
cryptography

Article

Cryptanalysis and Improvement of ECC Based
Authentication and Key Exchanging Protocols †

Swapnoneel Roy * and Chanchal Khatwani

School of Computing, University of North Florida, Jacksonville, FL 32224, USA; n01029842@ospreys.unf.edu
* Correspondence: s.roy@unf.edu; Tel.: +1-904-620-2182
† This paper is an extended version of our paper published in CICN 2015: Khatwani, C.; Roy, S. Security

Analysis of ECC Based Authentication Protocols. In the Proceedings of the 2015 International Conference on
Computational Intelligence and Communication Networks (CICN), Jabalpur, India, 12–14 December 2015;
pp. 1167–1172.

Academic Editor: Kwangjo Kim
Received: 3 April 2017; Accepted: 29 May 2017; Published: 13 June 2017

Abstract: Elliptic curve cryptography (ECC) is extensively used in various multifactor authentication
protocols. In this work, various recent ECC-based authentication and key exchange protocols are
subjected to threat modeling and static analysis to detect vulnerabilities and to enhance them to be
more secure against threats. This work demonstrates how currently-used ECC-based protocols are
vulnerable to attacks. If protocols are vulnerable, damage could include critical data loss and elevated
privacy concerns. The protocols considered in this work differ in their usage of security factors
(e.g., passwords, pins and biometrics), encryption and timestamps. The threat model considers
various kinds of attacks including denial of service, man in the middle, weak authentication and SQL
injection. Countermeasures to reduce or prevent such attacks are suggested. Beyond cryptanalysis of
current schemes and the proposal of new schemes, the proposed adversary model and criteria set
forth provide a benchmark for the systematic evaluation of future two-factor authentication proposals.

Keywords: elliptic curve cryptography; authentication protocols; key exchanging protocols

1. Introduction

In a cyber environment, user authentication enables a perimeter device (firewall, proxy server,
VPN server, remote access server, etc.) to decide whether to approve a specific user’s request to gain
entry to the network. The authentication is generally two-way, meaning both parties (provider and
user) authenticate themselves to each other [1]. Client authentication needs security for remote login,
while the client’s program is trying to communicate with the server’s program over insecure networks,
like the Internet. The identity and a secret password of a client are used for mutual authentication and
access control. However, a password can be compromised during transmission if an efficient scheme is
not followed.

Elliptic curve cryptography (ECC) is a widely-used technique in multi-factor authentication [1].
ECC is a public key encryption technique based on elliptic curve theory that can be used to create
smaller keys, which yields faster and more efficient algorithms as a result. It generates keys through the
properties of the elliptic curve equation instead of the traditional method of generation as the product of
very large prime numbers. The technology can be used in conjunction with most public key encryption
methods, such as RSA (RSA is made of the initial letters of the last names of Ron Rivest, Adi Shamir,
and Leonard Adleman, who first publicly described the algorithm in 1978.) and Diffie–Hellman [2].
ECC was developed to reduce computational costs while providing the same level of security as
other similar operations (e.g., modular exponentiation). ECC finds applications in authentication
protocols involving smart cards, RFIDs, wireless networks, digital signatures and other authentication

Cryptography 2017, 1, 9; doi:10.3390/cryptography1010009 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
http://dx.doi.org/10.3390/cryptography1010009
http://www.mdpi.com/journal/cryptography

Cryptography 2017, 1, 9 2 of 25

techniques [3–14]. However, the computational cost of one bilinear pairing (an important operation
of ECC) is about twice as high as that of one modular exponentiation operation at the same security
level [15]. Therefore, the computationally-intensive nature of ECC leaves a security loophole in the
protocols that use it. An attacker can force the server or client to repeatedly perform ECC operations
in order to clog them, resulting in one or all of them wasting resources by performing unnecessary
computations. We are looking at two different types of schemes that use ECC, one being multi-factor
authentication and the other being key-exchange.

Multi-factor authentication is an approach to authentication in which the user is required to
provide more than one form of verification in order to prove his/her identity and allow access to the
system. It takes advantage of a combination of several forms of authentication. Three major forms
include verification by: (1) something a user knows (such as a password); (2) something the user
has (such as a smart card or a security token); and (3) something the user is (such as a biometric
characteristic). Due to their increased complexity, authentication systems that use multi-factor
verification are harder to break than those that use a single factor [1,16–18].

Key exchange (also known as key establishment) is a cryptographic method by which secret
keys are exchanged between two parties, allowing use of a cryptographic algorithm. Public key
cryptography, or asymmetric cryptography, is a cryptographic system that uses pairs of public and
private keys. Each party has its own public key and private key. The message is encrypted using the
public key and decrypted using one’s private key. The public key is distributed, and the private key is
known only to the owner. If the sender and receiver wish to communicate with each other, then a secret
key is shared between them in order for communication to take place. Symmetric key algorithms use
the same cryptographic keys for both encryption and decryption of text. The key exchange problem
is how to exchange information so that no third party can obtain a copy. Typically, this has required
trusted couriers or a secure channel.

Radio frequency identification (RFID) is a means of automatic identification that uses radio waves
to detect, track, identify and thus manage a variety of objects. Although RFID technology has been
around for more than half a century, only recently have RFID security and privacy issues begun to
attract attention from both academic and corporate research communities. RFID (radio frequency
identification) technology has become ubiquitous because of its low cost. Since it is used in many fields,
any vulnerability detected in RFID technology raises a threat in data privacy. Similarly, the potential
for smart cards is enormous. However, by far the most serious problem for smart cards is the attacks
that exploit security vulnerabilities caused by poor design or implementation. These vulnerabilities
tend to be easy to exploit and replicate and are, therefore, shared among the hackers community.

1.1. Problem Statement, Goal and Contribution

ECC is a multi-factor encryption technique currently used by the U.S. government, Tor, Bitcoin,
iMessage and SSL/TLS. Such multi-factor authentication is needed to provide high level security,
but the introduction of more factors introduces more vulnerability in the protocols. Our goal is to
detect these vulnerabilities before they are exploited. The root causes of many common vulnerabilities
like CPU resource-exhaustion, stack overflow, etc., are often design flaws rather than programming
(implementation) errors [19]. Therefore, developers perform static analysis on protocols to identify
design flaws in order to ensure security before a program (software product) is launched.

