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Abstract: The universal blind quantum computation protocol (UBQC) enables an almost classical
client to delegate a quantum computation to an untrusted quantum server (in the form of a garbled
quantum circuit) while the security for the client is unconditional. In this contribution, we explore
the possibility of extending the verifiable UBQC, to achieve further functionalities following the
analogous research for classical circuits (Yao 1986). First, exploring the asymmetric nature of UBQC
(the client preparing only single qubits, while the server runs the entire quantum computation),
we present a “Yao”-type protocol for secure two-party quantum computation. Similar to the classical
setting, our quantum Yao protocol is secure against a specious (quantum honest-but-curious) garbler,
but in our case, against a (fully) malicious evaluator. Unlike the previous work on quantum two-party
computation of Dupuis et al., 2010, we do not require any online-quantum communication between
the garbler and the evaluator and, thus, no extra cryptographic primitive. This feature will allow
us to construct a simple universal one-time compiler for any quantum computation using one-time
memory, in a similar way to the classical work of Goldwasser et al., 2008, while more efficiently than
the previous work of Broadbent et al., 2013.
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1. Introduction

Future information and communication networks will consist of both classical and quantum
devices, some of which are expected to be dishonest. These devices will have various different
functionalities, ranging from simple routers to servers executing quantum algorithms. Within the last
few years, anticipating this development has led to the formation and growth of the field of delegated
quantum computing [1–6]. Among them is the universal blind quantum computation (UBQC) protocol
of [3], which is developed based on the measurement-based quantum computation model (MBQC) [7]
that appears as the most promising physical implementation for a networked architecture [8]. In the
UBQC framework, the only quantum requirement for the client is the offline creation of random single
qubit states, which is a currently available technology and has been demonstrated experimentally [9].

The MBQC model of computation can be viewed as a set of classical instructions steering
a quantum computation performed on a highly entangled quantum state. The classical outcomes of the
single-system measurements that occur during the computation are in general randomly distributed
bits with no significance for the final output of the computation. This enables one to use relatively
basic obfuscation techniques in order to prevent an untrusted operator (that implements an MBQC
computation) from obtaining access to the true flow of information. This key observation has led to
an entirely new approach to quantum verification that exploits cryptographic techniques [4,5,10–17].
The core idea is to encode simple trap computations within a target computation that is run on a
remote device. This is done in such a way that the computation is not affected while, at the same
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time, revealing no information to the server. The correctness of the overall computation is tested by
verifying that the trap computations were done correctly. The latter, being significantly less costly,
leads to efficient verification schemes. This approach of quantum verification has been recently used to
obtain specific cryptographic primitives, such as quantum one-time program [6] and secure two-party
quantum computation [18], which are also the main focus of this paper.

1.1. Our Contribution

We will explore two extensions of the verifiable universal blind quantum computing (VUBQC)
protocols, which are built based on measurement-based quantum computation, in order to achieve
new functionalities to be implemented in the quantum network setting [8]. The essential novelty of
our approach is that the client-server setting allows different participants to have different quantum
technological requirements. As a result, in our proposed two-party primitives, one party (garbler
or sender) remains as classical as possible (with no need for quantum memory), while it is only the
other party (evaluator or receiver) that requires access to a quantum computer. Moreover, the required
offline initial quantum communication between the participants is also limited to the exchange of
simple single quantum states that can be generated, for example, in any quantum key distribution
network (as was proven recently in [19]). Finally, all of the utilised sub-protocols in our schemes could
be reduced to the core protocols of offline preparation [19] and verifiable universal blind quantum
computation [10,14] that are both proven to be composably secure in the abstract cryptography
framework of [20]. For simplicity, we only present the stand-alone security proof for our protocols as
we follow the framework of [21] and use simulation-based techniques. We present two new protocols:

1. In Section 3, we present a protocol for secure two-party quantum computation that we refer
to as QYao. This protocol involves two parties with asymmetric roles that wish to securely
compute any given unitary on a joint quantum input. Similar to the classical protocol of [22],
in QYao, an honest-but-curious (formally defined for the quantum setting in [21]) client capable
of preparing only random single qubit and performing constant depth classical computation
“garbles” the entire unitary. The fully-malicious server/evaluator receives instructions from the
garbler and inserts their input either using a (classical) oblivious transfer (OT) or by a quantum
input insertion scheme secure against the honest-but-curious garbler. The evaluator performs
the computation, extracts its own output qubits and returns the remaining output qubits to
the garbler. After the garbler verifies the computation, the encryption keys of the evaluator
output qubits are released. Unlike the classical setting, our proposed QYao protocol is interactive,
but importantly, only classical online communication is required. The gain we have, on the
other hand, is the boosted security since apart from the initial input exchange where classical
OT is needed, the rest of the protocol is unconditionally secure. If one could replace the classical
OT’s in our QYao protocol with new primitives, such as the unconditionally secure relativistic
primitives [23], the security would be extended to fully unconditional. In Section 4, we prove the
security of the protocol in the ideal real-world paradigm using a simulation-based technique.

2. In Section 5, we follow the classical approach of [24] and make our QYao protocol non-interactive
by using the classical hardware primitive “one-time memory” (OTM), which is essentially
a non-interactive oblivious transfer. Using OTM, the need for initial OT calls, in our QYao protocol,
is also removed, leading to a one-time universal compiler for any given quantum computation.
Such one-time quantum programs can be executed only once, where the input can be chosen
at any time. The one-time programs have a wide range of applications ranging from program
obfuscation, software protection to temporary transfer of cryptographic ability [24]. Classically,
the challenge in lifting the Yao protocol for two-party computation to a one-time program is
addressing the issue of a malicious adversary. However, our QYao protocol is already secure
against a malicious evaluator without any extra primitive or added overhead. Our quantum
one-time program is therefore a straightforward translation of QYao. The same technique is
applicable to essentially any cryptographic protocols developed in the measurement-based model
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that require offline quantum preparation and online classical communications. In any such MBQC
computation, there are exponentially many branches of computation (this expansion is the result
of the non-deterministic nature of the intermediate single-qubits measurement that occurs during
the computation); however, we prove that a single OTM (of constant size) per computation qubit
suffices to make the QYao non-interactive. This is due to the fact that in any constant degree
graph-state (the underlying entanglement resources for an MBQC computation), the flow of
information acts locally. We prove that this is the case for the required entangled recourse in the
verifiable UBQC introduced in [25] that is the basis of our QYao protocol. Hence, each classical
message between parties, in the interactive case, depends only on the constant number of previous
messages, and this allows us to remove this interaction using a simple constant-size OTM.

1.2. Related Works

Deriving new quantum cryptographic protocols for functionalities beyond the secure key
exchange [26] is an active field of research (see a recent review for a summary [27]). In particular, our
contributions are directly linked to the works on verifiable blind quantum computing (VUBQC) [4,5,10],
secure two-party quantum computing [18,21] and quantum one-time program and quantum
obfuscation [6,28]. The main focus in VUBQC research is the ability of a limited verifier to certify the
correctness of the quantum computation performed by a remote server. Recently, many such protocols
have been developed achieving different quantum technological requirement for the verifier or the
prover [11,13,15,16,29]. We have used the optimal (from the verifier’s point of view) VUBQC that has
the additional property of a local and independent trap construction [25]. This property allows us to
construct a simple yet generic scheme for the server (receiver, evaluator) input insertion and output
extraction that could be applicable to other VUBQC schemes and that might lead to further properties
not present in the scheme of [25].

Due to the impossibility results of [6,28], having extra primitives such as OTM is unavoidable in
order to achieve program hiding. However, using the MBQC framework with the verification protocol
of [25] leads to a simpler procedure for removing the classical interaction compared to the initial
work that pioneered this approach [6]. Furthermore, due to the direct utilisation of OTMs instead of
classical one-time programs, our scheme could be applicable to other VUBQC protocols that might
emerge in the future. Another way of making protocols non-interactive is based on the security of
other classical primitives, as was done in [30] using fully-homomorphic encryption. However, to apply
this method for non-interactive secure two-party quantum computation, it is important to enable
verifiability from the side of the sender, something naturally present in our scheme, but not necessarily
in other schemes. Finally, the VUBQC framework, which naturally separates the classical and quantum
part of the computation, allows us to construct a client-server scheme for secure two-party quantum
computation that unlike the work of [21] removes the requirement of any extra cryptographic primitive,
which was an open question in [21]. Here, we need to clarify that, while in the classical Yao with an
honest-but-curious garbler the primitive of OT is required for the evaluator’s input insertion, in our
QYao, this is not the case. This is simply due to the fact that the notion of the quantum specious
adversary that was formalised in [21] is more restrictive than classical honest-but-curious in certain
cases (see Appendix B). Hence, instead of utilising a classical OT, one could simply devise a quantum
communication scheme, as we present here, in order to achieve the same goal of secure input insertion
against a (less powerful) adversarial garbler.

Another related issue is that the server-client setting can also be exploited to achieve simpler
(implementation-wise) multiparty blind quantum computation protocols, where multiple clients use
a single server to jointly and securely perform a quantum computation [31].

Finally, an interesting future direction is to try to view secure two-party quantum computation
(2PQC) as a quantum game. The link of classical SMPCand game theory has been analysed, for example,
in connection with the issue of fairness and rational players [32,33]. Moreover, the quantum settings
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with multiple parties having competing interests has also been considered in a game-theoretic way
(e.g., [34] and recently [35]), which leads to the question of using these techniques in the 2PQC case.

2. Preliminaries

2.1. Verifiable Universal Blind Quantum Computation

We will assume that the reader is familiar with the measurement-based quantum computation
(MBQC) model [7] that is known to be the same as any gate teleportation model [36,37]. In this
section, we introduce MBQC and use it to revise a blind quantum computation (the server performs
computation without learning input/output or computation) [3] and a verifiable blind quantum
computation (the client can also verify that the computation was performed correctly) [10] protocols.
The general idea behind the MBQC model is: start with a large and highly entangled generic
multiparty state (the resource state), and then, perform the computation by carrying out single-qubit
measurements. To perform a desired quantum computation, each qubit should be measured in a
suitable basis, and this basis is (partly) determined by some default measurement angles φi. There is an
order in which the measurements should occur, which is determined by the flow of the computation
(see also later), and the basis by which each qubit is measured generally depends on the outcomes of
previous measurements (and the default measurement angle φi). The resource states used are known
as graph states, as they can be fully determined by a given graph (see the details in [38]). A way
to construct a graph state given the graph description is by assigning to each vertex of the graph a
qubit initially prepared in the state |+〉 and for each edge of the graph to perform a controlled−Z
gate for the two adjacent vertices. For completeness, in Appendix A, we give the expression for the
measurement angles of each qubit and an example of measurement pattern (graph state and default
measurement angles φi) that implements each gate from a universal set of gates.

