Article

Maximum-Order Complexity and Correlation Measures

Leyla Işık ${ }^{1}$ and Arne Winterhof ${ }^{2, *}$
1 Department of Mathematics, Salzburg University, Hellbrunner Str. 34, 5020 Salzburg, Austria; leyla.isik@sbg.ac.at
2 Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstr. 69, 4040 Linz, Austria
* Correspondence: arne.winterhof@oeaw.ac.at

Academic Editor: Kwangjo Kim
Received: 29 March 2017; Accepted: 10 May 2017; Published: 13 May 2017

Abstract

We estimate the maximum-order complexity of a binary sequence in terms of its correlation measures. Roughly speaking, we show that any sequence with small correlation measure up to a sufficiently large order k cannot have very small maximum-order complexity.

Keywords: maximum-order complexity; correlation measure of order k; measures of pseudorandomness; cryptography

MSC: 11K36, 11T71, 94A55, 94A60

1. Introduction

For a positive integer N, the N th linear complexity $L(\mathcal{S}, N)$ of a binary sequence $\mathcal{S}=\left(s_{i}\right)_{i=0}^{\infty}$ is the smallest positive integer L such that there are constants $c_{0}, c_{1}, \ldots, c_{L-1} \in \mathbb{F}_{2}$ with

$$
s_{i+L}=c_{L-1} s_{i+L-1}+\ldots+c_{0} s_{i}, \quad 0 \leq i \leq N-L-1 .
$$

(We use the convention $L(\mathcal{S}, N)=0$ if $s_{0}=\ldots=s_{N-1}=0$ and $L(\mathcal{S}, N)=N$ if $s_{0}=\ldots=$ $s_{N-2}=0 \neq s_{N-1}$.) The N th linear complexity is a measure for the predictability of a sequence and thus its unsuitability in cryptography. For surveys on linear complexity and related measures of pseudorandomness see [1-6].

Let k be a positive integer. Mauduit and Sárközy introduced the (N th) correlation measure of order k of a binary sequence $\mathcal{S}=\left(s_{i}\right)_{i=0}^{\infty}$ in [7] as

$$
C_{k}(\mathcal{S}, N)=\max _{U, D}\left|\sum_{i=0}^{U-1}(-1)^{s_{i+d_{1}}+s_{i+d_{2}}+\ldots+s_{i+d_{k}}}\right|,
$$

where the maximum is taken over all $D=\left(d_{1}, d_{2}, \ldots, d_{k}\right)$ with non-negative integers $0 \leq d_{1}<d_{2}<$ $\ldots<d_{k}$ and U such that $U+d_{k} \leq N$. (Actually, [7] deals with finite sequences $\left((-1)^{s_{i}}\right)_{i=0}^{N-1}$ of length N over $\{-1,+1\}$.)

Brandstätter and the second author [8] proved the following relation between the Nth linear complexity and the correlation measures of order k :

$$
\begin{equation*}
L(\mathcal{S}, N) \geq N-\max _{1 \leq k \leq L(\mathcal{S}, N)+1} C_{k}(\mathcal{S}, N), \quad N \geq 1 . \tag{1}
\end{equation*}
$$

Roughly speaking, any sequence with small correlation measure up to a sufficiently large order k must have a high N th linear complexity as well.

For example, the Legendre sequence $\mathcal{L}=\left(\ell_{i}\right)_{i=0}^{\infty}$ defined by

$$
\ell_{i}= \begin{cases}1, & \text { if } i \text { is a quadratic non-residue modulo } p \\ 0, & \text { otherwise }\end{cases}
$$

where $p>2$ is a prime, satisfies

$$
\begin{equation*}
C_{k}(\mathcal{L}, N) \ll k p^{1 / 2} \log p, \quad 1 \leq N \leq p \tag{2}
\end{equation*}
$$

and thus (1) implies

$$
N \ll L(\mathcal{L}, N) p^{1 / 2} \log p, \quad 1 \leq N \leq p
$$

Using $L(\mathcal{L}, N) \geq L(\mathcal{L}, p)$ for any $N>p$ we get

$$
L(\mathcal{L}, N) \gg \frac{\min \{N, p\}}{p^{1 / 2} \log p}, \quad N \geq 1
$$

see [7,9] (Theorem 9.2). (Here $f(N) \ll g(N)$ is equivalent to $|f(N)| \leq c g(N)$ for some absolute constant c.)

