physical systems, but cannot be implemented, or at least not at
will, by an idealised human. Recognising that not all computational methods are effective methods
is important for at least two reasons. First, it is needed to correctly state the results of Turing and
other founders of computation theory. Turing is sometimes said to have offered a replacement for the
informal notion of an effective method with the formal notion of a Turing machine. I argue that such
a view only holds under limited circumstances. Second, not distinguishing between computational
methods and effective methods can lead to mistakes when quantifying over the class of all possible
computational methods. Such quantification is common in philosophy of mind in the context of
thought experiments that explore the limits of computational functionalism. I argue that these
‘homuncular’ thought experiments should not be treated as valid.

Keywords: computation; effective method; algorithm; human computer; Turing; hypercomputation;
quantum computation; homuncular functionalism; computational functionalism; unconventional
computation

1. Introduction

What is the relationship between the notion of a computational method and that of
an effective method? A number of authors assume that the two notions are coextensive.
Indeed, some treat the terms “effective method” and “computational method” not just as
extensional equivalents but also as synonyms. The claim made by this paper is that any
such equation is false: not all computational methods are effective methods.

Distinguishing effective methods from computational methods is important for a
number of reasons. First, it is needed to accurately represent the historical motivations of
the founders of computation theory, such as Turing, and to correctly state their results in a
modern context. Second, not distinguishing between the two has the potential to adversely
affect our reasoning when we quantify over the class of all possible computational methods.
For example, if one thinks that some mental processes are computational processes, one
might be led to an incorrect view about the possible nature of those processes—that they are
the kinds of things that “little men” might perform. While this kind of homuncular thinking
might serve as a rough heuristic or explanatory device when first introducing computational
ideas about the mind, it is simply not the right way to understand computational processes.
Not all computational methods are human executable, even in principle.

Turing famously developed a formal predicate that aimed to make the informal idea
of an effective method more precise. This formalisation, the Turing machine, is sometimes
described as offering a “definition”, an “analysis”, or a “replacement” for the informal
notion of an effective method. I argue that care should be taken in interpreting these claims.
Turing’s formalisation may serve as an adequate replacement for the informal notion in
certain contexts, but not in all. In particular, if one chooses to individuate computational
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methods so as to preserve fine-grained differences between methods that compute the
same function—for example, if one is a functionalist about the mind or one cares about
the complexity profiles of different methods for computing the same function—then the
methods available to a system that uses an effective method cannot be identified with those
available to a system that can use any computational method.

The argument of this paper runs as follows. In Section 2, I distinguish my argument
from two superficially similar arguments in the literature: the first is that hypercomputers
provide examples of non-effective computational methods; the second is that all com-
putational methods should be individuated extensionally (by their overall input–output
profile). In Section 3, I analyse the notion of an effective method; I argue that an essential
requirement is that an effective method should, in principle, be human executable. In
Section 4, I consider the objection that Turing offered a precisification of the notion of an
effective method that would allow us to dispense with the informal notion. In Section 5,
I examine instances of the claim that all computational methods are effective methods
and explore some of their damaging consequences. In Section 6, I describe two examples,
taken from quantum computing, of computational methods that are not effective methods.
In Section 7, I consider the objection that quantum computing methods may still be exe-
cuted by hand if a human were to simulate, step-by-step, the evolution of the underlying
quantum wave function.

2. Distinguishing Features of This Argument

The argument in this paper should be distinguished from similar arguments in the
literature that (i) depend on hypercomputation; or (ii) concern differences in functions
rather than in methods.

2.1. No Dependence on Hypercomputation

Hypercomputers are hypothetical (real or notional) systems that compute functions
that cannot be computed by any effective method.1 These machines generally deploy some
deliberately “non-effective” element as part of their design—some special extra resource
that is not available to a human being working by themself. The exact nature of this special
resource may vary between different machines. It might, for example, take the form of
being able to complete an infinite number of steps in finite time, of being able to store
arbitrary real numbers with infinite precision, or of having an “oracle” that provides the
machine with the answer to uncomputable problems via some non-effective means.2

It might seem natural to appeal to hypercomputers to justify the claim that not all
computational methods are effective methods. Shagrir and Pitowsky develop an argument
along exactly these lines. After introducing various hypercomputer designs, they write:

“. . . ’effective computation’ (i.e., calculation by means of effective procedures)
encompasses a wide, and an important, class of computations, but not necessar-
ily all computations . . . none of the hyper-machines described in the literature
computes by means of effective procedures.” Shagrir and Pitowsky [6] (p. 94)

If one accepts that hypercomputers are computers in the full and ordinary sense of the
word, then it appears that no more needs to be said. Not all computational methods are
effective methods because the computational methods used by hypercomputers are (by
design) not effective methods.

Complicating this conclusion, however, are two issues.
First, the hypercomputers that have been proposed to date are only notional constructs.

It is unclear whether they correspond to possibilities that are in any reasonable sense
physically or practically available to us. It is unknown whether the kinds of non-effective
resources required by hypercomputers could be physically implemented in our universe,
and even if they could, whether they could be exploited by us in a practical way.3 This
may prompt one to wonder whether we should treat hypercomputers as being exactly on
a par with more ordinary types of computer. Notwithstanding the properties of notional
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hypercomputers, perhaps all computational methods that can be physically implemented,
or implemented in some practicable way, are effective methods. If one’s primary interest
is in methods that can be, or actually are, physically implemented—for example, the
computational methods that are implemented in the brain—then perhaps one can ignore or
bracket off considerations about non-effective methods based solely on hypercomputation.

Second, even if one ignores issues about the physical implementation of hypercom-
puters, it is common for both advocates and critics of hypercomputation to characterise
hypercomputers as not computing in the full or ordinary sense of the term. Németi and
Dávid [10] talk of their machines using computational methods in a “broad” or “extended”
sense. Copeland [11] describes them as satisfying a “nonclassical” conception of compu-
tation. Turing [12] refers to oracle machines as instances of “relativised” computation:
computation relative to the assumption that some problem uncomputable in the ordinary
sense has been solved. These qualifications seem to suggest that a distinction should be
drawn between an ordinary conception of computation and an extended or relativised
notion. As with the previous point, this threatens to deaden the force of the claimed
result. Not all hypercomputational methods are effective methods, but perhaps all ordinary
computational methods are.

This paper deliberately avoids appeal to hypercomputation to justify the claim that not
all computational methods are effective methods. This is not to endorse either of the two
concerns above, but only to show that one does not need to rely on hypercomputational
methods in order to establish the relevant claim.

The examples I use to justify the claim are taken from quantum computing. These
have been chosen because (i) they are known to be physically implementable (and are
already physically implemented and practically used); and (ii) they are commonly regarded
as computing in the ordinary (non-hyper, non-extended) sense.4

In their seminal paper on hypercomputation, Copeland and Sylvan wrote:

“It is perhaps surprising that not all classical algorithms are manual methods.
That this is in fact the case has emerged from recent work on quantum compu-
tation . . . Algorithms for quantum Turing machines are not in general manual
methods, since not all the primitive operations made available by the quantum
hardware can be performed by a person unaided by machinery.” Copeland and
Sylvan [2] (p. 55)

After making this observation, they immediately turn to consider hypercomputation
(“non-classical” algorithms). They do not return to, or explore further, non-hypercomputational
methods (“classical” algorithms) that are not effective (“manual”) methods. This paper
could be understood as an attempt to expand on and defend Copeland and Sylvan’s
original observation.