If one starts with a graph state where qubits are prepared in a rotated basis |+θ〉 =

1/
√

2(|0〉+ eiθ |1〉) instead, then it is possible to perform the same computation with the non-rotated
graph state by preforming measurements in a similarly rotated basis. This observation led to the
formulation of the universal blind quantum computation (UBQC) protocol [3], which hides the
computation in a client-server setting. Here, a client prepares rotated qubits, where the rotation
is only known to them. The client sends the qubits to the server, as soon as they are prepared
(hence, there is no need for any quantum memory). Finally, the client instructs the server to perform
entangling operations according to the graph and to carry out single qubit measurements in suitable
angles in order to complete the desired computation (where an extra randomisation ri of the outcome
of the measurements is added). During the protocol, the client receives the outcomes of previous
measurements and can classically evaluate the next measurement angles. Due to the unknown
rotation and the extra outcome randomisation, the server does not learn what computation they
actually perform.

The UBQC protocol can be uplifted to a verification protocol where the client can detect a cheating
server. To do so, the client for certain vertices (called dummies) sends states from the set {|0〉 , |1〉},
which has the same effect as a Z-basis measurement on that vertex. In any graph state, if a vertex
is measured in the Z-basis, it results in a new graph where that vertex and all of its adjacent edges
are removed. During the protocol, the server does not know for a particular vertex if the client sent
a dummy qubit (i.e., a qubit from {|0〉 , |1〉}) or not. This enables the client to isolate some qubits
(disentangled from the rest of the graph). Those qubits have fixed deterministic outcomes if the
server followed the instructions honestly. The positions of those isolated qubits are unknown to the
server, and the client uses them as traps to test that the server performs the quantum operations that
are requested. This technique led to the first universal VUBQC protocol [10] and was subsequently
extended to many other protocols depending on what optimised construction was used, what was the
required quantum technology and which was the desired level of security. It is clear that the more
(independent) traps we have within a graph, the higher the probability of detecting a deviation. In [25],
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we gave a construction that, while maintaining an overhead that is linear in the size of the computation,
introduced multiple traps and in particular of the same number as the computation qubits. We will
be using that construction, not only for efficiency reasons, but because this construction is “local”,
and revealing to the server partial information about the graph does not compromise the security. This
is important for our QYao protocol since, in this case, the server has the input and output and needs to
know in which parts of the graph their input/output belongs. The construction is summarised below:

1. We are given a base-graph G that has vertices v ∈ V(G) and edges e ∈ E(G).
2. For each vertex vi, we define a set of three new vertices Pvi = {pvi

1 , pvi
3 , pvi

3 }. These are called
primary vertices.

3. Corresponding to each edge e(vi, vj) ∈ E(G) of the base-graph that connects the base vertices vi
and vj, we introduce a set of nine edges Ee(vi ,vj)

that connect each of the vertices in the set Pvi with
each of the vertices in the set Pvj .

4. We replace every edge in the resulted graph with a new vertex connected to the two vertices
originally joined by that edge. The new vertices added in this step are called added vertices.
This is the dotted triple-graph DT(G).

We can see (Figure 1) that each vertex in the DT(G) corresponds to either a vertex (for primary
vertices) or an edge (for added vertices) of the base-graph. The precise edge/vertex of the base-graph
to which each vertex v ∈ DT(G) belongs is called base-location. The nice property of this graph is that
one can reduce this graph to three copies of the base-graph by “breaking” some edges (which can be
done using dummy qubits). Moreover, the choice of which vertex belongs to each of the three graphs
is essentially independent (for different base-locations corresponding to vertices of the base-graph).
With this construction we can eventually use one copy of the base-graph for the computation, while
make multiple single traps from the two remaining copies (see Figure 1). The choice of which vertex
belongs to which graph is called trap-colouring. This is a free choice made by the client, and the fact
that the server is ignorant of the actual trap-colouring guarantees the security (see the details in [25]).

Definition 1 (Trap-colouring). We define trap-colouring to be an assignment of one colour to each of the
vertices of the dotted triple-graph that is consistent with the following conditions.

(i) Primary vertices are coloured in one of the three colours, white or black (for traps) and green
(for computation). There is an exception for input base-locations (see Step (v)).

(ii) Added vertices are coloured in one of the four colours white, black, green or red.
(iii) In each primary set Pv, there is exactly one vertex of each colour.
(iv) Colouring the primary vertices fixes the colours of the added vertices: added vertices that connect primary

vertices of different colour are red; added vertices that connect primary vertices of the same colour get
that colour.

(v) For input base-locations, instead of green, we have a blue vertex (but all other rules, including how to
connect with the other vertices, apply in the same way as if it were green).

For completeness, we give the basic verification protocol from [25] that we use.



Cryptography 2017, 1, 6 6 of 30

Protocol 1 Verifiable universal blind quantum computation using the dotted triple graph (with
fault-tolerant encoding); taken from [25].
We assume that a standard labelling of the vertices of the dotted triple-graph DT(G), is known to both
the client and the server. The number of qubits is at most 3N(3c + 1) where c is the maximum degree
of the base graph G.
• Client’s resources
– Client is given a base graph G. The corresponding dotted graph state |D(G)〉 is generated by graph
D(G) that is obtained from G by replacing every edge with a new vertex connected to the two vertices
originally joined by that edge.
– Client is given an MBQC measurement pattern MComp which: Applied on the dotted graph state
|D(G)〉 performs the desired computation, in a fault-tolerant way, that can detect or correct errors
fewer than δ/2.
– Client generates the dotted triple-graph DT(G), and selects a trap-colouring according to Definition 1
which is done by choosing independently the colours for each set Pv.
– Client for all red vertices will send dummy qubits and thus performs break operation.
– Client chooses the green graph to perform the computation.
– Client for the white graph sends dummy qubits for all added qubits ae

w and thus generates white
isolated qubits at each primary vertex set Pv. Similarly for the black graph the client sends dummy
qubits for the primary qubits pv

b and thus generates black isolated qubits at each added vertex set Ae.
– The dummy qubits position set D is chosen as defined above (fixed by the trap-colouring).
– A binary string s of length at most 3N(3c + 1) represents the measurement outcomes. It is initially set
to all zero’s.
– A sequence of measurement angles, φ = (φi)1≤i≤3N(3c+1) with φi ∈ A = {0, π/4, · · · , 7π/4},
consistent with MComp. We define φ′i(φi, s) to be the measurement angle in MBQC, when corrections
due to previous measurement outcomes s are taken into account (the function depends on the specific
base-graph and its flow, see e.g., [3]). We also set φ′i = 0 for all of the trap and dummy qubits.
The Client chooses a measurement order on the dotted base-graph D(G) that is consistent with the
flow of the computation (this is known to Server). The measurements within each set Pv, Ae of DT(G)
graph are ordered randomly.
– 3N(3c + 1) random variables θi with value taken uniformly at random from A.
– 3N(3c + 1) random variables ri and |D| random variable di with values taken uniformly at random
from {0, 1}.
– A fixed function C(i, φi, θi, ri, s) = φ′i(φi, s) + θi + πri that for each non-output qubit i computes the
angle of the measurement of qubit i to be sent to the Server.
• Initial Step
– Client’s move: Client sets all of the values in s to be 0 and prepares the input qubits as

|e〉 = Xx1 Z(θ1)⊗ . . .⊗ Xxl Z(θl) |I〉

and the remaining qubits in the following form

∀i ∈ D |di〉
∀i 6∈ D ∏j∈NG(i)∩D Zdj

∣∣+θi

〉
and sends the Server all of the 3N(3c+ 1) qubits in the order of the labelling of the vertices of the graph.
– Server’s move: Server receives 3N(3c + 1) single qubits and entangles them according to DT(G).
– Continues to Protocol 2
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Figure 1. Dotted triple graph. Circles: primary vertices with the base-location of the vertex
of the base-graph; squares: added vertices with the base-location of edges of the base-graph.
(a) Trap-colouring. Blue: input qubits; green: gate qubits; white/black: trap qubits; red: wiring
qubits. The client chooses the colours randomly for each vertex with the base-location of vertex of
the base-graph and prepares each qubit individually before sending them one by one to the server
to entangle them according to the generic construction. (b) After entangling, the breaking operation
defined by the wiring qubits will reduce the graph in (a) to the computation graph and for each vertex
a corresponding trap/tag qubits.

Protocol 2 Continuing from Protocol 1: VUBQC with DT(G).
• Step i : 1 ≤ i ≤ 3N(3c + 1)
– Client’s move: Client computes the angle δi = C(i, φi, θi, ri, s) and sends it to the Server.
– Server’s move: Server measures qubit i with angle δi and sends the Client the result bi.
– Client’s move: Client sets the value of si in s to be bi + ri.

• Final Step:
– Server’s move: Server returns the last layer of qubits (output layer) to the Client.

• Verification
– After obtaining the output qubits from the Server, the Client measures the output trap qubits with
angle δt = θt + rtπ to obtain bt.
– Client accepts if bi = ri for all of the white (primary) and black (added) trap qubits i.

2.2. Two-Party Quantum Protocols

The impossibility of achieving unconditionally secure two-party cryptographic protocols has led
to the definition and use of simpler hardware or software primitives to form the basis for the desired
functionalities. A one out of n oblivious transfer (OT) is a two-party protocol where one party (Alice)
has input n messages (x1, · · · , xn) and the other party (Bob) inputs a number c ∈ {1, · · · , n} and
receives the message xc with the following guarantees: Bob learns nothing about the other messages
xi|i 6= c, and Alice is “oblivious” (does not know) about which message Bob obtained (i.e., does not
know the value c) [39]. A hardware token that implements a non-interactive OT is called one-time
memory (OTM) [24]. We will utilise a one out of n OTM, where again Alice stores in the OTM n
strings (x1, · · · , xn), Bob specifies a value c and the OTM reveals xc to Bob and then self-destructs; i.e.,
the remaining strings xi|i 6= c are lost forever.