Several multi-factor authentication protocols that involve RFIDs, smart cards, wireless networks
or digital signatures rely on ECC operations for their security. However, the computational cost of
one bilinear pairing (an important operation of ECC) is about twice as high as that of one modular
exponentiation at the same security level. Therefore, the computationally-intensive nature of ECC
leaves a security loophole in the protocols. Hence, some level of protection should be added to
ECC-based protocols to guarantee near-total security against various kinds of attacks, such as denial
of service, man in the middle and database attacks.

Cryptography 2017, 1, 9 3 of 25

As observed in this research, the vulnerabilities of ECC-based protocols are not recognized
frequently. The first goal of this work is to perform static analysis on the underlying vulnerabilities
and security threats that exist in ECC-based protocols that are implemented in RFIDs and smart cards.
The second goal is to design possible countermeasures to defeat the identified vulnerabilities in these
protocols. The contribution of this research is to provide the basis for future work in improving the
security of ECC-based protocols using dynamic analysis. The results of this work will contribute to the
cybersecurity community in a considerable way.

1.2. Organization of This Paper

The rest of the paper is organized as follows. Section 2 provides background materials on
ECC. Section 3 describes the cryptanalysis algorithms and discusses the type of protocols that were
investigated in this work. Section 4 describes in detail the work done in this paper to cryptanalyze
various protocols. It describes the attacks that were carried out on the protocols and proposes
countermeasures for each attack. Finally, Sections 5 and 6 discuss the results, conclusions and suggest
future directions, respectively.

2. ECC Background

ECC is one of the most accomplished and widely used, however least understood, cryptography
tools [20]. It is the future generation of public key cryptography. It provides significantly more security
than first-generation public key cryptography systems like RSA [20]. ECC is a technique in public
key cryptography set on the algebraic arrangement of elliptic curves over finite fields. Compared to
non-ECC cryptography, ECC provides equivalent security with smaller keys [21,22]. The elliptic curve
cryptosystem [21] was initially proposed as a basis for public key cryptosystems, and it has proven
to be an important unit of current cryptography [23]. ECC utilizes the mathematics of elliptic curves.
The security of ECC lies in the complexity of working the elliptic curve discrete logarithm problem.
An analysis of ECC theory and its computational problems are stated below.

As shown in Figure 1, elliptic curves (Eq(a, b)) are a set of points defined by the solutions to
the equation y2 ≡ x3 + ax + b (mod q), where a and b are elements of the field k together with a
point at infinity O [24]. There is also a condition such that 4a3 + 27b3 6= 0 (mod q) where q is a
prime number [24]. This equation must be satisfied for the elliptic curve to have a well-defined group
structure. This forms an additive cyclic group E = {(x, y) ∈ Eq(a, b)} ∪ {O}, where O serves as an
additive identity element of the group [24]. If P is a point in E and k is a positive integer, then the
point multiplication is computed by repeated addition, such as k · P = P + P · · ·+P, where k is a large
integer and P is added to itself k times.

Figure 1. Elliptic curve addition (figure redrawn based on [14]).

Cryptography 2017, 1, 9 4 of 25

2.1. Computational Nature of ECC

ECC is a computationally-intensive operation. Its scalar multiplication is one-way, making it
computationally infeasible to trace the original number. For example: let P be a point in E, and let Q be
a point such that Q = kP. The elliptic curve discrete log problem is the following: knowing the values
of P and Q, determine the value of k. If the modulus q is large, the ECDLP (For elliptic-curve-based
protocols, it is assumed that finding the discrete logarithm of a random elliptic curve element with
respect to a publicly known base point is infeasible: this is the “elliptic curve discrete logarithm
problem" (ECDLP).) is computationally infeasible. ECC is based on this problem. Even if P and Q are
known, determining k such that Q = kP (kP and k · P have the same meaning in ECC multiplication) is
computationally infeasible. Hence, the elliptic curve discrete log problem makes k difficult to compute.

3. Framework for Cryptanalysis

In this section, general algorithms and conditions for the attacks that were successfully performed
on the protocols chosen for this work are described.

3.1. Clogging Attack

The mechanism for most password authentication protocols is that the client (usually a memory
stick, RFID or smart card reader) sends its credentials to the server, which then performs certain
mathematical operations to verify those credentials. The protocols usually work in multiple phases.
The phases in which client and server authentication take place will be discussed in Section 4 after
each protocol has been individually considered.

As shown in Figure 2, the main idea of the clogging attack is the interception of the message
that contains the login credentials between the client and the server [25]. This message is unencrypted
in some protocols and encrypted in others. It might or might not contain a timestamp. The attacker
replays the intercepted message several times to force the server to perform computationally-intensive
operations (in the case of [25], modular exponentiation), thus forcing the server to waste its time and
resources. Legitimate users are denied services in that way. Algorithm 1 depicts this type of attack.

Figure 2. The clogging attack.

3.2. Application of Algorithm 1

The clogging conditions we analyze in this work are based on the computational and resource
intensiveness of the operations in elliptic curve cryptography (ECC). The ECC operations performed
by the majority of authentication based on ECC are:

1. Bilinear pairing
2. Scalar multiplication in group G
3. Map-to-point conversion

Cryptography 2017, 1, 9 5 of 25

Algorithm 1: The general algorithm for the clogging attack [25].
Intercept login message from client to server
if Timestamp is present then

Modify timestamp to match requirements
else

Keep message as is
end if
while The server is not completely clogged! do

Replay the message to the server
end while

Let Tp, Ts and Tmap respectively be the time taken to perform a single bilinear pairing, scalar
multiplication and map-to-point conversation, respectively. It has been shown in [26] that:

1. Tp > Ts > Tmap
2. Tp ≈ 3× Ts
3. Tp ≈ 4× Tmap

Further, let Tmodex be the time taken by one modulo exponentiation operation. It has been
shown [15] that Tp ≈ 2× Tmodex for the same level of security. The operation modular exponentiation
has been shown to be very computationally intensive [25]. In fact, Tmodex has been shown to be
approximately a hundred times that of normal addition, multiplication and bitwise XOR operations
(see Figure 3). We can, therefore, conclude that all of the ECC-based operations’ bilinear pairing, scalar
multiplication and map-to-point conversation are quite computationally intensive.