2.2. Computations Should Be Individuated by Their Internal Workings

It is common for textbook discussions of effective methods to focus on questions
of computability—questions about which functions can be computed.5 In that context,
computational methods are normally individuated extensionally: by their overall input–
output behaviour.6 My focus in this paper is not on the question of which functions are
computable, but on which method is used for computing a given function. None of the
examples I consider involve computation of a function that cannot also be computed by
some effective method. The question considered here is whether the deployment of a
computational method always entails the deployment of an effective method. This should be
interpreted as not a question about computability, but as a question about the conditions
under which effective methods are and are not instantiated in a given computational system.
In order to be able to state this question correctly, and to prevent it collapsing into the
question about computability, it is important that we do not individuate computational
methods in a purely extensional fashion. To this end, in the context of this paper, I will
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assume that computational methods should be individuated, at least in part, by their
internal workings.7

It should be stressed that this assumption is not ad hoc or unmotivated. Questions of
computability and relations of extensional equivalence are important, but more fine-grained
differences between computational methods matter too. Such differences are relevant to
proposals about computational functionalism regarding the mind. According to these views,
what is required for having a mental life is not only having the right behavioural responses—
computing the right input–output function—but also the computational method by which
that behaviour is generated—how the system calculates its function. If one wishes to
reproduce or model cognition in an artificial system, then reproducing that method—not
merely its overall input–output behaviour—is essential.8

Fine-grained differences between computational methods also matter to computer
science. Different methods for computing the same function sometimes impose significantly
different demands on resource usage, rendering some computational methods more or less
feasible to implement. Measures of that resource usage—often summarised by a function
that bounds how much time or space a method uses in the worst case—are of considerable
theoretical and practical interest in computer science.9

BUBBLESORT and MERGESORT are widely regarded as distinct computational methods
even though they compute the same function. Both methods take an unordered list of
elements as input and yield a sorted list of the same elements as output. BUBBLESORT

works by swapping pairs of adjacent elements in place until the entire list is sorted. MERGE-
SORT works by splitting a list to create sublists which it then recursively merges to produce
a final sorted version. BUBBLESORT can be shown to have a worst-case run-time com-
plexity of O(n2) and space complexity of O(1), whereas MERGESORT has a worst-case
run-time complexity of O(n log n) and space complexity of O(n).10 A powerful motivation
for distinguishing between these computational methods—for treating them as two dis-
tinct computational methods rather than as one—is that they have different worst-case
complexity profiles. Their different complexity profiles are strong indicators that they place
significantly different demands on the resources of any system that implements them. The
implied general principle—that different worst-case complexity profiles indicate different
computational methods—will be important later in this paper.

Worst-case complexity profiles are not the only considerations of relevance when
individuating computational methods. Variants of either BUBBLESORT or MERGESORT

might share the same worst-case complexity profile but still count as different methods.
Indeed, for any computational method one might imagine introducing a range of variations
from minor (e.g., extra debugging checks) to major changes (e.g., new data structures)
into the sequence of its operations without changing its worst-case complexity profile. At
which point does a variation in a method’s internal workings produce a new computational
method? Which factors—above and beyond differences in worst-case complexity profile—
matter when individuating computational methods?

This question is a hard one to answer. Currently, there is no agreed answer, or at least
none that takes the form of an exhaustive set of necessary and sufficient conditions.11 It
is difficult to give a fully general theory for the individuation of computational methods.
There are multiple reasons for this. One is that there are “borderline” cases where no
one seems to be certain whether a theory should say that two computational methods
are the same or not. Another is that the standards regarding what we treat as the “same”
computational method sometimes appear to vary depending on context and what features
are currently of most interest to the interlocutors.12 Notwithstanding these challenges,
however, and the presence of “hard” cases for a general theory to handle, there are also
plenty of clear-cut cases where we can say that computational methods are the same
or different.

BUBBLESORT and MERGESORT are examples of such cases. They are paradigmatic
examples of different computational methods, and classified as such both clearly and
relative to any interests. As remarked above, a powerful consideration in their specific case—
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one that makes the relevant identity judgement relatively clear-cut—is their demonstrable
difference in worst-case complexity measure. In computer science, it is unheard of for two
computational methods with different worst-case complexity profiles to be classified as the
same for any purpose other than extensional equivalence.13 My claim is that, relative to
this widely accepted, clear, and robust standard for individuating computational methods,
there are computational methods that are not effective methods.

3. What Is an Effective Method?

Copeland provides a clear characterisation of an effective method:

“A method, or procedure, M, for achieving some desired result is called ‘effective’
(or ‘systematic’ or ‘mechanical’) just in case:

1. M is set out in terms of a finite number of exact instructions (each instruction
being expressed by means of a finite number of symbols);

2. M will, if carried out without error, produce the desired result in a finite
number of steps;

3. M can (in practice or in principle) be carried out by a human being unaided
by any machinery except paper and pencil;

4. M demands no insight, intuition, or ingenuity, on the part of the human
being carrying out the method.” Copeland [24]

Or more briefly:

“A mathematical method is termed ‘effective’ or ‘mechanical’ if and only if it can
be set out in the form of a list of instructions able to be followed by an obedient
human clerk . . . who works with paper and pencil, reliably but without insight
or ingenuity, for as long as is necessary.” Copeland [25] (p. 12)

What Copeland says is consistent with a wide range of historical and contemporary
sources:

“Turing examined . . . human mechanical computability and exploited, in sharp
contrast to Post, limitations of the human computing agent to motivate restrictive
conditions . . . Turing asked in the historical context in which he found him-
self the pertinent question, namely, what are the possible processes a human
being can carry out (when computing a number or, equivalently, determining
algorithmically the value of a number theoretic function)?” Sieg [26] (p. 395)

“[Computable problems are those] which can be solved by human clerical labour,
working to fixed rule, and without understanding” Turing [27] (pp. 38–39)

“[With regard to what is effectively calculable] Both Church and Turing had in
mind calculation by an abstract human being using some mechanical aids (such
as paper and pencil).” Gandy [28] (p. 123)

“Turing’s analysis makes no reference whatsoever to calculating machines. Turing
machines appear as a result, as a codification, of his analysis of calculation by
humans [previously defined as ‘effective calculability’].” Gandy [29] (p. 77)

“Roughly speaking, an algorithm [previously defined as an ‘effective procedure’]
is a clerical (i.e., deterministic, book-keeping) procedure which can be applied to
any of a certain class of symbolic inputs and which will eventually yield, for each
such input a corresponding symbolic output.” Rogers [30] (p. 1)

“Effectiveness. An algorithm is also generally expected to be effective, in the sense
that its operations must all be sufficiently basic that they can in principle be
done exactly and in a finite length of time by someone using pencil and paper.”
Knuth [31] (p. 6)

“[an effective procedure is] a list of instructions . . . that in principle make it
possible to determine the value f (n) for any argument n . . . The instructions
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must be completely definite and explicit. They should tell you at each step what
to do, not tell you to go ask someone else what to do, or to figure out for yourself
what to do: the instructions should require no external sources of information,
and should require no ingenuity to execute . . . ” Boolos et al. [32] (p. 23)

Common to all these suggestions is the idea that an effective method should be capable
of being executed by a lone human being unaided by any resources except paper and pencil. The
human is allowed an unlimited but finite amount of time, they are assumed not to make
errors or get bored, and they have an unlimited but finite supply of paper and pencils. An
effective method is a method that can be implemented by such an idealised human worker.
Correspondingly, the kinds of operations that can be executed by this idealised human set
limits on the class of effective methods.