The first paper that studied secure two-party quantum computation is [21], and we follow their
notations and conventions. We have two parties A, B with registers A,B and an extra registerR with
dimR = (dimA+ dimB). The input state is denoted ρin ∈ D(A⊗B ⊗R), where D(A) is the set of
all possible quantum states in register A. We also denote with L(A) the set of linear mappings from A
to itself, and the superoperator φ : L(A)→ L(B) that is completely positive and trace preserving is
called a quantum operation. We denote IA the identity operator in register A. The ideal output is then
given by ρout = (U ⊗ IR) · ρin, where for simplicity, we write U · ρ instead of UρU†. For two states
ρ0, ρ1, we denote the trace norm distance ∆(ρ0, ρ1) := 1

2‖ρ0 − ρ1‖. If ∆(ρ0, ρ1) ≤ ε, then any process
applied on ρ0 behaves as for ρ1, except with probability at most ε.
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Definition 2 (Taken from [21]). An n-step two-party strategy with oracle calls is denoted ΠO = (A, B, O, n):

1. input spaces A0,B0 and memory spaces A1, · · · ,An and B1, · · · ,Bn
2. n-tuple of quantum operations (LA

1 , · · · , LA
n ) and (LB

1 , · · · , LB
n ) such that LA

i : L(Ai−1)→ L(Ai) and
similarly for LB

i .
3. n-tuple of oracle operations (O1, · · · ,On) where each oracle is a global operation for that step, Oi :

L(Ai ⊗Bi)→ L(Ai ⊗Bi)

The trivial oracle is a communication oracle that transfers some quantum register from one party
to another. Protocols that have only such oracles are called the bare model. Other oracles include calls
to other cryptographic primitives. The quantum state in each step of the protocol is given by:

ρ1(ρin) := (O1 ⊗ I)(LA
1 ⊗ LB

1 ⊗ I)(ρin)

ρi+1(ρin) := (Oi+1 ⊗ I)(LA
i+1 ⊗ LB

i+1 ⊗ I)(ρi(ρin)) (1)

The security definitions are based on the ideal functionality of two-party quantum computation
(2PQC) that takes a joint input ρin ∈ A0 ⊗B0, obtains the state U · ρin and returns to each party their
corresponding quantum registers. A protocol ΠO

U implements the protocol securely, if no possible
adversary in any step of the protocol can distinguish whether they interact with the real protocol or
with a simulator that has only access to the ideal functionality. When a party is malicious, we add the
notation “∼”, e.g., Ã.

Definition 3 (Simulator). S(Ã) = 〈(S1, · · · ,Sn), q〉 is a simulator for adversary Ã in ΠO
U if it consists of:

1. operations where Si : L(A0)→ L(Ãi),
2. sequence of bits q ∈ {0, 1}n determining if the simulator calls the ideal functionality at step i (qi = 1 calls

the ideal functionality).

For other adversaries, the simulator is defined analogously.
Given input ρin, the simulated view for step i is defined as:

νi(Ã, ρin) := TrB0 ((Ti ⊗ I)(Uqi ⊗ I) · ρin) (2)

and similarly for the other party.

Definition 4 (Privacy). We say that the protocol is δ-private if for all adversaries and for all steps i:

∆(νi(Ã, ρin), TrBi (ρ̃i(Ã, ρin))) ≤ δ (3)

where ρ̃i(Ã, ρin) the state of the real protocol with corrupted party Ã, at step i.

In classical cryptography, a type of adversary commonly considered is the “honest-but-curious”.
This adversary follows the protocol, but also keeps records of its actions and attempts to learn from
those more than what it should. This type of weak adversary has been proven very useful in many
protocols, since it typically constitutes the first step in constructing protocols secure against more
powerful (even fully malicious) adversaries.

Since quantum states cannot be copied, one cannot have a direct analogue of honest-but-curious.
Instead, we have the notion of specious adversaries [21], where they can deviate as they wish, but in
every step, if requested, should be able to reproduce the honest global state by acting only on their
subsystems. More formally:
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Definition 5 (Specious). An adversary Ã is ε-specious if there exists a sequence of operations (T1, · · · , Tn),
where Ti : L(Ãi)→ L(Ai), such that:

∆
(
(Ti ⊗ I)(ρ̃i(Ã, ρin)), ρi(ρin)

)
≤ ε (4)

Note that this (standard) definition of specious adversary allows for different interpretations that
lead to stronger and weaker versions of the adversary. These subtleties are explained in Appendix B.
Here, we stress that we take the weaker notion that takes Equation (4) in the stricter sense, while
in [21], the authors implicitly used a stronger version. This difference led to our paper evading certain
impossibility results mentioned in [21]. A detailed discussion of this is given in Appendix B.

A 2PQC protocol needs to be (by definition) private. Moreover, it may have two extra properties,
verification and fairness. Verification means that each party, when they receive their output, not only is
sure that nothing leaked about its input, but also it can know whether the outcome it received is correct
or corrupted. Fairness is the extra property that no party should be able to obtain its output and after
that cause an abort (or a corruption) for the other party. Even in classical 2PC, it is impossible to have
fairness against fully-malicious adversaries (without any extra assumption). We consider two-party
protocols Π0 = (C, S, O, n) where C denotes the client and S the server.

3. Secure Two-Party Quantum Computation

The first extension of VUBQC that we will explore refers to its use in order to construct a 2PQC
protocol similar to the classical Yao protocol of [22]. We refer to this protocol as QYao, where the
sender-garbler is called the client and the receiver-evaluator is called the server. As in the Yao protocol,
we assume that the client, when adversarial, is specious; however, we make no such assumption
for the server, which is assumed to be fully malicious. In [22], the server needs to use OT in order
to insert its input. We, instead, use a scheme to insert the quantum input that requires no such
functionality. This is possible because we make the assumption that the client is specious, and in
specific situations, a specious adversary is weaker than honest-but-curious (see Appendix B.1). For the
specific case of classical input/output, one can modify our protocol to make it secure against the
classical honest-but-curious adversary by replacing the input injection subprotocol (see below) with OT.

Our QYao protocol provides a one-time verifiable 2PQC similar to the classical setting as recently
shown for the original Yao protocol in [40]. The speciousness of the client restricts any possible
deviations on their side, while a malicious server would be detected through the hidden traps of the
VUBQC protocol. The blindness property of VUBQC also guarantees that the server learns nothing
before the client is certain that there was no deviation and returns the suitable keys for the decryption
of the output.

The major difference that the QYao protocol has in comparison with regular VUBQC [25] is that the
server needs to provide (part of) the input and at the end keeps (part of) the output. There are multiple
ways to modify the VUBQC protocol; we use a direct approach at the cost of having two rounds of
quantum communication during input preparation and two rounds of quantum communication during
output read-out. However, there is no quantum communication during the evaluation stage. Note
that if we restrict the protocol to classical input/output, we would avoid all quantum communication
apart from the initial and offline sending of pre-rotated qubits from the client to the server (but we
would then need OT, as in the classical Yao, for the server to insert its input).

3.1. Server’s Input Injection

The qubits composing the DT(G)(see Figure 1) are prepared by the client. This is crucial in order
to ensure that the server is blind about the positions of the traps. However, the server should somehow
insert their input in the DT(G). For simplicity, we present here the case that there is a single qubit input,
but it generalises trivially. To do so, the server encrypts its input using secret keys (mz,i, mx,i) and
sends the state Xmx,i Zmz,i |ΦS〉 to the client, to insert it randomly in the corresponding base-location.
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The state |ΦS〉 is assumed to be pure as we have included its purification in the hands of the server.
The client encrypts further the server’s input by applying an extra random Z(θ′i) and an Xx′i correction
to obtain the state:

Xx′i Z(θ′i)Xmx,i Zmz,i |ΦS〉 (5)

This extra encryption is needed in order to hide the future actual measurement of the input qubit
(to be performed by the server) and ensure that no information about the position of the traps is leaked.
Trap hiding also requires the client to return two extra qubits for the input insertion (see Figure 2) that
will belong to trap graphs (called the white-graph and black-graph). The white qubit (which is a trap
qubit) is prepared in a state |θk〉, while the black qubit (which is a dummy qubit) is prepared in state∣∣dj
〉
. The three qubits will be randomly permuted by the client so that the server does not know which

qubit is which. A similar procedure (with no communication from the server) is applied for client’s
input qubits, as well as for all of the qubits corresponding to the gate computation (see Figure 2).

Figure 2. The server gives its input (blue), and the client chooses (randomly) where in the input
base-location to place the input. The random choice is highlighted. The trap-colouring is filled
correspondingly, after the random choice is made.

Finally, after the server has received all of the qubits, he/she announces the secret keys (mx,i, mz,i)

for each input i to the client, so that the client can update the encryption for these qubits and have
(xi, θi) :=

(
x′i + mx,i, (−1)mx,i θ′i + πmz,i

)
. With the updated encryption, the client computes the suitable

measurement angles δi. It is worth pointing out that the key releasing step from server to client could
be avoided by using classical OT to compute the measurement angles as a function of the secret
parameters of the server δi(mx,i, mz,i) for the first two layers (that have dependency on mx,i, mz,i).
To construct protocols dealing with a malicious client, the use of OTs may be necessary. For our case,
however, the client is (weak) specious, and using OTs is not necessary.

3.2. Server’s Output Extraction

In the standard VUBQC protocol, the server returns all of the output qubits to the client. The client
measures the final layer’s traps to check for any deviation and then obtains the output of the
computation by decrypting the output computation qubits using their secret keys. In the 2PQC,
part of the output (of known base-locations) should remain in the hands of the server. This, however,
would not allow the client to check for the related traps (that could have effects on other output
qubits). Similar to the input injection, the solution is obtained via an extra layer of encryption by the
server followed by a delayed key releasing. The server will encrypt using two classical bits (kx, kz):
Ek(|ψ〉) = Xkx Zkz |ψ〉, all of the output qubits that correspond to the server’s output base-locations
and then return all of the output qubits to the client. Due to the encryption, the client obtains no
information about the output of the server, while it now has access to all of the final trap qubits for
the verification. The client returns to the server only the computation qubits corresponding to the
server’s output base-locations, while keeping the traps and all of the qubits from other base-locations.
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The server reveals their keys (note that the client, being specious, has not kept the computation output
qubits, because it would be impossible to reconstruct the ideal state by acting only on their systems).
The client checks all of the traps and, if all of them are correct, reveals the final computation output
keys to the server (θi, ri). The server undoes the padding to reveal their output.

3.3. The QYao Protocol

We combine Protocols 3 and 4 with the core VUBQC, Protocol 1, to obtain a secure two-party
protocol to compute unitaries given as Protocol 5. An illustration of a simple example is given in
Appendix C.1.

Protocol 3 Server’s input injection

Setting:
• The server has input |ΦS〉 that corresponds to specific positions IS of the input layer of the base-graph.
For each i qubit, server chooses pair of secret bits (mx,i, mz,i).