The Nth maximum-order complexity $M(\mathcal{S}, N)$ of a binary sequence $\mathcal{S}=\left(s_{i}\right)_{i=0}^{\infty}$ is the smallest positive integer M such that there is a polynomial $f\left(x_{1}, \ldots, x_{M}\right) \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{M}\right]$ with

$$
\begin{equation*}
s_{i+M}=f\left(s_{i}, s_{i+1}, \ldots, s_{i+M-1}\right), \quad 0 \leq i \leq N-M-1, \tag{3}
\end{equation*}
$$

see [10-12]. Obviously we have

$$
M(\mathcal{S}, N) \leq L(\mathcal{S}, N)
$$

and the maximum-order complexity is a finer measure of pseudorandomness than the linear complexity.
In this paper we analyze the relationship between maximum-order complexity $M(\mathcal{S}, N)$ and the correlation measures $C_{k}(\mathcal{S}, N)$ of order k. Our main result is the following theorem:

Theorem 1. For any binary sequence \mathcal{S} we have

$$
M(\mathcal{S}, N) \geq N-2^{M(\mathcal{S}, N)+1} \max _{1 \leq k \leq M(\mathcal{S}, N)+1} C_{k}(\mathcal{S}, N), \quad N \geq 1
$$

Again, any nontrivial bound on $C_{k}(\mathcal{S}, N)$ for all k up to a sufficiently large order provides a nontrivial bound on $M(\mathcal{S}, N)$. For example, for the Legendre sequence we get immediately from (2)

$$
N \ll 2^{M(\mathcal{L}, N)} M(\mathcal{L}, N) p^{1 / 2} \log p, \quad 1 \leq N \leq p
$$

Now we have either $M(\mathcal{L}, N)>\log p$ and the bound (4) below is trivial or $M(\mathcal{L}, N) \leq \log p$ which implies

$$
\begin{equation*}
M(\mathcal{L}, N) \geq \log \left(\min \{N, p\} / p^{1 / 2}\right)+O(\log \log p) \tag{4}
\end{equation*}
$$

see also [9] (Theorem 9.3). (Here $f(N)=O(g(N))$ is equivalent to $f(N) \ll g(N)$.)
We prove Theorem 1 in the next section.
The expected value of the N th maximum-order complexity is of order of magnitude $\log N$, see [10] as well as [12] (Remark 4) and references therein. Moreover, by [13] for a sequence of length N with very high probability the correlation measure $C_{k}(\mathcal{S}, N)$ is of order of magnitude $\sqrt{k N \log N}$ and thus by Theorem $1 M(\mathcal{S}, N) \geq \frac{1}{2} \log N+O(\log \log N)$ which is in good correspondence to the result of [10].

In Section 3 we mention some straightforward extensions.

2. Proof of Theorem 1

Proof. Assume \mathcal{S} satisfies (3). If $s_{i}=\ldots=s_{i+M-1}=0$ for some $0 \leq i \leq N-M-1$, then $s_{i+M}=$ $f(0, \ldots, 0)$. Equivalently, $(-1)^{s_{i}}=\ldots=(-1)^{s_{i+M-1}}=1$ implies $(-1)^{s_{i+M}}=(-1)^{f(0, \ldots, 0)}$. Hence, for every $i=0, \ldots, N-M-1$ we have

$$
\left((-1)^{s_{i+M}}-(-1)^{f(0, \ldots, 0)}\right) \prod_{j=0}^{M-1}\left((-1)^{s_{i+j}}+1\right)=0
$$

Summing over $i=0, \ldots, N-M-1$ we get

$$
\sum_{i=0}^{N-M-1}\left((-1)^{s_{i+M}}-(-1)^{f(0, \ldots, 0)}\right) \prod_{j=0}^{M-1}\left((-1)^{s_{i+j}}+1\right)=0
$$

The left-hand side contains one "main" term $\pm(N-M)$ and $2^{M+1}-1$ terms of the form

$$
\pm \sum_{i=0}^{N-M-1}(-1)^{s_{i+j_{1}}+s_{i+j_{2}}+\ldots+s_{i+j_{k}}}
$$

with $0 \leq j_{1}<j_{2}<\ldots<j_{k} \leq M$ and $1 \leq k \leq M+1$. Therefore we have

$$
N-M \leq 2^{M+1} \max _{1 \leq k \leq M+1}\left|\sum_{i=0}^{N-M-1}(-1)^{s_{i+j_{1}}+s_{i+j_{2}}+\ldots+s_{i+j_{k}}}\right|
$$

and the result follows.