Some authors have argued for revisionist accounts of “effective method”.
Cleland [33,34] proposes that an effective method is a “quotidian” procedure that has
essentially physical, causal consequences, such as baking a cake or assembling a child’s
bicycle. Although a human might follow an effective method, human executability is not a
necessary condition on such a method—a non-living particle travelling through a vacuum
might follow an effective method that no human could replicate. Etesi and Németi [35]
suggest that “effective method” should refer to any method that can be realised in any
physical system, whether that system is an idealised human being or not. Shagrir [36]
argues that the term “effective method” has undergone a meaning shift: in 1936, it meant a
method that was in principle human executable, but today it means any symbolic operation
that makes use of a finite procedure, and so it may refer to methods executable by humans,
physical systems, or abstract automata.14

What our words mean is ultimately up to us and, in principle, there is nothing to stop
a sufficiently determined revisionist from electing to define or redefine “effective method”
so that it includes non-human-executable methods. However, there are good reasons for
not choosing to define “effective method” in this way. Or rather, there are good reasons
for maintaining a term in our vocabulary that refers specifically to only human-executable
computational methods, and this role is normally occupied in mathematics and computer
science by the term “effective method”.

Shapiro [38] provides a helpful discussion that places these attempts at revision in
context. He describes how our various different ideas about effective computation might
have been sharpened in many competing ways. He argues that the notion of effectiveness
exhibited “open texture”, meaning that the full range of possible cases to which it correctly
applied was not entirely pinned down by our pre-theoretic intuitions. Shapiro’s point
about flexibility, however, pertains primarily to the historical development of the concept:
our early, relatively inchoate ideas about what was or was not an effective method could
have been sharpened in different ways. He does not suggest that today we are free to adopt
different conceptions (as suggested by the revisionist proposals above), or that adopting an
alternative, e.g., non-human, conception of what an effective method is would be equally
good for the purposes of doing computer science or mathematical logic. Indeed, he argues
that this is not the case. In line with others working on the foundations of computing, he
suggests that the idealisation described above—a human working with unbounded time
and computing space—is a way of signalling that one is talking about a particular subtype
of procedure, one that has important pre-existing connections to ideas about mathematical
provability, decidability, and surveyability. Irrespective of the rise of non-human machines
or shifting interests within computer science, there is a persistent need to refer to this subset
of methods. The term “effective method” is standardly the one used to fulfil this function.15

A revisionist might insist that a different term should play this role—not “effective method”
but something else. In that case, the argument of this paper may be rephrased to employ
that alternative term.
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4. Didn’t Turing Define “Effective Method”?

In textbooks on mathematical computation theory, the term “effective method” often
disappears once an appropriate formal predicate has been introduced. It is rare to see it
persist after the first few introductory pages. Its disappearance is often explained by saying
that Alan Turing provided a formal definition, analysis, or replacement for the informal notion.
Thanks to Turing, we can replace “effective method” with a more formal, mathematically
precise term, “Turing machine”. A small wrinkle in the story is that there is more than one
definition, analysis, or replacement for “effective method” available—Church introduced
one with the λ-calculus, Gödel introduced another with general recursive functions, and
there are many others. However, all these formal terms can be shown to be extensionally
equivalent, so the choice between them may be glossed as largely a matter of convention.
In light of this, the informal, human-centric notion of an “effective method” can be system-
atically replaced with the formal, precise notion of a “Turing machine” (or an extensionally
equivalent term):

“Turing’s work is a paradigm of philosophical analysis: it shows that what
appears to be a vague intuitive notion has in fact a unique meaning which can be
stated with complete precision.” Gandy [29] (p. 79)

“Church’s thesis is the proposal to identify an intuitive notion with a precise,
formal, definition.” Folina [42] (p. 311)

“In 1928, the notion of an algorithm [effective method] was pretty vague. Up
to that point, algorithms were often carried out by human beings using paper
and pencil . . . Attacking Hilbert’s problem forced Turing to make precise exactly
what was meant by an algorithm. To do this, Turing described what we now call
a Turing machine.” Matuschak and Nielsen [43]

“If Turing’s thesis is correct, then talk about the existence and non-existence of
effective methods can be replaced throughout mathematics, logic and computer
science by talk about the existence or non-existence of Turing machine programs.”
Copeland [24]

Turing himself, perhaps in a relatively unguarded moment, appears to endorse
this too:

“. . . one can reduce it [the definition of a solvable puzzle] to the definition of
‘computable function’ or ‘systematic [effective] procedure’. A definition of any
one of these would define all the rest. Since 1935 a number of definitions have
been given [Turing machines, the λ-calculus, the µ-recursive functions, etc.],
explaining in detail the meaning of one or other of these terms, and these have all
been proved equivalent to one another . . . ” Turing [44] (p. 589)

I call this the “replacement theory” of effective methods. If the replacement theory
is correct, then the notion of an effective method can be exchanged for that of a Turing
machine (or an appropriate equivalent) without loss or distortion. The question this paper
asks could then be rephrased as a question about which computational systems can and
cannot instantiate Turing machines (or an appropriate equivalent).

It is important to appreciate that this is not the case. The replacement theory only
holds—and it was only justified by Turing—under certain limited circumstances. To see
this, it should be clear that an entirely unrestricted version of the replacement theory
would not be plausible. “Effective method” and “Turing machine” do not have the same
meaning—they do not have identical semantic content. If they did, it would have taken
little or no insight on Turing’s part to establish a relationship between them. In order to
make sense of Turing’s work, and the breakthrough that it represents, one needs to set
aside the idea that “effective method” is a mere synonym for “Turing machine”. The key
question is when it is, and is not, legitimate to replace one notion with the other.

In Section 9 of his 1936 paper [45] (“The extent of the computable numbers”), Turing
says that his goal is to show that both a human working by hand and a machine (later
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known as a Turing machine) can compute the same numbers. If this relationship between
the two were to hold, then a certain kind of intersubstitutability between the corresponding
terms would be warranted. Provided one’s concern is only to identify which numbers are
computable, then talk of effective methods could be safely replaced with that of Turing
machines (or an extensionally equivalent formalism). For replacing one term with the
other would have no effect on the validity of one’s reasoning about the extent of the
computable numbers.

One of the key arguments that Turing gives to justify this claim is to say that his
machine and a human clerk go through a similar process when they compute a number. He
does not say, however, that they go through an identical process, or that the operations that
a Turing machine may take include all and only those that an idealised human worker may
take. Turing instead suggests that the results the human worker can obtain without insight
or ingenuity must meet a series of constraints, and that in light of these constraints, they
are also reproducible by an appropriate series of steps of a Turing machine. He does not
say that effective methods are Turing machines, but that the numbers that can be computed
by any effective method turn out to be the same as the numbers that can be computed by a
Turing machine.16 If one’s primary concern is to identify those numbers (i.e., to determine
which numbers are computable), then talk of effective methods can be replaced with that
of Turing machines (or another extensionally equivalent formalism).