Instructions:
1. The server sends to the client the states Xmx,i Zmz,i |ΦS〉 for all i ∈ IS.
2. The client prepares all of the states of the DT(G) as in Protocol 1 (see [25]) apart from the

computation qubits of the server’s input.
3. The client chooses at random x′i , θ′i for each of the server’s input and obtains the states:

Xx′i Z(θ′i)Xmx,i Zmz,i |ΦS〉.
4. The client mixes the computation qubit of the server’s input, with a dummy and a trap qubit to

return the three qubits of server’s input base-locations.
5. The server, after receiving the qubits, returns to the client the secret bits (mx,i, mz,i) for all i of their

input.
6. The client computes xi := x′i + mx,i and θi := (−1)mx,i θ′i + πmz,i and uses these (xi, θi) for

computing the measurement angles as in Protocol 1.

Outcome:
• The server receives a DT(G), where the quantum input is the joint input of the client and server and
the related measurement angles instructions perform the desired unitary operation, if the client is
honest.

Protocol 4 Server’s output extraction.

Setting:
• The server has the state TrC(|ψ( f )〉) at the corresponding positions OS of their output base-locations
of the DT(G). For each i qubit, server chooses pair of secret bits (mx,i, mz,i).

Instructions:
1. The server sends to the client the states Xmx,i Zmz,i TrC(|ψ( f )〉) for all i ∈ OS.
2. The client keeps the qubits that correspond to traps and dummies in the final layer of server’s

output, while returns the computation qubits of server’s output.
3. The server returns to the client (mx,i, mz,i).
4. The client checks the traps and if correct returns to the server the final layer paddings for their

output locations (θi, ri, rj<i) and (mx,i, mz,i) (that the server sent earlier).
5. The server undoes the final layer paddings and obtains the output.

Outcome:
• The server obtains the computation qubits of their output base-locations unpadded
TrC(U(|Ψ〉C , |Φ〉S)).

Theorem 1 (Correctness). If both the client and server follow the steps of Protocol 5, then the output is correct,
and the computation is accepted.
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Proof. If the client and server follow Protocol 5, after Step 1, where the server injected its input, we
are in exactly the same situation as in Protocol 1, with (overall) input ρin = |Ψ〉C ⊗ |Φ〉S.

During Step 2, the client and server run exactly Protocol 1, and the correctness follows from the
correctness of that protocol; the proof is given in [25]. The positions of dummies result in having
isolated traps measured on the correct basis, and thus, there is never an abort. From the remaining
qubits, one copy of the dotted base-graph G, where the measurement pattern MComp is applied,
results in the state EkS ,kC (U · ρin). This is the honest global final state, encrypted with keys of both the
client (secret parameters) and the server (the padding (mx,i, mz,i) from the output extraction protocol,
which applies to server’s output registers only).

Protocol 5 Secure 2PQC-QYao.

Input:
• The client and server know the unitary operator U that they wish to compute. The client has a

description of U in MBQC using resource |G〉, and maps it to the DT(G) (see Protocol 1 and [25]).
For each qubit the client knows the angles φi and dependencies. The base-locations of the
inputs and outputs of both parties are public. The inputs of client and server are denoted
correspondingly as |Ψ〉C and |Φ〉S.

Output:
• The client receives the subset Co of the output qubits of the final quantum state U(|Ψ〉C , |Φ〉S).
• The server receives the subset So of the output qubits of the final quantum state U(|Ψ〉C , |Φ〉S).

The protocol
1. Client sends all qubits of the DT(G) (choosing the random parameters ri, θi, di and trap-colouring),

where for base-locations that corresponds to the server’s input, the input injection Protocol 3
is used.

2. Server and client follow the verification protocol 1 until the step that the output is returned.
3. Client and server interact according to Protocol 4 so that the server extracts their own output.

During Step 3, the client keeps the registers of its output, while returning the registers of the
server’s output. The protocol finishes with the server returning its keys (mx,i, mz,i) to the client (to
check for traps), while the client returns the keys (secret parameters) involved with the final decryption
of the server’s output registers.

Since the protocol we give is generic for any quantum computation, the complexity of the
2PQC protocol with respect to the input size depends on the specific computation/algorithm used,
and it is against this that it should be compared. At this point, we should stress that the number of
qubits required for the 2PQC protocol is exactly the same as those to perform the same computation
using VUBQC where all input and output are of the client. From [25], the number of qubits and
classical messages to be exchanged is linear to the number of qubits required to perform the quantum
computation using MBQC (i.e., without blindness or verification). Finally, the only extra “cost” for
2PQC is the extra quantum communication (and related classical exchanges) during the input injection
and the output extraction. This extra communication is simply one extra qubit communication per
server input qubits and similarly one extra qubit communication per server output qubit.

Due to the simple composition of input injection and output extraction, the verification property
of our QYao is directly inherited from the VUBQC. We prove this first, before presenting and proving
the main privacy property of the QYao protocol in the next section (which exploits the verifiability).

Definition 6. We define a 2PQC protocol to be ε-verifiable for the client, if for any (potentially malicious)
server, the probability of obtaining a corrupt output and not an abort is bounded by ε. The output of the real
protocol with malicious server S̃ is ρ̃(S̃, ρin), and we have:

∆(ρ̃(S̃, ρin), ρideal(ρ
′
in)) ≤ ε (6)
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where
ρideal(ρin) := pok(IHC ⊗ CHS) ·U · (ρin) + (1− pok)(| f ail〉 〈 f ail|)

and CHS is the deviation that acts on the server’s systems after it receives its outcome (a CP-map, but can be
purified if we include ancilla). Furthermore, ρ′in = (IHC ⊗ DHS) · ρin is an initial state compatible with the
client’s input, with DHS the deviation on the input by the server.

We should note that the server can always choose any input from its side, and the security of
the protocol is defined with respect to this “deviated” input. Moreover, since the deviation CHS is
performed at the final step of the protocol, we also have that the global state (before that deviation, i.e.,
at step n− 1) obeys:

∆(ρ̃n−1(S̃, ρin), ρn−1
ideal(ρ

′
in)) ≤ ε (7)

where
ρn−1

ideal(ρin) := pokU · (ρin) + (1− pok)(| f ail〉 〈 f ail|)

Theorem 2 (ε-verification for the client). Protocol 5 is ε-verifiable for the client, where ε =
( 8

9
)d and

d = d δ
2(2c+1) e, c is the maximum degree of the base graph and δ is the number of errors tolerated on the base

graph G.

Proof. In order to prove the verifiability for the client, we assume that the client is honest, while the
server is malicious.

During Step 1 of Protocol 5, the server sends his/her input and also gives the keys of the one-time
padding encryption (mx,i, mz,i) from the input injection phase. It follows that any deviation on these
affects only the computation qubits of the server’s input base-location; in other words, it results in
a state: ρ′in = (IHC ⊗ DHS) · ρin

During Step 2, the protocol proceeds exactly as the VUBQC, Protocol 1, with the only difference
that the qubits with the base-location of the server’s output have an extra encryption with keys known
to the server. This means that the client delays the measurement of the traps in those base-locations,
until the next step, where it receives from the server these keys. Note, however, that the client can
already check all of the past traps and the ones corresponding to base-location of the clients’ output.

In Step 3, the server returns the keys (mx,i, mz,i) for all of its output base-locations qubit and also
receives the computation qubits of those base-locations encrypted with both the client’s and server’s
keys. Any deviation by the server at this stage either returns different (wrong) keys to the client or
acts only on the server’s output. Returning wrong keys increases the chance of an abort, but in any
case, it is equivalent to this deviation happening before the return of the output to the server. The only
remaining, extra deviation is a possible deviation acting on the computation output qubits of the server,
i.e., a deviation of the form (IHC ⊗ CHS).

It follows that this protocol has the same verification properties as Protocol 1, with the modified
input and (server’s part) of the output given by Equation (6). From [25], we have that Protocol 1 is

ε-verifiable with ε =
( 8

9
)d

and d = d δ
2(2c+1) e, and this completes the proof.

It is worth mentioning that this verification property essentially restricts the server to behave
similarly as a specious adversary, with the extra ability to abort the protocol.

4. Proof of the Privacy of the QYao Protocol

Recall that we defined a protocol to be secure if no possible adversary in any step of the protocol
can distinguish whether it interacts with the real protocol or with a simulator that has access only to
the ideal functionality (see Definition 4).
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Theorem 3. The QYao protocol, Protocol 5, which is ε1-verifiable for the client, is O(
√

ε2)-private against
an ε2-specious client and ε1-private against a malicious server.

To prove the theorem, we need to introduce simulators for each step of the protocol and each
possible adversary. Below, we define those simulators and prove that they are as close to the real
protocol as requested from Theorem 3. Since in our setting, the two parties have different roles and
maliciousness, we consider the simulators for each party separately.

4.1. Client’s Simulators

The client is ε-specious, and this means that for each step i, there exist a map Ti : L(HṼi
) →

L(HVi ), such that:

∆
(
(Ti ⊗ I)(ρ̃i(Ṽ, ρin)), ρi(ρin)

)
≤ ε (8)

Following the proof of the “rushing lemma” of [21], we obtain a similar lemma for each step
of the protocol, where it shows that there is no extra information stored in the ancillas of the
specious adversary:

Lemma 1 (No-extra information). Let ΠU = (A, B, n) be a correct protocol for the two-party evaluation of
U. Let Ã be any ε-specious adversary. Then, there exists an isometry Ti : Ãi → Ai ⊗ Â and a (fixed) mixed
state ρ̂i ∈ D(Âi), such that for all joint input states ρin,

∆
(
(Ti ⊗ I)(ρ̃i(Ã, ρin)), ρ̂i ⊗ ρi(ρin)

)
≤ 12

√
2ε (9)

where ρi(ρin) is the state in the honest run and ρ̃i(Ã, ρin) is the real state (with the specious adversary Ã).