Figure 3. Comparison of ECC and Modex operations.

Therefore, a protocol that uses the ECC operation has a vulnerability to the clogging attack, a form
of DoS in which the attacker exploits the computational intensiveness nature of ECC operations.

3.3. Database Attack

According to many experts, databases are still not secured properly in most organizations [27].
Database attacks go unnoticed as it takes less than 10 seconds to hack in and out of a database.
Therefore, it is no surprise that many database attacks go unnoticed by organizations until long after the
data have been compromised. Attackers use simple methods to break into databases, such as exploiting
weak authentication, using default passwords and capitalizing on known vulnerabilities [27].

This analysis focuses on database connections that are weak and hence open to vulnerabilities.
The front end client-server authentication stores passwords in the server’s back-end databases. If any
password is compromised, then the database schema becomes vulnerable to attack, which makes
the protocol insecure (as explained in Algorithm 2). Passwords (or their hashed versions) are often

Cryptography 2017, 1, 9 6 of 25

stored in relational databases. The most common way to get illegitimate access to a database is by
making a copy of the database (or individual rows) by a technique called SQL injection. SQL injection
attacks occur where the fields available for user input let SQL statements through to query the database
directly. Outside of the client, web applications typically are the weakest link [27]. URL parameters
or POST parameters of a web page are manipulated to contain malicious SQL statements, which are
interpreted by the SQL database [28].

Algorithm 2: The general algorithm for the database attack.
Intercept data access layer from application to back-end
if Encryption is present then

Break the encryption to gain access to the database
else

Access the database
end if
while The data is not corrupted and stolen do

Inject malicious statements
end while

Internal attacks should also never be underestimated. There have been several insider attacks
that came as a result of a malicious user possessing more system privileges than the user should have
had [27]. Databases are often accessible from inside organizations, and passwords can readily be found
in the source code or server configuration files. This makes it easy for employees to access data and
save it to a local disk or even transfer it to an external medium.

In the following chapters, database attacks (illustrated in Figure 4) to which recently-used
protocols are vulnerable are considered.

Figure 4. The database attack.

3.4. Man-In-The-Middle Attack

As shown in Figure 5, a man-in-the-middle attack can be used against many cryptographic
protocols. A man-in-the-middle attack requires an attacker to have the ability to both monitor and
alter or inject messages into a communication channel. One example is active eavesdropping, in which
the attacker makes independent connections with the victims and relays messages between them to
make them believe they are talking directly to each other over a private connection, when in fact
the entire conversation is controlled by the attacker. The attacker can intercept all messages passing
between the two victims and inject new ones. A few ECC-based protocols claim to be secure against

Cryptography 2017, 1, 9 7 of 25

man-in-the-middle attacks. However, ECC protocols are still vulnerable to man-in-the-middle attacks,
as shown in the next section.

Figure 5. The man-in-the-middle (MITM) attack.

3.5. Application of Algorithm 3

A variant of the Diffie–Hellman algorithm that uses elliptic curve cryptography, elliptic curve
Diffie–Hellman (ECDH), is an anonymous key agreement protocol that allows two parties, each
having an elliptic curve public-private key pair, to establish a shared secret over an insecure channel
(for a detailed description and illustration of ECDH, please see [29–32]). This shared secret may be
directly used as a key, or it may be used to derive another key, which can then be used to encrypt
subsequent communications using a symmetric key cipher. The following example will illustrate how
a key is established. Suppose Alice wants to establish a shared key with Bob, but the only channel
available for them may be eavesdropped by a third party. Initially, the domain parameters for ECDH
(that is, (p, a, b, G, n, h) in the prime case or (m, f (x), a, b, G, n, h) in the binary case) must be agreed
upon. Furthermore, each party must have a key pair suitable for elliptic curve cryptography, consisting
of a private key d (a randomly-selected integer in the interval [1, n− 1]) and a public key Q (where
Q = dG, that is the result of adding G together d times where G is the generator point). Let Alice’s key
pair be (dA, QA) and Bob’s key pair be (dB, QB). Each party must know the other party’s public key
prior to execution of the protocol.

Algorithm 3: The general algorithm for the man-in-the-middle attack.
Intercept communication between two parties
if TTP is present then

Gains access and possibly alters the communication between two parties who believe they
are directly communicating with each other

else

Acts as an intruder who relays and alters the communication between two parties
end if
while The communication is not ended do

Relay
end while

Alice computes (xk, yk) = dAQB. Bob computes (xk, yk) = dBQA. The shared secret is xk (the x
coordinate of the computed point). Most standardized protocols based on elliptic curve Diffie–Hellman
(ECDH) derived a symmetric key from xk using some hash-based key derivation function. The shared
secret calculated by both parties is equal, because dAQB = dAdBG = dBdAG = dBQA (by the
property of ECC). The only information about her private key that Alice initially exposes is her

Cryptography 2017, 1, 9 8 of 25

public key. Therefore, no party other than Alice can determine Alice’s private key, unless that party
can solve the elliptic curve discrete logarithm problem. Bob’s private key is similarly secure. No party
other than Alice or Bob can compute the shared secret, unless that party can solve the elliptic curve
Diffie–Hellman problem [29].

The public keys are either static (and trusted, say via a certificate) or ephemeral (ECDHE
(Elliptic curve Diffie-Hellman Exchange (ECDHE) is an anonymous key agreement protocol that
allows two parties, each having an elliptic curve public-private key pair, to establish a shared secret
over an insecure channel.)). Ephemeral keys are temporary and not necessarily authenticated, so if
authentication is desired, authenticity assurances must be obtained by other means. Authentication
is necessary to avoid man-in-the-middle attacks. If one of Alice’s or Bob’s public keys is static,
then man-in-the-middle attacks are thwarted. Static public keys provide neither forward secrecy, nor
key-compromise impersonation resilience, among other advanced security properties. Holders of static
private keys should validate the other public key and should apply a secure key derivation function to
the raw Diffie–Hellman shared secret to avoid leaking information about the static private key [29].