It is worth noting that Turing did not argue—he did not need to argue—that the
computational methods available to a Turing machine are identical to the methods available
to a human clerk. Indeed, such a claim would be almost certainly false, and for reasons
independent of the main argument of this paper. The steps and operations of a Turing
machine—the basic operations that change the state of the head and that make marks on
the tape—are not the only ways for a human or any other system to effectively calculate a
number. The alternative models of Church, Gödel, and others show that there are many
other ways to effectively calculate that do not involve exactly those basic operations. A
sequence of basic operations might, for example, involve reduction operations in the λ-
calculus, or minimisation and recursion operations over the µ-recursive functions. Different
computational formalisms support different types of computational method, and porting
methods between different computational formalisms is often non-trivial. One cannot
always take a computational method that runs on a Turing machine and run exactly the same
method, without changes, on a system that operates according to the rules of the λ-calculus.
One might attempt to create a similar process—one with different internal characteristics
expressed in terms of the basic operations and idioms of the λ-calculus—that computes the
same function. The computational methods available to a user of the λ-calculus are not
identical to those available to Turing machines. Given that a human clerk might follow any
one of these various effective methods when computing a number, Turing machines cannot
be identified with effective methods.

5. All Computational Methods Are Effective Methods

Here are some examples of the claim that all computational methods are effective
methods:

“An algorithm or effective method . . . is a procedure for correctly calculating
the values of a function or solving a class of problems that can be executed in
a finite time and mechanically—that is, without the exercise of intelligence or
ingenuity or creativity . . . A computation is anything that . . . calculates the values
of a function or solves a problem by following an algorithm or effective method.”
Burkholder [46] (p. 47)

“The logician Turing proposed (and solved) the problem of giving a characteriza-
tion of computing machines in the widest sense—mechanisms for solving problems
by effective series of logical operations.” Oppenheim and Putnam [47] (p. 19)
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“We have assumed the reader’s understanding of the general notion of effective-
ness, and indeed it must be considered as an informally familiar mathematical
notion, since it is involved in mathematical problems of a frequently occurring
kind, namely, problems to find a method of computation, i.e., a method by which
to determine a number, or other thing, effectively. We shall not try to give here a
rigorous definition of effectiveness, the informal notion being sufficient to enable
us, in the cases we shall meet, to distinguish methods as effective or non-effective
. . . The notion of effectiveness may also be described by saying that an effective
method of computation, or algorithm, is one for which it would be possible to
build a computing machine.” Church [48] (p. 52)

“Sometimes computers are called information processors . . . How they process
or manipulate is by carrying out effective procedures . . . Computation [means]
the use of an algorithm . . . also called an ‘effective method’ or a ‘mechanical
procedure’ . . . to calculate the value of a function.” Crane [49] (pp. 102, 233)

“The functional organisation of mental processes can be characterized in terms of
effective procedures, since the mind’s ability to construct working models is a
computational process.” Johnson-Laird [50] (pp. 9–10)

“. . . [a] procedure admissible as an ‘ultimate’ procedure in a psychological theory
[will fall] well within the intuitive boundaries of the ‘computable’ or ‘effective’ as
these terms are presumed to be used in Church’s Thesis.” Dennett [51] (p. 83)

The quotations above illustrate that the claim has been made in a variety of con-
texts. The final three quotations provide examples of how it can constrain thinking about
the mind.17

Searle’s Chinese room argument provides a particularly clear example of the latter
phenomenon [53]. Searle’s argument may be challenged on many points, but among them
is his assumption that any computational method can be executed by the human being
inside the room who generates Chinese responses. Searle needs a claim like this in order to
connect the specifics of his thought experiment (a lone human working without insight or
ingenuity inside a room) to the general conclusion that no possible computational method
can suffice for understanding. He needs some way to make the inferential leap from
the person inside the room not understanding Chinese regardless of which method they
follow to the conclusion that no possible computational method could be sufficient for Chinese
understanding. Searle cites Turing’s analysis of computation to justify this key step.18

However, as we have seen in Section 4, the required claim is not attributable to Turing, and
as we will see in the next section, it is false.19

However, the identification of computational methods with effective methods is more
deep-seated in the philosophical literature than just Searle’s argument. It is employed not
only by the critics of computational accounts of cognition, but also by their advocates. A
common philosophical move when reasoning about a computational model of cognition is
to assume that one may freely replace any computational system’s internal workings with
a human working by rote without changing the computational method. Computational
methods may always be swapped out during the course of reasoning, without loss or
distortion, for effective methods. This has given rise to a widespread and mistaken form
of what I call “homuncular thinking” about computational models of cognition. Here are
some examples.

Fodor [57] describes how an account of knowledge-how, e.g., knowledge of how to tie
one’s shoes, could be given in computational terms. In the course of his analysis, he moves
between a formulation of that knowledge-how in terms of a computation performed by the
brain and a formulation of it in terms of elementary steps taken by an imaginary “little man”
who reads basic instructions and follows them. The unstated assumption is that whatever
computational method actually underlies knowledge-how (and that is implemented in
the brain), one can be sure that it can be described, without loss or distortion, in terms of
a series of steps taken by a little man who reads instructions and follows them without
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insight or ingenuity. Fodor does not, of course, suggest that a little man actually lives inside
the head. However, he does think that talk of “the little man stands as a representative
pro tem for psychological faculties which mediate the integration of shoe-tying behavior
by applying information about how shoes are tied.” (ibid., p. 629). He does not consider
the possibility that “little man” talk might provide a blinkered, distorted, or misleading
picture of a computational method. He simply assumes that it can always stand in for
a computation method without colouring assumptions about the kind of computational
method that is being considered. In other words, he assumes that all computational
methods are human executable.

Dennett [51] famously developed a highly influential view known as homuncular
functionalism.20 In the course of defending the view, he moves between two different
formulations of it that, like Fodor, he treats as freely interchangeable. According to one
formulation, Dennett characterises homuncular functionalism as the view that a cognitive
capacity can be explained by breaking it down in terms of operations of simpler com-
putational subsystems, which are each explained in terms of the operations of simpler
subsubsystems, and so on, until one reaches systems whose operations are so basic that
they do not require further explanation of this kind. This model of explanation is treated as
equivalent to the idea that one should explain the cognitive capacity by breaking it down
into the capacities of a series of notional “little men” inside the head who each work with-
out insight or ingenuity. The unstated assumption is, again, that whatever computational
processes actually underlie cognition, they may always be described—without any loss or
distortion—as a series of operations capable of being executed by little men each working
to an effective method.

Block [59] provides a range of arguments against computational theories of conscious-
ness based on intuitions about what a collection of little men can and cannot do. In his
“homunculi-headed” thought experiment, the computation that normally takes place inside
a human brain via neuronal activity is imagined to be reproduced by a sequence of steps
taken by a group of little men each working according to an effective method. Block
argues that is implausible that this group of little men would instantiate a new qualitative
conscious experience, and hence that any purely computational account of conscious ex-
perience is unlikely to be true. A crucial premise in Block’s argument is, again, that such
a collection of little men could reproduce, without loss or distortion, any computational
method, and in particular any computational method allegedly characteristic of conscious
experience. Like Fodor and Dennett, Block does not justify this assumption. He simply
takes for granted that all computational methods are human executable.