Proof. This proof follows closely the proof of the “rushing lemma” of [21], where one can find
further details. For simplicity, we assume pure ρin (where it holds in general by convexity). Consider
two different states |ψ1〉 , |ψ2〉 in A0 ⊗ B0 ⊗R, and we extend the space R′ = R⊗R2 with R2 =

span{|0〉 , |1〉}. We define the state |ψ〉 = 1/
√

2(|ψ1〉 |1〉+ |ψ2〉 |2〉). Due to the speciousness of Ã and
using Ulmann’s theorem, there is an isometry Ti : Ãi → Ai ⊗ Â and a state ρ̃ ∈ D(Â), such that:

∆
(
(Ti ⊗ I) · ρ̃i(Ã, ψ), ρ̃⊗ ρi(ψ)

)
≤ 2
√

2ε (10)

The state ρ̃ in general is not independent of the input ψ, so there are a few more steps required.
By noting that the projection and partial trace are trace non-increasing maps (by projecting on the |1〉
subspace and tracing out theR′ subspace), we obtain:

∆
(
(Ti ⊗ I) · ρ̃i(Ã, ψ1), ρ̃⊗ ρi(ψ1)

)
≤ 4
√

2ε (11)

and similarly for ψ2. We repeat the same using ψ1, ψ3 and with initial state |ψ′〉 = 1/
√

2(|ψ1〉 |1〉+
|ψ3〉 |2〉) and obtain:

∆
(
(Ti ⊗ I) · ρ̃i(Ã, ψ1), ρ̃′ ⊗ ρi(ψ1)

)
≤ 4
√

2ε (12)

By the triangular inequality, we get ∆(ρ̃, ρ̃′) ≤ 8
√

2ε. This means that for any state |χ〉, there exists
a state ρ̂ ∈ Â with ∆(ρ̃, ρ̂) ≤ 8

√
2ε, such that:

∆
(
(Ti ⊗ I) · ρ̃i(Ã, χ), ρ̂⊗ ρi(χ)

)
≤ 4
√

2ε (13)

and the lemma follows by using once more the triangle inequality.
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Before introducing the simulators, we give some intuitive arguments. The client, during the
input-injection step, receives a fully-one-time padded quantum state, while in later steps (up until the
last), it has no legitimate quantum state (all of the quantum states are in the server’s side). Therefore,
using the above lemma, we can already see that the client has no information about the actual quantum
state during any step before the last. This is illustrated by the fact that the simulators for these steps
can run the honest protocol with a random (but fixed) input, and the client’s view is the same (they
cannot distinguish a run with the correct or different input in any step before the last). The simulator
for the final step (after receiving the quantum states from the server) is more subtle, as it necessarily
involves a call to the ideal functionality.

Proof of Theorem 3.
Simulator upon receiving the server’s encoded input: There is a full one-time pad on the server’s

input; thus, a simulator can use a random fixed state ϕ∗ instead of the real state TrC(ρin), and the client
cannot distinguish them.

Simulator after returning the server’s input and before receiving output: The simulator runs the
honest protocol using instead of ρin a fixed random input ϕ∗. The honest state with input χ at this
stage is:

ρi(χ) := (14)

(|ki〉 〈ki| ⊗ |bi〉 〈bi|)HC
⊗
(

Eki
(σi(χ))⊗ |di〉 〈di| ⊗

∣∣∣+θti

〉 〈
+θti

∣∣∣)
HS

where σi(χ) is the evolution of the input state, when the gates corresponding to the i-th step have been
performed (here, we collectively call the secret parameters used to encrypt the state in each step as
ki). Later, we will be more specific about the different secret parameters. Furthermore, di, θti are the
dummy and trap qubits of the i-th layer (we can include the qubits of future layers, as well with no
difference in the remaining argument). It is easy to see that the reduced state on the client’s sideHC is
independent of the input state χ. The simulator is then constructed:

1. The simulator runs the protocol with fixed but random input ϕ∗, to obtain ρi(ϕ∗).
2. The simulator obtains the fixed state ρ̂i and the isometry Ti, which are both independent of

the input.
3. The simulated view is then defined to be:

νi(C̃, ρin) := TrHSi

(
(T†

i ⊗ I)(ρ̂i ⊗ ρi(ϕ∗))
)

(15)

We can easily see that:

νi(C̃, ρin) = TrHSi

(
(T†

i ⊗ I)(ρ̂i ⊗ ρi(ρin))
)
= TrHSi

(
(T†

i ⊗ I)(ρ̂i ⊗ ρi(ϕ∗))
)

as T†
i does not acts onHSi and thus commutes with the partial trace, while tracing outHSi leaves the

reduced state independent from the input (see Equation (14)). Since isometries leave invariant the
trace distance, while the partial trace is non-increasing, we use Equation (9), and we have:

∆
(

TrHSi

(
ρ̃i(C̃, ρin)

)
, νi(C̃, ρin)

)
≤ 12

√
2ε (16)

Simulator after receiving client’s output: First, we need to introduce some notation and conventions:

• By kS, kC, we define the padding of the server’s and client’s output, respectively. In more detail,
these keys are functions of the trap-colouring (trap positions) of the last layer, the rotations θ,
the secret parameters r’s and measurement results b’s of the previous two layers. We collectively
denote the rest, i.e., all of the other secret keys, as kR.
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• We also assume that the classical measurement outcomes b’s are in the Hilbert space of the client,
while being classical and public, could be copied to the server’s Hilbert space as well (adding
this copy does not affect the client’s simulators and complicates the notation). Moreover, classical
results corresponding to trap measurements are denoted bt, while other results are simply denoted
b. The trap measurements outcomes (in the honest run) are bt = rt, where rt is one of the secret
parameters included in kR.

• The final layer (unmeasured) qubits are separated into: (i) output qubits (those of the server and
the client; and it includes the purification of their inputs), (ii) dummy qubits collectively denoted
dS, dC for server/client unmeasured dummies and (iii) trap qubits denoted as θS

t , θC
t . The dummies

and trap qubits are in the tensor product with the rest (in the honest run).
• The Hilbert spaces containing the output qubits (and the related purification of honest run) are

denotedHSo ,HCo , while the remaining qubits areHS,HC.
• For brevity, we denote [b] := |b〉 〈b| and use the analogous notation for other states.

With the above notations, the honest run of the protocol at this step, with some input χ, is:

ρi(χ) =
(

EkC
i ,kS

i
(U(χ))

)
HCo⊗HSo

⊗
(
[kS]⊗ [kC]⊗ [kR]⊗ [b]⊗ [bt]⊗ [dC]⊗ [θC

t ]
)
HC

⊗
(
[dS]⊗ [θS

t ]
)
HS

(17)

We define:

$(χ, kC, kS) :=
(

EkC
i ,kS

i
(U(χ))

)
HCo⊗HSo

σ :=
(
[kS]⊗ [kC]⊗ [kR]⊗ [b]⊗ [bt]⊗ [dC]⊗ [θC

t ]
)
HC
⊗
(
[dS]⊗ [θS

t ]
)
HS

ρi(χ) = $(χ, kC, kS)⊗ σ (18)

It is worth pointing out that σ is independent of the input χ. Now, the simulator is constructed in
the following steps:

1. The simulator obtains from the client the choice of secret keys kC, kS, kR (that can be viewed as
part of the client’s input).

2. The simulator sets bt = rt. For the other measurement outcomes b, the simulator chooses
randomly a bit value (to ensure that the b’s obtained are indistinguishable from the real honest
protocol, the simulator can run the full protocol with some random input ϕ. Since in the honest
run, the values of b’s do not depend on (are not correlated to) the input, the outcomes that the
simulator returns would be indistinguishable from those of a run with the correct input. Finally,
speciousness ensures that this state is also close to the real protocol).

3. The simulator, using the previous steps, constructs the state σ.
4. The simulator uses the state ρ̂i from Lemma 1 for the i-th step, which is a fixed state (independent

of the input).
5. The simulator calls the ideal functionality and receives the state TrHSo

(ρi(ρin)).
6. The simulator uses the keys and the state received from the ideal functionality and constructs

TrHSo

(
$(ρin, kC, kS)

)
.

7. The simulator obtains the operator Ti from the definition of specious and constructs the isometry
Ti acting fromHC̃ → HC ⊗HĈ.

8. The simulated view is then:

ν(C̃, ρin) := TrHS

(
(T†

i ⊗ I)
(

ρ̂i ⊗ TrHSo

(
$(ρin, kC, kS)

)
⊗ σ

))
(19)
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It is clear that in all of this construction, ρin appears only through TrHSo
(ρi(ρin)), which is the

ideal output of the client. Now, we prove that this simulated view is δ-close to the view of the client in
the real protocol.

We start from Equation (9), and we obtain:

∆
(

TrHS ,HSo

(
ρ̃i(C̃, ρin)

)
, TrHS ,HSo

((
T†

i ⊗ I
)
(ρ̂i ⊗ ρi(ρin))

))
≤ 12

√
2ε

Now, since T†
i does not act on either of the server’s Hilbert spaces, it commutes with the partial

trace (see Appendix D). We can then see that:

ν(C̃, ρin) = TrHS ,HSo

((
T†

i ⊗ I
)
(ρ̂i ⊗ ρi(ρin))

)
(20)

and this concludes the first part of the proof, as we have a (12
√

2ε)-private protocol.

4.2. Server’s Simulators

Our QYao protocol is secure against a fully-malicious server that can deviate in any possible way
and can also cause an abort. We will use the fact that the QYao protocol is ε-verifiable for the client, i.e.,
Equations (6) and (7) hold. In many classical protocols, to prove security against malicious adversaries,
one has to restrict his or her actions to essentially honest-but-curious adversaries. Here, the verification
property plays such a role, as the condition obtained can be used in a similar way as the speciousness
of the client.

We can see that, before the client sends the secret parameters, the server is totally blind, i.e.,
the server’s reduced state at all times is the totally mixed state (for all qubits in the DT(G), including
their own input qubits, after they are injected). This is highlighted by the fact that one can run the
full protocol (before releasing the keys), without choosing the (client’s) input (see simulator below).
After receiving the keys from the client, to simulate the server’s view, we need a call to the ideal
functionality and, at this point, to use Equation (6).

Continuation of the proof of Theorem 3:

Simulator before receiving keys: The simulator, instead of sending qubits in one of these states
{|+θ〉 , |0〉 , |1〉}, sends one side of an EPRpair |ψ〉 = 1√

2
(|01〉+ |10〉) for each qubit to the server; then

chooses an angle δi at random for each of the measurement angles. The simulator can measure (if it
wishes) its qubits (of the EPR pairs) in a suitable way and angles that insert any input it wishes and
performs any computation. This can be done after all measurements of the server have taken place
(see [14]). It follows that the server cannot obtain any information about the client’s input.