4. Cryptanalysis of the Protocols

This section describes each of the protocols selected for analysis in this work, the attacks on them
and ways of preventing the attacks. The following generic notations have been used to describe the
protocols in this section. Specific notations for each individual protocol have been illustrated while
describing each of them:

• Z∗q denotes the finite field over q
• ⊗ denote (bitwise) exclusive OR
• A→B: M denotes the propagation of the message M from user A to user B
• ‖ denotes the concatenation operation
• In cryptography, a nonce is an arbitrary number that may only be used once

4.1. Choice of Protocols

The protocols chosen for analysis fall into the broad category of multi-factor authentication
protocols. All of them employ user ID and password for authentication. Selection of these protocols is
based on differences in the second authentication factor (smart cards, RFIDs, memory drives, etc.) and
the tools used to provide confidentiality (encryption, nonce, timestamp, etc.), as shown in Table 1.

Table 1. Summary of the differences in the protocols.

Protocol Type Factor Used Confidentiality

Moosavi Authentication RFID Usage of Random Numbers
Xu Authentication Smart Card Usage of Random Numbers
He Authentication RFID Usage of Random Numbers
Hui Authentication Password Usage of Encryption

Ammayappan Key Exchange – Trusted Third Party

4.2. Moosavi et al.’s Protocol for RFID Implant Systems

The first protocol considered is that of [33]. It is a mutual authentication scheme for an RFID
implant system. The authors in [33] claim that their protocol is immune to various attacks including
denial of service (DoS). However, their protocol is inherently vulnerable to clogging attacks (a form of
DoS) that apply the algorithm of [25]. Most of the precursor protocols to that of [33] are vulnerable
to clogging attacks. In this section, the mathematical basis that makes the protocols vulnerable to
clogging attack is identified, and a possible fix is suggested.

Cryptography 2017, 1, 9 9 of 25

4.2.1. Review of the Protocol

Moosavi et al.’s protocol works in three phases: reader authentication and verification, tag
identification and tag verification. Figure 6 shows the notations used for the protocol.

This protocol enables the two communicating parties, an RFID implant tag and a reader, to
respectively verify and ensure each other’s identity. The assumption is that the communication
between the tag and the reader is not secure [1]. The protocol is shown in Algorithm 4.

Algorithm 4: Moosavi et al.’s protocol for RFID implant systems.
READER AUTHENTICATION AND VERIFICATION

Reader R

1. Step A1. Choose a random number r1 ∈ Zn and computes R1 = r1 · P as its public key.
2. Step A2. Initialize i1 to 1.
3. Step A3. R→T: {R1, i1}.
4. Step A4. Increment i1 by r1.

Tag T

1. Step A5. Verify if i1 ≥ i2 (i2 is initialized to 0).
2. Step A6. If the above is true, then set i2 to i1.
3. Step A7. Compute r3 = X(r2 · P) ∗Y(R1), where ∗ is a non-algebraic operation over the abscissa

of (r2 · P) and the ordinate of R1.
4. Step A8. T→R: {r3}.

Reader R

1. Step A9. Compute R2 = r1 · IDt + r3 · s3.
2. Step A10. R→T: {R2}.

Tag T

1. Step A11. Verify if (R2 − r1 · IDt)r−1
3 · P = IDr.

2. Step A12. Reader R gets verified if the above is true.

TAG IDENTIFICATION

Reader R

1. Step I1. Choose rs ∈ Zn, a random integer.
2. Step I2. R→T: {rs}.

Tag T

1. Step I3. Verify if rs 6= 0. If yes, then calculate s2 = f (X(s1)) · P.
2. Step I4. Choose a random integer k and compute curve point (x, y) = k · G
3. Step I5. Compute d = x mod n
4. Step I6. Verify if d = 0. If yes, recompute d using a different k.
5. Step I7. Compute value of ID as IDt = (Mb(X(s1)) ∗Mb(X(s2))) · P.
6. Step I8. Compute c = k · (Hash(IDt) + X(s1) ∗ d) mod n.
7. Step I9. Verify if c = 0. If yes, recompute c using a different k.
8. Step I10. T→R: {IDt, (d, c)}.

TAG VERIFICATION

Reader R

1. Step V1. Choose a random integer rs ∈ Zn.
2. Step V2. Compute public key pr = rs · P.
3. Step V3. Verify if d, c ∈ Zn.
4. Step V4. If true, compute h = Hash(IDt).
5. Step V5. Compute w = c−1 mod n, u1 = zw mod n, and u2 = dw mod n respectively.
6. Step V6. Compute curve point (x, y) = u1 · P + pr.
7. Step V7. Verify if r = x mod n. If true, authenticate tag T.

Cryptography 2017, 1, 9 10 of 25

4.2.2. Analysis of Moosavi et al.’s Protocol

This protocol is for an RFID implant system that has applications in microchip implants.
The identities are the tag that is implanted and the reader that verifies (and authenticates) the tag.
Communication between the tag and the reader is through an insecure network. Additionally, the
reader is connected to a database through a secured channel, so the reader and database are considered
to be a single entity for analysis purpose [1]. The protocol uses ECC techniques twice, once during
tag identification (Step I4 of Algorithm 4) and once during tag verification (Step V6 of Algorithm 4).
However, in the course of this work, it became clear that the tag verification phase has a dangling
step in Step V6. The use of variable u2 in the verification process is not mentioned in this protocol.
Furthermore, from [33], the description of verification variable r of Step V7 is not mentioned in
this protocol.

Figure 6. Notations for Moosavi et al.’s protocol.

4.2.3. Clogging Attack on Moosavi et al.’s Protocol

The security analysis of [33] has been performed as in Section 5 of their paper [33]. The adversary
A has the same power as assumed by Moosavi et al. A needs to be able to read and modify the
contents of messages over an insecure channel during the tag identification and tag verification phases
of the protocol [1]. The line of attack in this work is a denial of service where the objective of A is to
bring down the whole RFID system. There are two steps (a map-to-point conversion in Step V6 and a
scalar multiplication in Step V2) where ECC techniques are used that A can target [1]. However, since
it would be more profitable to render the reader R useless, the line of attack chosen here will target
bringing down the reader R, such that it would not be able to provide service to legitimate tags.

1. A intercepts a valid message of T→R: {IDt, (d, c)} from Step I10.
2. Since the message is unencrypted, A can always change the (d, c), such that d, c ∈ Zn holds

(though Amight not need to).
3. A just relays {IDt, (d, c)} to R.