Why do these authors make this assumption?
One possible explanation might come from misguided intuitions about multiple

realisability. Computational methods are multiply realisable: they can be implemented in
more than one physical system. They are multiply realisable because the kind of description
that is needed to characterise a computational method does not tie it to being implementable
in just one physical medium. When the steps of a Turing machine are described, there is
no requirement intrinsic to that description that a system which implements those steps
must be made out of, for example, lead or wood or steel. In other words, computational
methods are not tied by virtue of their specification to being implemented in one type of
physical medium. However, there is a different and much stronger claim about multiple
realisability that is regularly associated with computation and which is much less plausible.
This second claim is that any computational method can be realised, in principle, in any
physical medium. As Putnam put it: “We could be made of Swiss cheese and it wouldn’t
matter” [60] (p. 291). In the specific case of the human clerk, this second claim would
suggest that any computational method could be implemented in the specific physical
system of the clerk (provided they were to take an appropriate sequence of steps).

However, unlike the first claim, there is no reason to think that this second claim is
true. It does not follow from computational methods being multiply realisable: just because
it is possible for a computational method to be implemented in more than one physical
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medium that does not entail that it could be implemented in any medium (or in a human
clerk). Different physical media have different causal powers. Those causal powers afford
them the ability to implement some computational operations, but not others. There is
no reason to think that an idealised human clerk has the causal powers to implement any
possible computational method.21

Before closing this section, it is worth saying a few words about the definition of the
term “algorithm”. A number of the authors cited above suggest that “algorithm” should
be regarded as a synonym for both “effective method” and “computational method”. My
claim is that “effective method” and “computational method” have different meanings
and different extensions. If we are to distinguish these two terms, how then should we
understand “algorithm”? Should it be treated as a synonym for “effective method”, as
suggested by Button [7], Smith [41], and Cutland [62]; or should it be treated as a synonym
for “computational method”, as suggested by Copeland [11], Copeland and Sylvan [2],
Soare [63], and Gurevich [64]?22 In this paper, I will follow the latter convention and
treat “algorithm” as a synonym for the broader term, “computational method”. This
will allow us to say that there are quantum computing algorithms, even if there are no
quantum computing effective methods. This convention has the virtue that it preserves how
computer scientists already talk about quantum computing methods. Nothing important
turns on this decision, however, and the argument of this paper may be rephrased if one
prefers to define the term “algorithm” differently.23

6. Quantum Computations That Are Not Effective Methods

Quantum computers are able to move from input to output using computational
methods that are not open to any idealised human clerk. A human working by hand
may be able to compute the same functions as a quantum computer—they may be able to
simulate a quantum computer’s input–output behaviour—but they are not able to use the
same computational method to do so.

Deutsch et al. [68] describe a simple quantum computer that uses a non-effective
method. The computer uses quantum interference to compute the NOT function. The NOT
function maps an input of 0 to an output of 1 and an input of 1 to an output of 0. Clearly,
there is no question here of computing a function that cannot also be computed by hand.
The question is whether the computational method that the quantum computer uses to
calculate NOT could also be used by an idealised human clerk.

Deutsch’s proposed quantum computer is composed of two half-silvered mirrors
(mirrors that reflect a photon with 50% probability and allow a photon to pass through
with 50% probability). The presence of a photon along one path to a half-silvered mirror
denotes an input of 1, the presence of a photon along the other path denotes an input of
0; the presence of a photon along one exit path denotes an output of 1, the presence of a
photon along the other exit path denotes an output of 0.

A single half-silvered mirror implements a quantum computational gate that Deutsch
calls

√
NOT. If the input to the gate is 0, then the output is measured as either 0 or 1 with

50% probability; similarly, if the input is 1, the output is measured as either 0 or 1 with 50%
probability. Formally, if the input is prepared in quantum state |0〉 (i.e., 0), then the output
occurs in superposition state (|0〉 − i |1〉)/

√
2 (which, on measurement, results in a 0 or 1

with 50% probability). If the input is prepared in quantum state |1〉 (i.e., 1), then the output
occurs in superposition state (−i |0〉+ |1〉)/

√
2 (which also, on measurement, results in a 0

or 1 with 50% probability).24

If two half-silvered mirrors are connected together in series, as shown in Figure 1,
then the overall system computes NOT (0 → 1, 1 → 0). If one did not know better, one
might have guessed that this arrangement would produce a random result, perhaps with
the output evenly distributed over 0s and 1s. Individual half-silvered mirrors appear to
be randomisers, so one might guess that chaining two mirrors together would produce
equally random results. However, due to the rules by which superposition states evolve in
quantum mechanics, the relevant states interfere with each other, so that an input of 0 to the
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first mirror always yields an output of 1, and an input of 1 to the first mirror always yields
an output of 0. This occurs even if a single photon is sent into the system, a phenomenon
known as single-particle interference.

Input 0

Input 1 

Output 0

Output 1

Figure 1. An example of a quantum NOT gate.

Formally, this can be seen as follows. The first half-silvered steps maps |0〉 →
(|0〉 − i |1〉)/

√
2. The second half-silvered mirror applies the same quantum operator

to that superposition state, mapping (|0〉 − i |1〉)/
√

2→ −i |1〉, which, on measurement,
results in an output of 1 with 100% probability (| − i|2 = 1). Combining the two opera-
tions, if the input is 0, then the output is 1. Similarly, the first half-silvered mirror maps
|1〉 → (−i |0〉+ |1〉)/

√
2. The second half-silvered mirror applies the same operator, map-

ping (−i |0〉+ |1〉)/
√

2→ −i |0〉, which, on measurement, results in an output of 0 with
100% probability.

The same function, NOT, can of course be calculated by a human, but not using the
same method.

It is important to stress that the claim here is not about the physical implementation
of the quantum computation. The claim is not that the same photon-and-mirrors process
cannot be reproduced by an unaided human. That is obviously true. The claim is that the
same abstract computational method cannot be used. There is no suitably equivalent physical
process that a human worker can engage in, even if they are idealised in the manner
suggested, that calculates input–output in the same way. The computational method
used by the quantum NOT computer is multiply realisable: it might be implemented
with photons, electrons, fields, or atomic nuclei. All of these physical resources exhibit
interference patterns that might be exploited to compute NOT using this computational
method. But that method cannot be implemented in an unaided human working by hand—
or at least, not in a controllable way. The computational method for calculating NOT is
multiply realisable, but it cannot be realised at will in an unaided human.25

Interference is one non-effective computing method. Another example is
quantum parallelism. Quantum parallelism underlies the claimed speedup of some quantum
computers over more conventional computers.