Simulator after receiving keys: The simulator is constructed using the following steps:

1. The simulator prepares multiple Bell states |ψ〉 = 1√
2
(|01〉+ |10〉), sends the one qubit of each

pair to the server and instructs them to entangle the qubits as it would in the normal protocol.
2. The simulator for each qubit chooses randomly an angle δi and instructs the server to measure in

this angle.
3. The simulator obtains from the server’s (malicious) strategy the parameter pok (see Equation (6)).
4. With probability (1− pok), the simulator returns an abort. Otherwise, it performs the remaining

steps.
5. The simulator calls the ideal functionality and obtains the state TrHC (U(ρ′in)), where ρ′in =

(IHC ⊗ DHS) · ρin is the deviated input that the corrupted server inputs.
6. The simulator encrypts the outcome using kS, and sends the output qubits of the server back in

the state: EkS
(
TrHC (U(ρ′in))

)
7. The simulator returns the keys kS to the server.
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The last step of the protocol is that the server decrypts its output. The decryption is denoted as
DkS(·), where we have by definition that DkS(EkS(·)) = I. It follows that the server’s view of the real
protocol after the key exchange is:

TrHC

(
EkS

(
ρ̃n−1(S̃, ρ′in)

))
(21)

From Equation (7), we obtain:

∆
(

TrHC

(
EkS

(
ρ̃n−1(S̃, ρin)

))
, TrHC

(
EkS(ρn−1

ideal(ρ
′
in))

))
≤ ε (22)

as the partial trace is a distance non-increasing operation. Using the definition of ρn−1
ideal(ρ

′
in) from

Equation (7), we see that:

TrHC

(
EkS(ρn−1

ideal(ρ
′
in))

)
= TrHC

(
EkS

(
pokU · (ρ′in) + (1− pok)(| f ail〉 〈 f ail|)

))
TrHC

(
EkS(ρn−1

ideal(ρ
′
in))

)
= ν(P̃, ρin) (23)

We have now proven that the simulated view is ε-close to the real view of the server, just after the
key exchange, thus proving that the protocol is ε-private against malicious server S̃.

5. Non-Interactive QYao

Following the classical approach of [24], we exploit our QYao protocol to construct the one-time
program. To do so, we simply need to remove the classical online communication of the QYao protocol
using the classical hardware primitive of secure “one-time memory” (OTM), which is essentially
a non-interactive oblivious transfer. The obtained one-time quantum programs can be executed only
once, where the input can be chosen at any time. Classically, the challenge in lifting the Yao protocol for
two-party computation to the one-time program was the issue of the malicious adversary. However,
our QYao protocol is already secure against a malicious evaluator without any extra primitive or
added overhead.

Recall that the interaction in our QYao is required for two reasons. First, from the server’s
perspective, this is done to obtain the measurement angles δi that perform the correct computation,
while these could not be computed offline as they depend on the measurement outcomes bj<i of certain
qubits measured before i, but after the preparation stage (and on secret parameters (θi, ri, rj<i, T) and
computation angle φi that are known from start). Second, from the client’s perspective, the results of
measurements needed to be provide with a “proof” that the output is correct, by testing for deviation
from the trap outcomes.

Removing the interaction: An obvious solution for the first issue raised is to have the client
compute δi for all combinations of previous outcomes bj<i and then store in an OTM the different
values, while the server chooses and learns the entry of the OTM corresponding to the outcomes
obtained. This solution, at first, appears to suffer from an efficiency issue as one may think that
for each qubit, the client needs to compute δi for all combinations of past outcomes, which grows
exponentially (as would the size of the OTM used). However, a closer look at the dependencies of
corrections in MBQC for the typical graphs used shows that the measurement angle of qubit i depends
on at most a constant number of qubits. Those dependencies are within the two previous “layers” (past
neighbours or past neighbours of past neighbours). This is evident from the flow construction [41,42],
which guarantees that corrections can be done, and the explicit form of dependencies involves only
neighbours and next-to neighbours in the graph G. A flow is defined by a function ( f : Oc → Ic) from
measured qubits to non-input qubits and a partial order (�) over the vertices of the graph such that
∀i : i � f (i) and ∀j ∈ NG(i) : f (i) � j, where NG(i) denotes the neighbours of i in G. Each qubit i is
X-dependent on f−1(i) and Z-dependent on all qubits j, such that i ∈ NG(j).
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Definition 7 (Past of qubit i). We define Pi = Zi ∪ Xi to be the set of qubits j that have X or Z dependency
on i.

Definition 8 (Influence-past of qubit i). We define influence-past ci of qubit i to be an assignment of
an outcome bj ∈ {0, 1} for all qubits j ∈ Pi.

For each influence-past ci, there exists a unique value of δi(ci). While ci provides all of the
necessary dependencies for the client to compute δi, this is not known to the server. This could be
problematic, as the server is expected to open the OTM using the past outcomes with a labelling
consistent with its own knowledge. The true dependencies depend on the actual flow of the
computation, which is hidden from the server, as the positions of dummies (that break the DT(G) to
the three graphs) are not known to the server. From here on, we restrict attention to DT(G). This is
resolved by defining:

Definition 9 (Extended-past of qubit i). We define the extended past EPi of qubit i to be the set of all qubits
that for some trap-colouring are in the past of i.

Similarly we define the extended-influence-past (EIP) of qubit i (it is clear that δi has trivial
dependency on all outcomes of EIP that are not in the actual influence-past). The extended past has
also finite cardinality, as it is evident that the only qubits that can affect a qubit with base-location i are
those that belong to (the finite) base-locations that contain the qubits that have true dependency (i.e.,
neighbours or next-to neighbours base-locations).

Ensuring verification: The interaction is also important from the clients’ perspective, in order to
verify that the server did not deviate. Again, one could naively suggest that the server can return all
of the measurement outcomes at the end. However, this suffers from a potential attack (not present
in normal VUBQC). The underlying reason is that there is nothing to force the server to commit that
the bi’s that will return are the same as the ones used for selecting measuring angles. For example,
the server measures Qubit 1 at δ1 and obtains b1 (which will be returned at the end), but uses b′1 = b1⊕ 1
when opening the OTM corresponding to qubit j where 1 ∈ EPj. If qubit j is a computation qubit,
this leads to measuring at a wrong angle, while if qubit j is a trap qubit, it has no (real) dependence on
b1; thus, the angle recovered is the correct one, and the server never causes an abort, while corrupting
the computation. To avoid this problem, we introduce a method that uses some flag bit-string li.

The client provides for each qubit the angle δi and a flag bit-string li of length m. This flag
bit-string is a (one-time-padded) flag of whether a trap failed in the (extended) past of qubit i or not.
At the final step of the protocol, the server returns the final layer qubits and all of the flags li. Here,
we will denote bj;i to mean the outcome of qubit j measurement that the client uses for the computation
of the measurement angle for qubit i, i.e., the value of bj selected by the server when opening the
i-th OTM.

For each qubit i, the client chooses uniformly at random an m-bit string l0
i to denote that none of

its past qubits (j ∈ Pi) was a failed trap. The string l0
i will be called the “accept” flag, while all other

strings li 6= l0
i are the “reject” flags. The OTMs are prepared according to Protocol 6.

According to this protocol, the flag that the server obtains when opening the OTM at qubit i,
is rejected if and only if in the extended past of this qubit, there is a failed trap outcome (we can see
that returning a wrong outcome for some measurement bi implies opening an entry of the OTM with
the wrong flag only if the qubit is a trap one (as in regular VUBQC), while it still returns the accept flag
if it is a dummy or computation qubit). Here, we should note that even if the client knows that one
flag is a reject flag (i.e., has one particular li 6= l0

i ), the probability of guessing the correct flag is only
ε f := (2m − 1)−1. This, intuitively, will force the client to return the flag obtained from the OTM (or
abort with high probability), provided that m is chosen suitably. We can now give the non-interactive
QYao Protocol 7 (see Appendix C.2 for a simple example).
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Protocol 6 Preparation of OTMs for non-interactive QYao.

Description of OTM’s: We will use an (at most) one out of K OTM, where K = 2maxi |EPi |. Note,
that the first layer does not need an OTM, since (i) we give the angle directly (does not depend on
anything) and (ii) there is no trap in the previous layer and thus no need to give a flag. Moreover,
for the last layer, while the qubits are not measured (and thus there is no corresponding angle δ) we
will use an OTM to obtain the last flags (that correspond to testing traps in the previous layers).

• Labels of the cells of the OTM at i: Each qubit is labelled according to the outcomes of the
extended past qubits bj;i|j ∈ EPi, in other words according to the extended influence past ci.

• Content of the cells of the OTM at i: In each cell of the OTM we have a pair of numbers (We could
view this as a single string with the convention that the first three bits give δ and the remaining
the flag.) (δi, li). The δi is the unique correct δ for the particular outcomes of past qubits bj|j ∈ Pi.

δi(ci) = (−1)s
Xi
i φi + θi + π(ri ⊕ sZi

i ) (24)

The flag li depends on the outcomes bj of the extended past j ∈ EPi. In particular:

1. If for all traps t in the extended past of i, i.e., t ∈ EPi, bt;i = rt, we return l0
i , i.e., accept flag.

2. Otherwise, we return a random string li 6= l0
i , i.e., reject flag.

Protocol 7 Non-interactive QYao.

Assumptions
Client and server want to jointly compute a unitary as in Protocol 5. The client has N OTM’s that are
1-out-of-K, i.e., one OTM per qubit, with sufficient entries to store a pair of (δi, li) measurement angle
and flag bit-string (of length at least m ≥ log( 1

ε + 1)), for each extended influence past of the qubit.
Protocol

1. Client and server interact according to Protocol 3 to obtain the server’s input locations. Client
also sends the qubits of DT(G) after choosing secret parameters (ri, θi, di and trap-colouring).

2. The client, for each qubit and each extended influence past, computes δi(ci). Then prepares one
OTM per qubit as described in Protocol 6.

3. Server performs the measurements according to the first layer of angles received δi (directly as in
Protocol 3). Then open the next layer OTM’s using the outcomes bi of their measurements. Uses
the new measurement angle revealed δj, while records the flag bit-string lj. Iterates until the last
layer OTM is opened (and the second last layer is measured). The final layer OTM’s return only
a flag.

4. Server and client interact according to Protocol 4 so that the server obtains their output. The only
difference is that the client, before returning the keys, in order to accept checks the flags (instead
of checking the trap outcomes of measured qubits) and the final layer traps.

This protocol requires exactly the same number of qubits as Protocol 5. The only extra “cost”
is that we require one OTM per qubit. The size of the labels of the OTM is one-out-of-K (where
K = maxi |EPi|), while the size of the content of each cell is 3 + m ≥ 3 + log( 1

ε + 1) bits as described in
Protocol 6.

Theorem 4. Protocol 7 is ε-verifiable for the client, with ε the same as the VUBQC protocol that is used.

Proof. This proof consists of three stages. First, similarly to the proof of theorem 2, we show that the
verifiability for the client of the non-interactive QYao reduces to the verifiability of the same VUBQC
protocol with modifications for the server’s input and output. The second stage is to observe that the
optimal strategy for an adversarial server is to return the flags from the opened OTMs. This makes the
verifiability property for this protocol identical to an interactive protocol with the only modification
that the server can return different values for the measurement outcome bi depending on which future
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qubit the client needs the outcome (bi;j). The final stage, is to show that this modified (interactive)
verification protocol is ε-verifiable with the same ε as Protocol 1.