The following is performed by the reader R:

1. Step V1. Choose a random integer rs ∈ Zn.
2. Step V2. Compute public key pr = rs · P.
3. Step V3. Verify if d, c ∈ Zn.
4. Step V4. If true, compute h = Hash(IDt).
5. Step V5. Compute w = c−1 mod n, u1 = zw mod n, and u2 = dw mod n respectively.
6. Step V6. Compute curve point (x, y) = u1 · P + pr.
7. Step V7. Verify if r = x mod n. If true, authenticate tag T.

Cryptography 2017, 1, 9 11 of 25

A would make the reader R repeat Steps V1 through V7 to compute the ECC steps several times.
A can change all of the incoming login request messages from any legitimate tag to R. Since the ECC
steps are computationally intensive [15], the victimized reader R spends considerable computing
resources doing useless ECC computations (a map-to-point conversion in Step V6 and a scalar
multiplication in Step V2) along with the other steps, V1, V3 through V5 and V7, rather than any real
work. Thus, A clogs R with useless work and therefore denies any legitimate tag (user) any service.
A needs only an ID of a single valid tag to perform the clogging attack [1].

It should be noted that even DoS-resilient mechanisms (e.g., timeout or locking the user account
for a period of time after a predefined number of login failures) are introduced on reader R’s side;
it may be not a real obstacle for attacker A, as it can initialize new sessions with different intercepted
identities in an interleaving manner. Hence, A can potentially perform the above attack procedure
continuously. If distributed DoS attacks are launched based on this strategy, the consequences will be
more serious [1].

4.2.4. Proposed Countermeasures from the Attack

At the beginning of the authentication phase, the reader could check whether the network address
of the tag is valid. It has to know the network addresses of all of the registered legitimate tags. In spite
of that, A could spoof the network address of a legitimate tag and replay the tag verification message.
To prevent this spoofing, a cookie exchange step could be added at the beginning of the tag verification
phase of Moosavi et al.’s protocol [1]. This step has been designed as in the well-known Oakley key
exchange protocol [34].

1. The tag T chooses a pseudo-random number n1 and sends it along with the message {IDt, (d, c)}.
2. The reader R, upon receiving the message, acknowledges the message and sends its own cookie

n2 to T.
3. The next message from T must contain n2, else T rejects the message and the tag verification request.

Security analysis of the fix: Had A spoofed T’s IP address, A would not get n2 back from R.
Hence, A succeeds only in having R send back an acknowledgment, but not in launching the
computationally-intensive ECC-based operations. Hence, the clogging attack is avoided by these
additional steps. It must be noted, however, that this process does not prevent the clogging attack, but
only repels it to some extent. This fix can fully work only if n1 and n2 are encrypted respectively by T’s
and R’s private keys for a secure communication [1].

4.3. Xu et al.’s Smart Card-Based Protocol

The next protocol we look at in this work is that of Xu et al. [26]. It is an ECC-based remote
authentication protocol involving smart cards. Xu et al.’s protocol in [26] is an improvement over its
predecessor, Li et al.’s protocol [35], which [26] proved to be vulnerable against the off-line password
guessing, user impersonation and the denial of service (DoS) attacks. The authors in [26] came up with
a new protocol, which they claim is immune against all three attacks.

We briefly present Xu et al.’s protocol. We then present a clogging attack on the protocol. Most of
the protocols they cite in their paper [26] are vulnerable to clogging attack. We then suggest a possible
fix against clogging attack for this protocol [1].

Cryptography 2017, 1, 9 12 of 25

4.3.1. Review of the Protocol

Xu et. al’s protocol works in five phases: registration, authentication, password change, card
revocation and user eviction. Figure 7 shows the notations used for the protocol.

We present the registration, authentication phases of the protocol in Algorithm 5. The other
phases are omitted since they are not needed to demonstrate the clogging attack [1].

Figure 7. Notations for Xu et al.’s protocol.

4.3.2. Clogging Attack on Xu et al.’s Protocol

The adversaryA has the same power as assumed by Xu et al’s [26] while exposing the weaknesses
of Li et al.’s protocol [35]. A needs to be able to read and modify the contents of messages over an
insecure channel during the authentication phase of the protocol [1].

1. A intercepts a valid login request ({CIDi, B1, R1}) from step Step A7.
2. A simply replays this login message to S.

Cryptography 2017, 1, 9 13 of 25

Algorithm 5: Xu et al.’s authentication protocol.
REGISTRATION PHASE

User Ui

1. Step R1. Choose identity IDi, password PWi.
2. Step R2. Choose ri
3. Step R3. Compute HPWi = h0(PWi ‖ ri)
4. Step R4. Ui→S: {IDi, HPWi} through a secure channel.

Server S

1. Step R5. Check IDi, choose N
2. Step R6. Compute ki = h0(Xs ‖ IDi ‖ N) and Wi = ki ⊕ HPWi.
3. Step R7. Store {Wi, P, Ppub} into smart card.
4. Step R8. Store {IDi, N} in the server’s database.
5. Step R9. S→Ui: The smart card.

User Ui

1. Step R10. Upon receiving the smart card from S, Ui enters stores ri in it.

AUTHENTICATION

User Ui

1. Step A1. Ui inserts his smart card and inputs IDi, and PWi.
2. Step A2. Smart card chooses random ru ∈ Z∗n.
3. Step A3. Compute HPWi = h0(PWi ‖ ri)
4. Step A4. Compute R1 = ru × P = (R1x, R1y), R2 = ru × Ppub = (R2x, R2y).
5. Step A5. Compute B1 = h0((Wi ⊕ HPWi) ‖ h0(R1x ‖ R2x ‖ R1y ‖ R2y)).
6. Step A6. Compute CIDi = IDi ⊕ h0(R2x ‖ R2y).
7. Step A7. Ui→S: {CIDi, B1, R1}.