Quantum parallelism allows a quantum computing system to calculate multiple values
of a function f (x) in a single step. In the simplest case, if an arbitrary 1-bit function f (x) is
applied to an input superposition state (|0〉+ |1〉)/

√
2, then the output state would include

(|0, f (0)〉+ |1, f (1)〉)/
√

2. This state contains information about both f (0) and f (1), but it
was obtained using only a single application of f (x).26 In a more complex case, every value
of an arbitrary n-bit f (x) could be calculated using a single application of f (x). If n + 1
bits are prepared in a superposition state, then one application of f (x) would result in the
superposition state (2−n/2)∑x |x, f (x)〉, a state that encodes all values of f (x).27 Quantum
parallelism is a non-effective method that allows a quantum computing system to calculate
all values of an arbitrary function in one step. It is not a computing method freely available
to a human working by hand.

A well-known limitation on methods that employ this kind of quantum parallelism
is that it is only possible to recover a single value of f (x) from the superposition state
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(2−n/2)∑x |x, f (x)〉 by measurement.28 This limitation, however, is far from fatal to the use
of quantum parallelism in computation. That is because before measurement all manner of
computational operations might be performed on the quantum state that encodes all values
of f (x). These operations might affect different components of the superposition state
in different ways. For example, certain components of the superposition state might be
arranged to interfere with one another. These interference relations might be constructive
or destructive, amplifying the probability of an outcome, or suppressing it. If correctly
arranged, such interference relations might combine to allow a quantum computer to
calculate some “global” property of f (x): a mathematical property that depends on multiple
values of f (x)—one that would require a conventional computer to explicitly evaluate
f (x) for several values of x individually. Consequently, even though only a single value
of f (x) can be recovered directly via measurement, all values of f (x) are in principle
available to compute global properties of f (x), rendering this a potentially useful form of
parallel computation.

The Deutsch–Jozsa algorithm provides an example of how this might work.29 Suppose
that Alice picks a function f (x) : {1, . . . , n} → {0, 1} that is either balanced or constant and
keeps it secret. A constant function yields the same value for all x; a balanced function yields 1
for half of x, and 0 for the other half. Bob can send Alice a number and ask her for the value
f (x). Bob’s task is to determine, with as few queries as possible, whether Alice’s function
is constant or balanced. Using quantum parallelism, he can solve the problem using just
one evaluation of f (x). In the classical case, he requires at least 2n/2 + 1 operations in
order to solve the same problem. Using quantum parallelism, Bob can apply Alice’s f (x)
once to a superposition state which is then passed through a series of Hadamard gates.30 If
Alice’s function is balanced, the various components of the superposition state ∑x |x, f (x)〉
interfere with each other to yield the answer 0. If her function is constant, the components
of the superposition state that encode all the values of f (x) interfere to yield the answer 1.31

The full details of the Deutsch–Jozsa algorithm are complex, but the key point is that the
way in which Bob solves the problem requires only a single application of f (x), which is
not available to a human working by hand.

The problem that the Deutsch–Jozsa algorithm solves is of little practical interest, but
similar techniques that employ quantum parallelism can be used to compute other, more
useful properties. Shor’s algorithm, for example, uses quantum parallelism to find the
prime factors of integers [74]. Shor’s algorithm factorises integers in polynomial time, mak-
ing it almost exponentially faster than the most efficient known non-quantum factorisation
method (the general number field sieve).32 Shor’s algorithm correspondingly has a different
worst-case complexity profile to any known effective method for factoring numbers. Ap-
plying the principle described in Section 2.2—that different worst-case complexity profiles
indicate different computational methods—it seems reasonable to conclude that Shor’s
algorithm is different from any known effective method. It is an example of a computational
method that, as far as we know, cannot be executed by a suitably idealised human clerk.

Just as with interference, what is at issue here is not whether an unaided human could
reproduce the same physical processes that take place inside a specific quantum computer.
An unaided human is clearly not the same as an arrangement of half-silvered mirrors. The
question at issue is whether that same computing method could be instantiated by a human
clerk. Could a human following an effective method instantiate a computing method
like Shor’s algorithm? Quantum parallelism is a computational method that is multiply
realisable: it might be implemented with photons, electrons, or atomic nuclei. Can it also be
implemented by an unaided human working to an effective method? The answer appears
to be no. The fact that such a human cannot, to our knowledge, engage in any process that
would factorise numbers with the same worst-case complexity profile is strong evidence
that they cannot instantiate the same computational method.

Quantum parallelism should not be conflated with other forms of parallelism found
in modern electronic computers. In a modern electronic computer, multiple computational
units are often executed simultaneously to compute more than one value of f (x) within
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a single time step. In contrast, in a case of quantum parallelism, a single computational
unit is executed once to evaluate all values of f (x). Quantum parallelism should also not be
conflated with a non-deterministic method of computation. A quantum computer that uses
the superposition state (|0, f (0)〉+ |1, f (1)〉)/

√
2 is not the same as a non-deterministic

computer that yields f (0) with 50% probability and f (1) with 50% probability. In the case
of a non-deterministic computer, the two alternatives f (0) and f (1) necessarily exclude
each other: the machine computes either f (0) or f (1) on any given run. In a device that
uses quantum parallelism, the two alternatives might interfere with each other to create an
output that reflects a global property of f (x)—an output that would require a machine to
know both f (0) and f (1).33

The two examples described in this section—quantum interference and quantum
parallelism—are not meant to be an exhaustive list of all non-effective features of quantum
computation. Other potential features might include quantum entanglement, quantum tele-
portation, or counterfactual computation.34 Just like interference and quantum parallelism,
these features are multiply realisable—they are not specific to any particular hardware
implementation. Just like interference and quantum parallelism, it is hard to see how they
might be implemented at will in an unaided human.

Quantum computers are unlikely to be the only systems that use non-effective com-
putational methods. Other possible examples might include DNA computers [79,80],
enzyme-based computers [81], slime moulds [82], fungi [83], reservoir computers [84], and
optical computers [85]. An anonymous referee suggested that analog computers provide
good examples of systems that use non-effective computing methods [86]. Shagrir [40]
claims that the Game of Life is another case. According to Shagrir, an unbounded number
of cells inside the Game of Life need to be updated simultaneously at each time step. He
argues that this requires an unbounded number of parallel operations, which, he notes,
building on work by Gandy [28], cannot be executed by a human clerk.35 Gurevich suggests
that although the idea of a computational method (“algorithm”) originated with human-
executable methods, it has since been generalised to other methods, and it continues to
expand in ways that are hard to delimit:

“In addition to classical sequential algorithms, in use from antiquity, we have
now parallel, interactive, distributed, real-time, analog, hybrid, quantum, etc.
algorithms. New kinds of numbers and algorithms may be introduced. The
notions of numbers and algorithms have not crystallized (and maybe never will)
to support rigorous definitions.” Gurevich [64] (p. 32)

The argument of this paper is not intended to suggest that quantum computing
methods are the only, or the most central, examples of non-effective computational methods.
However, the case of quantum computing is a particularly helpful one with which to make
the case that not all computational methods are effective methods. This is because it allows
us to apply a relatively clear-cut, quantitative, and widely accepted principle—that different
worst-case complexity profiles indicate different computational methods—to settle hard
questions about how to individuate computational methods.