Stage 1: Following the proof of Theorem 2, we can see that the non-interactive QYao Protocol 7 is
ε-verifiable for the client if the corresponding non-interactive VUBQC protocol that is used during
Step 3 of Protocol 7 is ε-verifiable, with deviated input ρ′in and a final deviation (IHC ⊗ CHS) on the
server’s output (computation) qubits.

Stage 2: If the server attempts to guess a flag (given the extra knowledge of one bit-string
li 6= l0

i ), it causes an abort with high probability (1− ε f , where ε f := (2m − 1)−1). However, since by
assumption m ≥ log( 1

ε + 1), the probability of an abort is so high that it makes the protocol trivially
verifiable, as it is ε-close to the ideal state Equation (6) with (1− pok) = (1− ε f ).

It follows that the adversary (trying to maximising its cheating chances) should return the flags
found in the OTMs. This is equivalent to an interactive VUBQC protocol, for which= (i) the server for
each qubit i returns multiple values of the measurement outcome bi;j, one for each j in the extended
future qubit of i, (ii) the client uses those outcomes to compute the δi’s and (iii) the client aborts only
when it receives at least one trap outcome wrong bt;j 6= rt for any j.

Stage 3: We should now show the ε-verifiability of the modified interactive VUBQC protocol
described above. The proof follows the same steps of the proof of the verifiability of Protocol 1 in [25].
The first steps exploit the blindness to reduce the possible attacks (of the adversarial server) to a
convex combination of Pauli attacks. Then, it is noted that since the computation is encoded in an
error-correcting code (that corrects up to δ/2 errors), there is a minimum number (d = d δ

2(2c+1) e) of
independent base-locations that need to be corrupted to cause an error.

For the proof of verifiability, as in [10,25], we make the assumption that if the minimum number
of attacks that could corrupt the computation occurs, then the computation is corrupted. This is clearly
not true, but is sufficient to provide a bound on the probability of corrupt and accept (which is the “bad”
case that the server manages to cheat). Then, given this minimum number of attacks, the probability of
abort is computed and found to be greater than 1− ε, and thus, the protocol is verifiable.

In our case, there is the difference that for each measured qubit bi of the original protocol, we have
multiple qubits bi;j. Once again, we make the assumption of minimum corrupted qubits; we need at
least d = d δ

2(2c+1) e independent base-locations; and we can allow for each base-location to corrupt
a single bi;j for one specific j. However, this does not change the probability of hitting a trap, as it
suffices to give the wrong value bt,j for one j to cause an abort. We then obtain again that the probability

of an abort (in the minimum corruptible attack) is at least (1− ε) (for ε =
( 8

9
)d

), and the protocol is
indeed ε-verifiable.

Theorem 5. Protocol 7 that is ε1-verifiable for the client is O(
√

ε2)-private against an ε2-specious client and
ε1-private against a malicious server.

Proof. We need simulators for the client only during input injection and output extraction (since the
client does not participate in the evaluation phase, in the non-interactive protocol). During these steps,
the simulators are identical to those in Protocol 5.

The server’s simulators until before the output extraction can be identical with the ones of
Protocol 5, where the interaction is replaced with the preparation of OTMs. It is important to note that
all OTMs can be constructed with no information about the client’s input and thus from the simulator.
Finally, the simulator for the final step of Protocol 5 needs to only use the property that the protocol is
ε-verifiable for the client. We proved in Theorem 4 that this is the case for Protocol 7, and thus, we can
use the same simulator.

6. Conclusions

We gave a protocol for 2PQC, secure against specious adversaries. Our protocol differs
significantly from [21] since it has an asymmetric treatment of the two parties. There are two approaches
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for classical S2PC, that of Yao [22] and that of Goldreich et al. [43]. While our protocol can be seen
as the quantum version of [22] (that also has asymmetry between parties), the protocol of [21] is
a quantum version of [43]. In the quantum case, our approach provides the extra advantage of being
more practical in terms of technological requirements. This is because the client requires only basic
quantum technologies (preparing single qubits), and there is no online quantum communication
among the parties.

Furthermore, due to a subtle difference in the definition of specious adversaries, our protocol
requires no extra primitives (see the details in Appendix B). Typically, considering weaker adversaries
such as the specious adversaries is a first step towards protocols secure against malicious adversaries.
This is why it is not crucial whether we take the stronger or weaker form of the specious adversaries.
There are standard techniques, such as the cut-and-choose technique and the GMWcompiler [43],
that turn protocols from secure against honest-but-curious to secure against malicious adversaries.
However, the quantum generalisations are considerably more involved, as these techniques cannot be
directly applied due to no-cloning and quantum inseparability. We have recently extended our results
towards this direction, in the specific case of classical input/output, by generalising the cut-and-choose
technique [44].

Finally, we obtained a one-time compiler for any quantum computation using one-time memories.
This was done following the classical work of Goldwasser et al. [24] and more efficiently than the
quantum work of Broadbent et al. [6]. An important difficulty to use the classical Yao protocol
directly to construct one-time programs is the case where the evaluator is malicious (rather than
honest-but-curious). However, in our QYao, the protocol is secure against an evaluator that is fully
malicious, and thus, we can obtain the one-time program directly once we remove the interaction
(which is present in the quantum case). To overcome this difficulty, we used OTMs to replace the
interaction and introduced an extra “flag” register to ensure the security of the protocol.
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Abbreviations

The following abbreviations are used in this manuscript:

UBQC Universal blind quantum computation
MBQC Measurement-based quantum computation
VBQC Verifiable blind quantum computation
QYao Quantum “Yao” protocol
OT Oblivious transfer
OTM One-time memory
DT(G) Dotted triple graph
2PQC Secure two-party quantum computation

Appendix A. Measurement-Based Quantum Computation

An MBQC pattern is fully characterised by the graph (representing the entangled state), default
measurement angles φi, an order of measurements (determined by the flow) and a set of corrections
that determine the actual measurement angle of each qubit (modify the default measurement angles
with respect to previous measurement outcomes).

For the brickwork state, or any subset of the square lattice state, the flow f (i) takes a qubit to
the same row, next column, e.g., i = (k, l), then f (i) = (k + 1, l). Given a flow f (·) and measurement
outcomes sj, the actual (corrected) measurement angle is given:
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φ′i(φi, sj<i) := φi(−1)s f−1(i) + π ∑
j| f (j)∈NG(i)\ f (i)

sj (A1)

where NG(i) denotes the set of neighbours (in the graph) of vertex i. It is easy to see that the corrected
angle for qubit i has an X-correction (i.e., a (−1) factor before φi) from the one qubit f−1(i) and
Z-corrections (i.e., π addition) from some neighbours of neighbours, which for the brickwork state is
at most two (but in any case is constant in number).

We present here diagrams taken from [3] showing how to translate a universal set of gates to the
MBQC measurement patterns using the brickwork graphs.

Appendix B. On Specious Adversaries Definitions

The definition of specious, as given by Equation (4), includes ρi(ρin), which is the honest state in
step i, for any input state ρin. There are two subtle issues with what this means, (i) in relation with
what are the possible input states ρin and (ii) in relation to whether the random secret parameters are
considered the input of the computation or not. If we take the most restrictive case, it leads to a very
weak adversary. In [21], there are some impossibility results that stem from taking a (slightly) stronger
form of this adversary. Here, we see separately these two issues and finally discuss the differences
with [21].

Appendix B.1. Restricting to Classical Inputs

The first important point is that we observe that a specious adversary, under certain conditions,
could be weaker than an honest-but-curious classical adversary. A specious adversary is allowed to do
actions/operations that for any (allowed) input can be “undone” by actions on his/her side if there is
an audit.

Now, we consider a (trivial) example that specious is weaker than classical honest-but-curious.
Assume that as the first step of a protocol, a party (that is specious adversary) Ã receives a one-time
padded quantum input Ek(|ψ〉S) of the other party. As the second step, the Ã returns the padded
quantum state back. If the input is considered to be a general (unknown) quantum state, a specious
adversary cannot do the following action before returning the system S:

(∧X)SAEk(|ψ〉S)⊗ |0〉A (A2)

There is no map that Ã can apply to their private system/ancilla A alone and obtain the correct
state ρi(ρin), because for a general Ek(|ψ〉S), the resulting joint state is entangled.

However, imagine that we are actually considering a classical protocol, which means that the
input is in computational basis, i.e., either |0〉 or |1〉. In that case, the ∧X simply copies the ciphertext
Ek(|ψ〉S), which is exactly the action that an honest-but-curious classical adversary can do (Note that
in this specific case, the resulting state is no longer an entangled state and thus could be recovered
by acting only on system S. Nonetheless, the definition of specious requires recovering the correct
state at each step for any possible input.). It is exactly because of this property (that specious under
certain conditions is weaker than classical honest-but-curious) that we can avoid using OT for inserting
the input of the server (unlike the Yao protocol). In generalisations where we will have stronger
adversaries, we will once again need to have OT for the input insertion.

Appendix B.2. About the Secret Random Parameters

The second important subtlety of the specious definition is related to the secret (random)
parameters that the adversary can choose. Specious adversaries should be able to recover the
global state ρi(ρin) in any step. However, this definition may be somewhat ambiguous. In general,
the quantum state in any step is also a function of secret random parameters of the two parties kA, kB,
i.e., we have ρi(ρin, kA, kB). We can (and generally do) treat the secret keys as part of the input of
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the two parties (i.e., part of ρin), but in this case, the specious adversary is essentially requested to
reconstruct precisely the state ρi(ρin, kA, kB) at step i.

However, we can imagine an adversary Ã that could reproduce the state ρi(ρin, k′A, kB) instead,
i.e., reproduce a state that would be correct for step i, if the secret parameter were k′A instead of the kA
that was given at the start. In this case, the adversary Ã is not specious with the standard definition
that we use. On the other hand, intuitively, since kA is a secret parameter (not known by anyone but
Ã until this step), it should not matter what is this value, and reproducing ρi(ρin, k′A, kB) should be
sufficient for a version of quantum honest-but-curious.

We will define the strong specious adversary to be the adversary that is required to have CP maps
Ti acting only on their subsystem, such that they can reproduce the state ρi(ρin, kA, kB) for at least one
secret key kA (not determined in advance and thus of their choice).