Server S

1. Step A8. Compute R′2 = Xs × R1, ID′i = CIDi ⊕ h0(R′2x ‖ R′2y), ki = h0(Xs ‖ ID′i ‖ N).
2. Step A9. Verify if B1 = h0(ki ‖ h0(R1x ‖ R′2x ‖ R1y ‖ R′2y)). Abort if not true, continue if true.
3. Step A10. Choose random rs ∈ Z∗n.
4. Step A11. Compute R3 = rs × P = (R3x, R3y), Ks = rs × R1 = (Ksx, Ksy).
5. Step A12. Compute B2 = h0(ki ‖ h0(R′2x ‖ R′2y)).
6. Step A13. Compute B3 = h1(R1x ‖ R1y ‖ R3x ‖ R3y ‖ IDi ‖ S ‖ B2 ‖ Ksx ‖ Ksy).
7. Step A14. Compute session key sks = h2(R1x ‖ R1y ‖ R3x ‖ R3y ‖ S ‖ IDi ‖ B2 ‖ Ksx ‖ Ksy).
8. Step A15. S→Ui: {R3, B3}.

User Ui

1. Step A16. Compute Ku = ru × R3 = (Kux, Kuy) and B′2 = h0((Wi ⊕ HPWi) ‖ h0(R2x ‖ R2y)).
2. Step A17. Verify if B′3 = h1(R1x ‖ R1y ‖ R3x ‖ R3y ‖ IDi ‖ S ‖ B2 ‖ Kux ‖ Kuy). Abort if not true,

continue if true.
3. Step A18. Compute session key sks = h2(R1x ‖ R1y ‖ R3x ‖ R3y ‖ S ‖ IDi ‖ B2 ‖ Kux ‖ Kuy).

Lemma 1. The server S is forced to perform Steps A8 through A15 if {CIDi, B1, R1} is valid.

Proof. The only step that could prevent the server S from executing further steps is Step A9. We claim
B1 = h0(ki ‖ h0(R1x ‖ R′2x ‖ R1y ‖ R′2y)) would always be true if B1 and R1 are valid. To prove
our claim, we note B1 = h0((Wi ⊕ HPWi) ‖ h0(R1x ‖ R2x ‖ R1y ‖ R2y)). Plugging in the value of
Wi = ki ⊕ HPWi, we have B1 = h0(ki ‖ h0(R1x ‖ R2x ‖ R1y ‖ R2y)). Now, R1 = ru × P = (R1x, R1y),
R2 = ru × Ppub = (R2x, R2y) and R′2 = Xs × R1. Therefore, if we have a valid B1 and R1, the values of
R2 and R′2 always match, which proves the claim.

The adversary A replays the message {CIDi, B1, R1} several times and makes the server S
compute Steps A8 through A15 (by Lemma 1). These steps contain several scalar multiplications and
map-to-point conversations. A could potentially store all of the incoming login request messages
from any legitimate user to S for future replay. Since the mathematical operations in the steps are
computationally intensive, the victimized server spends considerable computing resources doing
useless computations rather than any real work. Thus, A clogs S with useless work and therefore

Cryptography 2017, 1, 9 14 of 25

denies any legitimate user any service. A needs only one message from a single valid user to perform
the clogging attack repeatedly [1].

However, as [26] noted, the adversary A cannot get a legitimate access through this replay attack.
Since ru will be different each time, the check B′2 = h0((Wi ⊕ HPWi) ‖ h0(R2x ‖ R2y)) on the user’s
side will not pass. However the intention of A here is not to gain illegitimate access, but to bring down
the server by launching a clogging attack [1].

Clogging attack performed on other similar schemes: The clogging attack performed on [26]
can also be performed on Li’s protocol [35]. The clogging attack on Li’s protocol is more effective
because Li’s protocol [35] uses the most computationally-intensive bilinear pairing operation. Both
the protocols by [26,35] are vulnerable because the user’s smart card does not encrypt the message it
sends to the server for login and authentication. Thus, the adversary has the chance to manipulate
the message.

Proposed countermeasures from clogging attack: Replay attacks on most smart card-based
protocols are possible because their security relies on computationally-intensive operations (in this
case ECC), and the messages are not encrypted by default. This vulnerability is often overlooked, since
the natural result of a replay is not a DoS. An approach to reducing these attacks on Xu and Wu’s
protocol (and smart card based protocols in general) would be:

1. Ui uses a time stamp T in Step A7, and S verifies it in Step A8. The time stamp also must be
encrypted in some form, so that A cannot tamper with it.

2. S checks whether multiple login requests frequently comes from the same user. This reduces the
chances of a reply.

The chances of a replay are reduced, but not eliminated, because A can obtain many valid user
IDs (they are public) and send fake login requests periodically from different IDs. Alternatively, A can
store various (valid) login requests over time and replay them periodically [1].

Yet another way to prevent clogging attack: The mathematical basis of the protocols’ vulnerability
to clogging attacks is modular exponentiation. An approach to completely avoiding clogging attacks
would be to encrypt all of the messages between Ui and S. Doing so would require a key exchange
step, where each user has a private key and a public key [1]. The server knows the public key and can
decrypt a message encrypted by a user’s private key. Thus, the server makes sure that the message is
from a valid user before it computes the costly modular exponentiation. This approach comes with
a cost and depends on the level of security desired. This countermeasure works for all protocols
(whether or not they are smart card based) [1].

4.3.3. Weak Authentication and SQL Injection Attack

The proposed scheme in this paper does not mention how the ID and N are stored in the account
table in the registration phase. The paper does not mention if an encryption is present at the database
level. Under the assumption that the account table is accessible to an untrusted source, ID and N
can be dynamically constructed in the query thus leading to a SQL injection attack. Furthermore,
under the assumption that ID and N are unprotected, a weak authentication attack is possible, as well.
These attacks lead to loss in confidentiality, authentication, authorization and integrity. Hence, we
conclude that the database layer authentication is not strong enough to protect unknown users from
gaining access to the database.

Proposed security countermeasures for the weak authentication attack: SQL injection attacks can
be defeated by parsing and validating SQL communications to make sure they are not corrupted. If the
protocol shows how the ID and N are stored and protected in a table, then the attack will be minimized.
The weak authentication attack can be protected by adding more access layers and by enforcing strict
user privileges.

Cryptography 2017, 1, 9 15 of 25

4.3.4. Unauthorized Access Attack

In [26], in Sections 4.4, card revocation, and 4.5, user eviction, talk about a smart card being
stolen and verified after being stolen. This can lead to a potential risk. If the smart card is stolen
by the attacker, the user ID and the password will be accessible to the attacker. The attacker can
enter malicious input and potentially hack the database server. Under the assumption that the
smart card re-registration phase is unprotected, the unauthorized access attack is possible on this
protocol. For example, an unauthorized client can steal the smart card or eavesdrop on the information
exchanged between a legitimate client and directory server. This critical information such as user ID
and password can be used to cause other major attacks.