Any claim that a computational method is not an effective method is liable to face
scrutiny or some degree of scepticism regarding its specific understanding of how to
individuate computational methods. As noted in Section 2.2, this involves defence over a
complex and unsettled territory. It is often hard to say definitely whether two computational
methods are the same or not. From one perspective—at a particular level of abstraction, or
with a focus on the similarity of certain features rather than others—two computational
methods might appear to be the same. However, if looked at in a different way—at
a different level of abstraction, or with an emphasis on different features—those same
methods might be classified as different.36 In general, it is not obvious what counts as a
“superficial” versus a “genuine” difference between the internal workings of computing
methods (e.g., in Shagrir’s case it is not obvious that the Game of Life really does require
all cells to be updated simultaneously). The question therefore always potentially arises
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about whether a suggested computational method is genuinely different from an effective
method—whether it is a legitimate case of a non-effective computational method—or only
one that differs in some superficial respects.

The principle described in Section 2.2 provides a way of cutting through this uncer-
tainty. Different complexity profiles provide a sufficient reason for distinguishing between
computational methods that compute the same function. This principle only really gets its
teeth, however, in the quantum computing case. Generally speaking, it is common inside
complexity theory to assume that any two “reasonable” models of computation are able to
simulate each other with at most a polynomial penalty in time or space. This is sometimes
known as the Cobham–Edmonds thesis or the extended Church–Turing thesis [87,88]. It is
sometimes glossed as showing that the abstract computational method “does not matter”
to the worst-case complexity profile associated with a task—worst-case complexity profiles
are robust under changes in computing method or computing paradigm [87] (pp. 33–34).
However, quantum computers appear to offer an exception to this [88–91]. Some quantum
computational methods provide near-exponential speedup for some problems (e.g., factori-
sation). They appear to be examples of cases where the computational method does matter
to the worst-case complexity profile associated with solving a task. My claim is that be-
cause of these differences in complexity profile we have good reason to think that we have
genuinely different computing methods on our hands. We can apply the principle from
Section 2.2 to show that a quantum computational method is different from any effective
method. This kind of result is not known for other types of non-human computing method.
As such, quantum computing methods stand out as particularly clear-cut, egregious cases
of computational methods that are not effective methods.

7. Simulating the Quantum System by Hand

Someone might object to the treatment of the computational methods described in
the previous section by replying that the relevant quantum computational methods are
executable by a human. All a human would need to do is calculate the evolution of the
relevant quantum wave function. This is exactly what we appeared to do in the case of
Deutsch’s NOT quantum computer: we applied the relevant quantum operator step-by-step
(by performing matrix multiplication) to calculate the output state from an input state. In
principle, a similar kind of procedure could be performed for the Deutsch–Jozsa algorithm
or for Shor’s algorithm. Calculating the evolution of a quantum wave function by hand
can be extremely laborious, but there is no reason to think it cannot be done, in principle,
with an effective method. There is no overtly “non-effective” mathematical step within any
of the formal theory of quantum mechanics. Hence, the objection goes, there is no reason to
think that a suitably idealised human clerk cannot reproduce the computational methods
of any quantum computer.

It is important to note that although it might be possible to calculate the evolution of
a quantum computer’s wave function by hand, doing so is not the same computational
method as letting a quantum computer evolve by itself. There is a difference between
applying the relevant quantum operators by hand (e.g., by doing a sequence of matrix
multiplications) and letting the target physical system run to produce its output. That there
is a difference can be justified by appealing, again, to the principle, described in Section 2.2.

Feynman [92] famously showed that simulating the evolution of a quantum system
by hand is a computationally intractable problem. This means that a quantum computer
undergoing natural evolution of its wave function, and a human simulating it by an effective
method, e.g., by repeatedly performing matrix multiplications, have qualitatively different
worst-case complexity profiles. The human working by hand will use exponentially more
space (or time) than the quantum computer to produce the same overall output. Calculating
the evolution of an n-bit quantum system by hand would require (at least) 2n classical
bits.37 For a quantum computer with 400 quantum bits (say, consisting of 400 atomic nuclei),
an effective method that calculates the wave function by hand would require more bits
for storage than there are estimated particles in the universe. The relevant issue here is
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not, however, a practical limitation on storage—after all, the imagined clerk is allowed
unlimited space and time. The problem is about how the clerk’s resource use grows with the
size of the problem. This growth is what the worst-case complexity profiles measure and it
is what signals that these are different methods for tackling the same problem. Any effective
method that an idealised human might adopt for stepping through the evolution of the
quantum system by hand will be exponentially less efficient than running the quantum
computer itself. Therefore, applying the principle from Section 2.2, running the quantum
computation is not the same—in terms of which computational method is instantiated—as
having a human work through the evolution of its wave function by hand.

8. Conclusions

In summary, the argument of this paper is as follows. It relies on two premises:

1. If two putative computational methods have different worst-case complexity profile,
then they are genuinely different computational methods.

2. There are abstract quantum computational methods that have different worst-case
complexity profiles to that of any known effective method.

The conclusion follows that:

3. There are computational methods that are not effective methods.

Premise 1 was introduced and defended in Section 2.2. I argued that it is embedded
as a principle into the practice of both theoretical and engineering computer science.
Knuth [22] suggests that it may be a defining feature of thinking like a computer scientist
rather than thinking like a mathematician. Premise 2 is not proven, but widely believed
to be true within the quantum computing community. It is widely thought that certain
quantum methods (e.g., Shor’s algorithm) provide a true “quantum advantage” in terms of
worst-case space or time usage. I discuss examples of such methods, and the unusual basic
steps that they employ, in Sections 6 and 7.

Someone might take issue with either premise 1 or 2. I have supplied here some reasons
why someone might accept them, but I offer nothing original. The primary argument of
this paper is that if they are true, then conclusion 3 follows.

It is worth stressing that neither premise 1 nor premise 2 reference the specifics
of the physical implementing hardware. Quantum computing methods are commonly
implemented in non-human physical systems (e.g., with mirrors and photons). However,
the argument of this paper is not that quantum computing methods are not effective
because they are implemented in some non-human physical system. It is not merely the
non-human character of their typical implementation that means that quantum computing
methods are not effective methods. A non-human physical system (e.g., an electronic PC)
might implement an effective computational method and the relevant quantum methods
might be implemented in many—an unlimited number of—different kinds of physical
system. The argument of this paper is rather that quantum computing methods cannot
be implemented in a suitably idealised human clerk because, at least to the best of our
knowledge, the required clerk cannot implement any computational method that displays
the same worst-case complexity profile.

In Section 9 of his 1936 paper, Turing wrote:

“The real question at issue is ‘What are the possible processes which can be
carried out in computing a number?’ ” Turing [45] (p. 249)

Turing had in mind a human computer (a “computor”, to use Gandy’s term [29]), and
he went on to answer this question by describing the operations and methods of what has
come to be known as a Turing machine. This appears to suggest that the possible processes
which can be carried out in effectively computing a number should be identified with the methods
that can be executed by a Turing machine. As Wittgenstein said, “Turing’s . . . machines are
humans who calculate.” [93] (§1096).
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We have seen that care should be taken in how this claim is interpreted. The possible
processes that might be carried out in computing a number outrun both (i) those that might
be carried out by a Turing machine and (ii) those that might be carried out by an idealised
human following an effective method. There are processes for computing that are human
executable but not Turing-machine executable (e.g., that involve sequences of operations in
the λ-calculus, or over the µ-recursive functions) and there are processes for computing
that are not executable by a human but which are executable by certain other systems
(e.g., quantum computers).