We will again give a simple example to make the distinction of these two flavours of specious
adversaries. Imagine a protocol that a (strong or weak) specious adversary Ã is supposed to return an
unknown state |ψ〉 padded with its key EkA(|ψ〉). A strong specious adversary can cheat by keeping
the state |ψ〉 and returning instead the one side of an EPR pair (and keep the other side). Then, if an
audit occurs, the adversary can use its side of the EPR pair and teleport the state |ψ〉 back, where the
resulting state at the honest side is Ekm(|ψ〉), with km being (randomly) determined by the outcome
of the Bell measurement that teleports the state. A weak specious adversary, on the other hand,
cannot do this. The state that is supposed to be returned needs to be padded with the key kA that is
fixed from the start of the protocol, while km is randomly determined during the audit (by the Bell
measurement outcome).

Appendix B.3. Regarding Secure SWAP No-Go Theorem

It is not difficult to see that a protocol that is secure against the standard (weak) specious adversary
can be made secure against the strong specious adversary by modifying the protocol to request that in
every step a new random (secret) parameter appears, a commitment to its value is made. This means
that requesting an adversary to be weak specious is practically equivalent to a strong specious
adversary where commitments are allowed.

Here, it is worth mentioning that in [21], while not explicitly stated, their protocol was secure
against the stronger version of specious adversaries (unlike our protocol). This difference in the
definition of specious adversaries (implicit assumption of the stronger adversaries) also resolves the
apparent contradiction of our result (no secure primitive needed) with their no-go theorem (a secure
SWAPis needed for 2PQC even for specious adversaries). As is mentioned in [21], their no-go would
not hold if commitments were possible, which is exactly what our weaker definition essentially permits.

Appendix C. Examples

We will now give two simple examples (one for Protocol 5 and one for Protocol 7) to illustrate
how the generic protocols given work practically.

Appendix C.1. Example for Protocol 5

We consider a simple example for Protocol 5 where each of the clients/servers has a single
qubit input/output, and the unitary/computation to be implemented is a CNOT gate. The MBQC
pattern for this gate is given in Figure A1b. The base-graph required is a “brick” from the brickwork
state of [3] and consists of 10 qubits. To use the VUBQC protocol of [25], we need the DT(G) of
that graph, the construction that is summarised in Section 2.1, resulting in the coloured DT(G) of
Figure 1a. In Figure A2, we see the dotted base-graph, while in Figure A3, we can see the resulting
DT(G) construction after the dummies have been removed, leaving us with the dotted base-graph
of Figure A2 along with the one trap/tag qubit for each computation qubit (as was done in the
general case in Figure 1b). The white trap qubit corresponds to primary vertices (qubits of the initial
base-graph of Figure A1b), while black trap qubits correspond to added vertices (those that resulted
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from “dotting” the initial base-graph). Note that in Figure A3, the computation qubits are entangled
(connected with edges), while the trap/tag qubits are isolated. The server, from his/her view, cannot
distinguish whether one qubit belongs to the dotted base-graph (i.e., is used for computation) or is the
related trap/tag qubit (denoted in the same box in Figure A3). In the next example (Appendix C.2),
the base-graph is simpler, and we will give the construction starting from the base-graph and resulting
in the dotted base-graph with tags in greater detail.

Figure A1. MBQC patterns for different gates: (a) π/8 gate, (b) CNOTgate, (c) identity gate and
(d) Hadamard gate.

Figure A2. Dotted base-graph for a CNOTgate.

Figure A3. Dotted base-graph for a CNOT gate along with isolated traps/tags. The input/output of
the client/server is coloured blue.

Finally, we note that in UBQC, the measurement angle that the client instructs the server to
measure is given: δi = φ′i(φi, bj<i) + θi + πri = C(i, φi, θi, ri, s).

The protocol starts with the server’s input injection, where the server gives his/her input (bottom
left blue qubit in Figure A3) one-time padded to the client as described in Section 3.1. The client then
permutes it with a trap and a dummy qubit (see Figure 2) and returns the triplet to the server. Now,
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after removing the dummies (that play no role), the server’s view is that of Figure A3, where he/she is
not aware which qubit was his/her input and which qubit is a trap/tag. The same holds for the other
qubits of the MBQC pattern.

The client instructs the server to measure the qubits at angles δi. The distribution of these angles
is uniformly random within the set {0, π/4, 2π/4, · · · , 7π/4} irrespective of the actual computation,
and thus, the server (from his/her perspective) is totally blind to what computation is performed or of
which qubits are computation and which are trap/tag qubits.

The client, from his/her view, taking into account the pre-rotations θi and corrections from
previous measurements in reality is actually asking the server to measure the computation qubits in
the angles of Figure A1b and thus performing the CNOT gate. At the same time, the instruction for the
trap/tag qubits is to measure them in the basis that was prepared |±θ〉 and thus return a deterministic
outcome (since they are isolated from the rest qubits).

Finally is the server’s output extraction part (see Section 3.2). Here, the server one-time pads both
his/her output (bottom right blue qubit) and the corresponding trap/tag (since he/she is not aware of
which is which) and returns them to the client. The client knows the position of the server’s output
(but not the padding, so it obtains no information). The client keeps the trap/tag, but returns the real
output to the server. The protocol is completed with the exchange of keys (as described in Section 3.2),
where the client can test that the final traps are indeed correct (so no deviation occurred before that),
and the server obtains the key to his/her output and recovers it.

Appendix C.2. Example for Protocol 7

In this example, we are not concerned with the input/output constructions, as these are similar to
Protocol 5. Instead, we give the simplest example of a base-graph to illustrate what influence-past and
extended influence-past means and how the flags and the OTMs are constructed.

We start with the simplest base-graph of two qubits given in Figure A4a. Following the DT(G)
procedure (described in Section 2.1), we have the DT(G) of Figure A4b, where we label the qubits.
Note, that for each of the base-graph qubits (Figure A4a), we have three copies (circles in Figure A4b);
all qubits of the one base-location are connected with all qubits of the other base-location (nine edges
in total); and an added qubit (square) is added to each of these (nine) edges. This is the view that
the server has, since he/she is not aware of the trap-colouring (i.e., of which qubit is computation,
trap or dummy).

Figure A4. (a) Simple MBQC base-graph. (b) Corresponding dotted triple-graph with labelled qubits
(view of the server).
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The view of the client (that knows the trap-colouring) is given in Figure A5a, where we remove
the dummies in Figure A5b to keep only the relevant information. This, of course, is just an example of
one consistent trap-colouring.

Figure A5. (a) Labelled dotted triple-graph with trap colouring (view of client). (b) Labelled dotted
triple-graph when removing dummy qubits (essential information from client’s view).

Now, influence-past is defined in terms of which qubit results in a Z or X correction (in the MBQC
terms). It is clear that corrections exist only for qubits that are truly entangled (i.e., the green qubits
{1, 5, 14}). In particular, qubit {5} has X-dependency from qubit {1}, which is its influence-past. Qubit
{14} has X-dependency from qubit {5} and Z-dependency from qubit {1}, i.e., its influence-past is
{1, 5}. The influence-past of isolated qubits is the empty set.

The extended influence-past includes all of the qubits that for some trap-colouring could be at the
influence-past, and it is a superset of the influence-past. In other words, all of the qubits that belong to
the same base-location as the true influence-past are always included. We consider the last layer qubits
{13, 14, 15}, and we summarise their influence-pasts and extended influence-pasts in this table:

Qubit Influence-past Extended influence-past Non-trivial flag dependence
13 ∅ {1, 2, 3, 4, 7, 10} {2, 10}
14 {1, 5} {1, 2, 3, 5, 8, 11} {2}
15 ∅ {1, 2, 3, 6, 9, 12} {2}

Now, we describe the OTMs. First, the cells of each OTM are labelled according to different
outcomes of qubits in the extended influence-past. In other words, for the OTM for Qubit 13, we will
have one cell for each string of measurement outcomes of the qubits {1, 2, 3, 4, 7, 10}, i.e., 26 cells (see
the table). Within each cell of the OTM, there will be the measurement angle corresponding to these
outcomes (in general, the corrected measurement angle φ′i depends on outcomes of qubits in the actual
influence-past). Moreover, in each cell, there is a flag bit-string of length m (see Section 5). There is
one string l0

i that corresponds to the accept flag. This flag is contained in all cells except for those
that contain a wrong result at one (past) trap/tag. Trap/tag qubits (in the example {2, 10, 15}) have a
deterministic outcome (in an honest run). Therefore, in all cells of an OTM in which the outcome of
one of this trap is wrong, a flag li 6= l0

i is returned. For our example, we can see from the last column
of the table which qubits outcomes may result to the non-accept flag in the related cell of the OTM.
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Finally, we stress again that in the above table, the influence-past and non-trivial flag dependence
is not known to the server, while the extended influence-past is.

Appendix D. Proof of Commuting

We prove here that the partial trace over one system commutes with any operation to the
non-traced-out system. We express a generic density matrix ρAB ∈ HAB with respect to some fixed
orthonormal basis as:

ρAB = ∑
i,i′ ,j,j′

ρii′ ,jj′ |i〉A
〈
i′
∣∣⊗ |j〉B 〈j′

∣∣ (A3)

Similarly, a general operator TB acting on system B is given by:

TB = ∑
k,k′

Tkk′ |k〉B
〈
k′
∣∣ (A4)

It is easy to see that:

TrA(IA ⊗ TB · ρAB) = TB · TrA(ρAB) (A5)

which proves that the partial trace (over system A) commutes with any operation on the non-traced-out
system B. We can see this since the left-hand side equals:

l.h.s = ∑
ĩ,i,i′ ,j,j′ ,k,k′

〈
ĩ
∣∣

A Tkk′ρii′ ,jj′ |i〉A
〈
i′
∣∣⊗ (|k〉B

〈
k′
∣∣ |j〉B 〈j′

∣∣) ∣∣ĩ〉A

= ∑
i,j,j′ ,k

Tkjρii,jj′(|k〉B
〈

j′
∣∣)δi,i′δi,ĩδj,k′ (A6)

using the orthonormality of the bases used (i.e., 〈i| |i′〉 = δi,i′ etc.). The right-hand side is:

r.h.s = ∑
ĩ,i,i′ ,j,j′ ,k,k′

(Tkk′ |k〉B
〈
k′
∣∣) · (〈ĩ∣∣A ρii′ ,jj′

(
|i〉A

〈
i′
∣∣⊗ |j〉B 〈j′

∣∣) ∣∣ĩ〉A

)
= ∑

i,j,j′ ,k
Tkjρii,jj′(|k〉B

〈
j′
∣∣)δi,i′δi,ĩδj,k′ (A7)

which completes the proof.
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