Proposed security countermeasures against unauthorized access attack: To counter unauthorized
access, card revocation should be handled by more efficient algorithms. Authentication methods,
password policies and access control mechanisms provided by the directory server offer efficient ways
of preventing unauthorized access. A network firewall, consisting of a hardware device, software
program or a combination of the two, protects an internal computer network against malicious access
from the outside. Network firewalls may also be configured to restrict access to the outside from
internal users.

4.4. He et al.’s RFID-Based Authentication Protocol

The next protocol we analyze in this work is due to [36]. This is an RFID-based authentication
protocol to preserve identity privacy. He et al.’s protocol is an improvement over [37], which proved
to be vulnerable against impersonation and insider attacks. Figure 8 shows the notations used for
the protocol.

Figure 8. Notations for He et al.’s protocol.

This protocol has been proven to be immune to various attacks [36]. We present a clogging attack
on the protocol and observe that it is inherently vulnerable to clogging, weak authentication and SQL
injection attacks. The proposed ECC-based RFID authentication scheme consists of two phases, i.e.,
the setup phase and the authentication. We present the protocol in Algorithm 6.

4.4.1. Clogging Attack on He et al.’s Protocol

The adversary A has the same power as assumed by [36] while exposing the weaknesses of Liao’s
protocol [37]. A needs only to be able to read and modify the contents of messages over an insecure
channel during the authentication phase. The steps taken by A to perform the clogging attack are
as follows:

• A intercepts a valid login request m2 = R2, AuthT from Step A4.
• Since the message is unencrypted, A changes AuthT to any random garbage value AuthA.
• A then sends {R2, AuthA} to the server S.

The following is performed by the server S:

Cryptography 2017, 1, 9 16 of 25

1. The server S calculates TKS1 = XSR2, TKS2 = r1R2 and X′T = (AuthA⊕TKS2)− TKS1.
2. The server searches its database for X′T . It is not found, and therefore, the server terminates

the session.

A would now repeat the steps several times and make the server S compute the elliptic curve
operations several times in Steps A5 and A6. A can potentially change all of the incoming login
request messages from any legitimate tag to S. Thus, A clogs S with useless work (ECC operations)
and therefore denies any legitimate user any service. A only requires the value of XT of a single valid
user to perform the clogging attack repeatedly.

Algorithm 6: He et al.’s protocol.
SET UP PHASE

1. Step S1. The server S chooses a random number xS ∈ Z∗n such that PS = xSP.
2. Step S2. The server S chooses a random point XT on the elliptic curve E for each tag.
3. Step S3. S stores the ID-verifier XT and parameters into the tag’s memory. The server

also keeps xS as its private key, and stores XT into its database.

AUTHENTICATION PHASE

Server S

1. Step A1. Choose a random number r1 ∈ Z∗n then computes R1 = r1P.
2. Step A2. S→T: m1 = R1.

Tag T

1. Step A3. Choose a new random number r2 ∈ Z∗n then calculates R2 = r2P, TKT1 = r2PS,
TKT2 = r2R1, and AuthT = (XT + TKT1)⊕ TKT2.

2. Step A4. T→S: m2 = R2, AuthT .

Server S

1. Step A5. The server S calculates TKS1 = XSR2, TKS2 = r1R2, and
XT = (AuthT ⊕ TKS2)− TKS1.

2. Step A6.The server search its database for XT . If it is not found, the server terminates
the session. Otherwise, the server calculates AuthS = (XT + 2TKS1)⊕ (2TKS2).

3. Step A7. S→T: m3 = {AuthS}.

Tag T

1. Step A8. The tag checks whether (XT + 2TKT1)⊕ (2TKT2) and AuthS are equal. If they
are not equal, the tag terminates the session, otherwise, the server is authenticated.

Proposed countermeasures for the clogging attack: One reason for the vulnerability of this
protocol is that the messages m1, m2, m3 are not encrypted; if the adversary gains access to the message
m2, then repeated transmission of this message can clog the server. Furthermore, the timestamp
checking is not used between the tag and the server. Although, random numbers are generated in
every step and used for real-time calculation, when messages are not encrypted and timestamps are
not used, the messages are open to the adversary to modify and replay. The solution could be to add a
timestamp Ti to Ri or to m2. The server can check the validity of the timestamp before it performs the
elliptic curve operations.

Cryptography 2017, 1, 9 17 of 25

4.4.2. Weak Authentication Attack

The authors in the paper [36] do not mention how XT (ID identifier) is stored in the database.
Weak authentication schemes allow attackers to assume the identity of legitimate database users.
Specific attack strategies include brute force attacks, social engineering, and so on [27]. Under the
assumption that XT is unprotected, the adversary can gain access to XT resulting in unauthorized
data access, corruption or availability. Hence, weak authentication attack is possible assuming the
database layer authentication is not strong enough to protect unknown users from gaining access to
the database.

Proposed security countermeasures for the weak authentication attack: To prevent weak
authentication attack, the implementation of passwords or two-factor authentication is a must [27].
Had the protocol [36] included security and protection for XT , the weak authentication attack could
have been avoided. The weak authentication attack can also be prevented by adding more access
layers and by enforcing stricter user privileges.

4.4.3. Desynchronization Attack

A desynchronization attack is a typical RFID related threat in which a tag’s key stored in the
back-end database and the tag’s memory would not be the same, because an attacker blocks the
communication between the parties. The paper [36] mentions that XT is not performed (XT is an ID
identifier). Their paper claims that the proposed scheme provides scalability, availability and DoS
resistance by not updating XT . To provide privacy protection, most RFID authentication schemes
update the tag’s secret information, in the back-end database, as well as in the tag, after a successful
protocol run. Therefore, synchronization of secret information between the database and the tag is
crucial for subsequent authentications. The most serious threat to which an RFID tag is vulnerable is
the desynchronization attack. During the past few years, RFID technology has become ubiquitous as
the cost got lower; it is used in every field, and hence, this vulnerability raises a threat in the area of
data protection.