Turing ignored these issues in his 1936 paper because his focus was on relationships
between computing processes of extensional equivalence. If one’s primary focus is on
questions of computability, then these fine-grained differences between computational
methods—differences that do not affect which numbers are computable—can be ignored.
However, if one is interested in differences in internal workings between computing
methods—as is commonly the case in philosophy of mind and in many areas of computer
science—then an identification between computing methods and effective methods cannot
be made.
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Notes
1 See Copeland and Proudfoot [1].
2 For examples of proposed hypercomputers designs, see Copeland and Sylvan [2]; Copeland [3]; Copeland [4]; Syropoulos [5].
3 For a range of objections to hypercomputation along these lines, see Button [7]; Davis [8]; Piccinini [9].
4 I do not claim that quantum cases are the only examples of non-effective computational methods; see the end of Section 6 for

discussion of other possible examples.
5 Or which numbers can be computed (see Section 4), or which puzzles can be solved by computational means (see Section 5).
6 In other words, by the function that they compute, where “function” is understood in a purely extensional way, i.e., as a set or

ordered pairs corresponding to the overall input and output.
7 In the terms of Church [13], we consider differences in the function-in-intension rather than the function-in-extension. In the

terms of Marr [14], we individuate computations as they are at the algorithmic level rather than at the computational level
(pp. 22–24).

8 See Block [15] for a classic discussion of this.
9 Worst-case measures of space or time complexity are not the only ones used to describe this resource usage, but they are the most

commonly employed. Thanks to an anonymous reviewer for this point.
10 In this notation, n is the size of the list and O(g(n)) provides an asymptotic upper bound on the resource consumption: for large

enough n, resource consumption is always less than or equal to some constant times the g(n) function named inside the O(·). For
more on complexity theory and use of big-O notation to measure resource usage, see Papadimitriou [16].

11 See Dean [17] for a review of contemporary analytic approaches to this problem, including those of Gurevich [18,19] and
Moschovakis [20].

12 For a helpful analysis of these two problems in relation to creating a general theory, see Blass et al. [21].
13 See Knuth [22], (p. 97), who suggests that a distinguishing feature of computer science is that algorithms should be individuated

by their complexity class. He argues that this “algorithmic” mode of thinking separates the thought processes of earlier
mathematicians from those of later computer scientists (pp. 96–98). See Dean [17], (pp. 20–29); Shagrir [23] for further discussion
of how and why complexity profiles matter to the individuation of computational methods.
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14 Some critics of Turing argued that his human-centric characterisation of an effective method was not too narrow (as the authors
above suggest), but too broad: the definition should be narrowed by adding a requirement that the number of steps taken by
the human clerk should be somehow bounded or determinable in advance. For criticism of such proposals, see Gandy [29]
(pp. 59–60); Mendelson [37] (p. 202); Rogers [30] (p. 5).

15 For further defence of the human-centric condition regarding “effective method”, see Black [39]; Button [7]; Copeland [24];
Gandy [29]; Shagrir [40] (p. 40); Smith [41].

16 See Shagrir [36] (pp. 225–226); Shagrir [40] (pp. 36–39).
17 Copeland [25,52] criticises a number of the same authors for committing what he calls the “Church–Turing fallacy”. The fallacy is

to assume that any possible physical mechanism could be simulated by some Turing machine. My claim is that the authors make
a second mistake in that they assume that any possible computational method is also an effective method. Copeland argues
that although “effective” and “mechanical” sometimes appear to be synonyms in mathematical logic, the relationship between
them should be handled with caution. “Mechanical” should be understood as a term of art and defined in the way described in
Section 3. It does not correspond in any straightforward way to the concept of a physical mechanism.

18 See Searle [54] (p. 202) and Searle (personal correspondence).
19 See Copeland [55]; Sprevak [56] for a detailed analysis of the role of this assumption in the Chinese room argument.
20 See Lycan [58] for the name “homuncular functionalism” and a clear reconstruction of the view.
21 See Shagrir [61] for a helpful analysis and criticism of this second claim about the multiple realisability of computation.
22 See also Blass and Gurevich [65]:

“In fact the notion of algorithm is richer these days than it was in Turing’s days. And there are algorithms . . . not covered
directly by Turing’s analysis, for example, algorithms that interact with their environments, algorithms whose inputs are
abstract structures, and geometric or, more generally, non-discrete algorithms.” (p. 31)

23 It is worth noting that the term “algorithm” has a long history of its own and semantic associations that predate its current
connections with either “computational method” or “effective method”. See Chabert et al. [66]; Knuth [67].

24 If a superposition state α |0〉+ β |1〉 is measured, then the result is 0 with probability |α|2, and 1 with probability |β|2, with

|α|2 + |β|2 = 1. A
√

NOT gate performs the operation on the quantum state vector
(

α

β

)
described by the complex-valued matrix

1√
2

(
1 −i
−i 1

)
.

25 Cf. Nielsen and Chuang [69] (p. 50): “. . . it is tempting to dismiss quantum computation as yet another technological fad . . .
This is a mistake, since quantum computation is an abstract paradigm for information processing that may have many different
implementations in technology.”

26 More accurately, a unitary (reversible) operator U f is applied to the input, U f : |x, y〉 → |x, y⊕ f (x)〉, where ⊕ indicates addition
modulo 2. U f is used because there is no guarantee that an arbitrary f itself is unitary, and the evolution of a quantum mechanical
system must be governed by unitary operators. This modification does not affect the point above.

27 See Nielsen and Chuang [69] (pp. 30–32).
28 Strictly, a pair of values can be recovered, x, f (x). The output is a pair because the evolution of the quantum state is governed by

unitary operators (quantum computations must be reversible).
29 See Cleve et al. [70]; Deutsch and Jozsa [71]. A simplified version of the algorithm was first proposed by Deutsch [72].
30 A Hadamard gate is a quantum operator that works in a similar way to Deutsch’s

√
NOT operator, but defined over the real

numbers. The transformation provided by a Hadamard gate is given by the real-valued matrix
1√
2

(
1 1
1 −1

)
. Like Deutsch’s

√
NOT, a Hadamard gate may be physically implemented with half-silvered mirrors; see Barz [73].

31 See Nielsen and Chuang [69] (pp. 32–36) for the details of the algorithm.
32 Ibid.
33 For further discussion of this point, see Nielsen and Chuang [69], pp. 30–34.
34 See Ekert and Jozsa [75] for algorithms that use quantum entanglement, and Bennett et al. [76], Gottesman and Chuang [77] for

algorithms that use teleportation. Counterfactual computation is a counterintuitive method in which the intermediate steps of
the computations do not take place in the actual world (according to measurement), yet the desired output is still produced; for a
proposed application, see Hosten et al. [78].

35 Shagrir [40], pp. 46–47.
36 I am assuming the methods in question have the same overall input–output profile and that one is trying to individuate them

based on their internal workings. As discussed in Section 2.1, I am setting aside the use of hypercomputers for establishing the
claim that not all computational methods are effective methods.

37 Nielsen and Chuang [69] (pp. 48, 204–206).
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