3. Further Remarks

Theorem 1 can be easily extended to m-ary sequences with $m>2$ along the lines of [14]:
Let ξ be a primitive m th root of unity. Then we have

$$
\sum_{h=0}^{m-1} \xi^{h x}=0 \quad \text { if and only if } \quad x \not \equiv 0 \bmod m
$$

As in the proof of Theorem 1 we get

$$
\sum_{i=0}^{N-M-1}\left(\xi^{s_{i+M}}-\xi^{f(0, \ldots, 0)}\right) \prod_{j=0}^{M-1} \sum_{h=0}^{m-1} \xi^{h s_{i+j}}=0
$$

We have one term of absolute value $N-M$ and $2 m^{M}-1$ terms of the form

$$
\begin{equation*}
\alpha \sum_{i=0}^{N-M-1} \xi^{h_{1} s_{i+j_{1}}+h_{2} s_{i+j_{2}}+\ldots+h_{k} s_{i+j_{k}}} \tag{5}
\end{equation*}
$$

with $1 \leq h_{1}, \ldots, h_{k}<m, 0 \leq j_{1}<j_{2}<\ldots<j_{k} \leq M, 1 \leq k \leq M+1$ and $\alpha \in\left\{1,-\xi^{f(0, \ldots, 0)}\right\}$.
If m is a prime, then $x \mapsto h x$ is a permutation of \mathbb{Z}_{m} for any $h \not \equiv 0 \bmod m$ and the sums in (5) can be estimated by the correlation measure $C_{k}(\mathcal{S}, N)$ of order k for m-ary sequences as it is defined in [15] and we get

$$
M(\mathcal{S}, N) \geq N-2 m^{M(\mathcal{S}, N)} \max _{1 \leq k \leq M(\mathcal{S}, N)+1} C_{k}(\mathcal{S}, N), \quad N \geq 1
$$

If m is composite, $x \mapsto h x$ is not a permutation of \mathbb{Z}_{m} if $\operatorname{gcd}(h, m)>1$ and we have to substitute the correlation measure of order k by the power correlation measure of order k introduced in [14].

Now we return to the case $m=2$.
Even if the correlation measure of order k is large for some small k, we may be still able to derive a nontrivial lower bound on the maximum-order complexity by substituting the correlation measure of order k by its analogue with bounded lags, see [16] for the analogue of (1). For example, the two-prime generator $\mathcal{T}=\left(t_{i}\right)_{i=0}^{\infty}$, see [17], of length $p q$ with two odd primes $p<q$ satisfies

$$
t_{i}+t_{i+p}+t_{i+q}+t_{i+p+q}=0
$$

if $\operatorname{gcd}(i, p q)=1$ and its correlation measure of order 4 is obviously close to $p q$, see [18]. However, if we bound the lags $d_{1}<\ldots<d_{k}<p$ one can derive a nontrivial upper bound on the correlation measure of order k with bounded lags including $k=4$ as well as lower bounds on the maximum-order complexity using the analogue of Theorem 1 with bounded lags.

Finally, we mention that the lower bound (4) for the Legendre sequence can be extended to Legendre sequences with polynomials using the results of [19] as well as to their generalization using squares in arbitrary finite fields (of odd characteristic) using the results of [20,21]. For sequences defined with a character of order m see [15].

Acknowledgments: The authors are supported by the Austrian Science Fund FWF Projects F5504 and F5511-N26, respectively, which are part of the Special Research Program "Quasi-Monte Carlo Methods: Theory and Applications". L.I. would like to express her sincere thanks for the hospitality during her visit to RICAM.

Author Contributions: The authors contributed in equal parts.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gyarmati, K. Measures of pseudorandomness. Finite Fields and Their Applications. In Radon Series on Computational and Applied Mathematics; De Gruyter: Berlin, Germany, 2013; Volume 11, pp. 43-64.
2. Meidl, W.; Winterhof, A. Linear complexity of sequences and multisequences, Section 10.4 of the Handbook of Finite Fields. In Discrete Mathematics and its Applications (Boca Raton); Mullen, G.L., Panario, D., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 324-336.
3. Niederreiter, H. Linear complexity and related complexity measures for sequences. In Progress in Cryptology-INDOCRYPT 2003; Lecture Notes in Computer Science, 2904; Springer: Berlin, Germany, 2003; pp. 1-17.
4. Sárközy, A. On finite pseudorandom binary sequences and their applications in cryptography. Tatra Mt. Math. Publ. 2007, 37, 123-136.
5. Topuzoğlu, A.; Winterhof, A. Pseudorandom sequences. In Topics in Geometry, Coding Theory and Cryptography; Algebra Applications, 6; Springer: Dordrecht, The Netherlands, 2007; pp. 135-166.
6. Winterhof, A. Linear complexity and related complexity measures. In Selected Topics in Information and Coding Theory; Series on Coding Theory and Cryptology, 7; World Science Publishing: Hackensack, NJ, USA, 2010; pp. 3-40.
7. Mauduit, C.; Sárközy, A. On finite pseudorandom binary sequences. I. Measure of pseudorandomness, the Legendre symbol. Acta Arith. 1997, 82, 365-377.
8. Brandstätter, N.; Winterhof, A. Linear complexity profile of binary sequences with small correlation measure. Period. Math. Hung. 2006, 52, 1-8.
9. Shparlinski, I. Cryptographic Applications of Analytic Number Theory. Complexity Lower Bounds and Pseudorandomness; Progress in Computer Science and Applied Logic, 22; Birkhäuser Verlag: Basel, Switzerland, 2003.
10. Jansen, C.J.A. Investigations on Nonlinear Streamcipher Systems: Construction and Evaluation Methods. Ph.D. Thesis, Technische Universiteit Delft, Delft, The Netherlands, 1989; p. 195.
11. Jansen, C.J.A. The maximum order complexity of sequence ensembles. In Advances in CryptologyEUROCRYPT'91, LNCS 547; Davies, D.W., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; pp. 153-159.
12. Niederreiter, H.; Xing, C. Sequences with high nonlinear complexity. IEEE Trans. Inf. Theory 2014, 60, 6696-6701.
13. Alon, N.; Kohayakawa, Y.; Mauduit, C.; Moreira, C.G.; Rödl, V. Measures of pseudorandomness for finite sequences: Typical values. Proc. Lond. Math. Soc. 2007, 95, 778-812.
14. Chen, Z.; Winterhof, A. Linear complexity profile of m-ary pseudorandom sequences with small correlation measure. Indag. Math. 2009, 20, 631-640.
15. Mauduit, C.; Sárközy, A. On finite pseudorandom sequences of k symbols. Indag. Math. 2002, 13, 89-101.
16. He, J.J.; Panario, D.; Wang, Q.; Winterhof, A. Linear complexity profile and correlation measure of interleaved sequences. Cryptogr. Commun. 2015, 7, 497-508.
17. Brandstätter, N.; Winterhof, A. Some notes on the two-prime generator of order 2. IEEE Trans. Inf. Theory 2005, 5, 3654-3657.
18. Rivat, J.; Sárközy, A. Modular constructions of pseudorandom binary sequences with composite moduli. Period. Math. Hung. 2005, 51, 75-107.
19. Goubin, L.; Mauduit, C.; Sárközy, A. Construction of large families of pseudorandom binary sequences. J. Number Theory 2004, 106, 56-69.
20. Mérai, L.; Yayla, O. Improving results on the pseudorandomness of sequences generated via the additive order of a finite field. Discret. Math. 2015, 338, 2020-2025.
21. Sárközy, A.; Winterhof, A. Measures of pseudorandomness for binary sequences constructed using finite fields. Discret. Math. 2009, 309, 1327-1333.
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).