Proposed security countermeasures for the desynchronization attack: One of the countermeasures
is to update the XT after each run. It is an intractable task to design the lightweight RFID authentication
protocol, because the security engineer must cope with the trade-offs among security, cost and
performance. In the future, the security engineers can be made aware of the trade offs so as to
build an efficient protocol.

4.5. Hui et al.’s Protocol

The next protocol we analyze is due to Hui et al. [38]. In that paper, after pointing out the weakness
of the password change phase of Islam et al. [39] and after the evaluation of several other password
authentication schemes, [38] have presented a new password-based authentication and update scheme
using ECC and showed that it can resist various attacks. However, in this work, the protocol is shown
to be inherently vulnerable to clogging, weak authentication and SQL injection attacks.

4.5.1. Review of the Protocol

Hui et al.’s protocol works in four stages: registration phase, password authentication phase,
session key distribution phase and password change phase. We present the protocol in Algorithm 7.
Figure 9 shows the notations used for the protocol.

Cryptography 2017, 1, 9 18 of 25

Algorithm 7: Hui et al.’s protocol.
REGISTRATION PHASE

Client C

1. Step C1. Client C chooses identity IDC, pwC.
2. Step C2. UC = pwC · P.
3. Step C3. Client C sends IDC and UC to the server S.

Server S

1. Step C4. Server S stores IDC and UC in a write protected file.

PASSWORD AUTHENTICATION PHASE

Client C

1. Step C5. Enter IDC, pwC.
2. Step C6. Choose random number rC ∈ Z∗n.
3. Step C7. Compute WC = rC · pWC ·US, RC = rC ·UC = (kx, ky), YC = rC · P.
4. Step C8. Compute M1 = Ekx(IDC, YC).
5. Step C9. Client C sends message (IDC, WC, M1) to server S.

Server S

1. Step C10. Upon receiving the messages, compute R′C = WA · d−1
s = (k′x, k′y).

2. Step C11. Check if ID′C = IDC, e(Y′C, UC) = e(R′C, P) hold. If the equations do not
hold, then stop the session.

3. Step C12. Choose rs ∈ Z∗q .
4. Step C13. Server S sends message M2 = R′C + WS, M3 = H(WS) to Client C.

Client A

1. Step C14. Compute W ′S = M2 − RC.
2. Step C15. Check if H(W ′S) = M3 holds. If yes, calculate M4 = H(R′C, W ′S) and send it

to Server S, else abort.

Figure 9. Notations for Hui et al.’s protocol.

The last two phases are omitted since they are not important to the clogging attack demonstration.
The protocol claims to be immune against replay attacks; however, we find that it is vulnerable against
other attacks, as well.

4.5.2. Clogging Attack on Hui et al.’s Protocol

As before, we only need attacker A to be able to read and modify the contents of messages over
an insecure channel (during the login and authentication phase of the protocol).

• A intercepts a valid login request (IDC, WC, M1) from Step C9
• Since the message is unencrypted, A changes IDC to IDB
• A then sends (IDB, WC, M1) to the server S

Cryptography 2017, 1, 9 19 of 25

The server S performs Steps C10 through C15 since the ID matches. Awould now repeat the steps
several times and make the server S compute the computationally-intensive elliptic curve bilinear
mapping function of Step C11 and collision-resistant hash function of Steps C13, C15 several times.
Thus, as in the previous case, the server gets clogged doing unnecessary computations.

Proposed security countermeasures against the clogging attack: The vulnerability of this protocol
is due to the fact that the message (IDC, WC, M1) is not encrypted and the timestamp is not used.
The protocol can be strengthened by using strong encryption of the messages M1, M2 and M3.
Furthermore, adding the timestamp to the messages at the time of run will ensure privacy and
thus prevent replay attacks, which leads to clogging.

4.5.3. Unauthorized Access Attack

Unauthorized access is the act of gaining access to a network, system, application or other resource
without permission. Unauthorized access could occur if a user attempts to access an area of a system
they should not be accessing. Unauthorized access could be the result of unmodified default access
policies or the lack of clearly-defined access policy documentation [40]. In the paper, [38], IDC and
UC are stored in a write-protected file in Step C4 of the registration phase. Their paper [38] does not
mention how the file is stored and also if it is protected using standard security measures. Under the
assumption that the IDC and UC are unprotected, an unauthorized client could potentially steal the
write protected file or eavesdrop on the information exchanged between a legitimate client and the
directory server. When the file containing the ID and password becomes accessible to an unauthorized
user, the protocol is compromised under this attack.

Proposed security countermeasures against the unauthorized access attack: Unauthorized access
can occur from inside the organization or, if the organization is connected to an extranet or to the
Internet, from outside. The authentication methods, password policies and access control mechanisms
provided by the directory server offer efficient ways of preventing unauthorized access. A network
firewall protects a computer network from unauthorized access. Network firewalls may be hardware
devices, software programs or a combination of the two. Network firewalls guard an internal computer
network against malicious access from the outside. Network firewalls may also be configured to
restrict access to the outside from internal users [40].

4.5.4. Unauthorized Tampering Attack

Tampering is the unauthorized modification of data by an unauthorized user. When an unauthorized
user gains access to the write-protected file in which IDC and UC are stored or if they intercept
communication between the directory server and a client application, they have the potential to modify
the directory data. These unauthorized modifications may include:

• Unauthorized modification of data
• Unauthorized modification of configuration information
• Alteration or cancellation of client’s request to the server
• Alteration of the server’s response to the client

Adversary A can cause all other kinds of attacks if the write-protected file is accessible to them as
it contains all of the user identity’s and passwords.

Proposed security countermeasures against the unauthorized tampering attack: An adversary A
could alter a client’s request to the server, cancel the request, or change the server’s response to the
client. The countermeasures include using the secure socket layer (SSL) protocol to solve this problem
by signing information at either end of the connection. Another solution could be to store the IDA and
UA in the cloud instead of a physical device.

4.6. Ammayappan et al.’s Protocol

The final protocol considered in this work is that of Ammayappan et al. [41]. This is a
key agreement protocol and works in a mobile ad hoc network (MANET)-based environment.

Cryptography 2017, 1, 9 20 of 25

Ammayappan et al. show their protocol to be immune to the man-in-the-middle (MITM) attack,
and they claim that the protocol’s security is based on the ECC logarithm.

4.6.1. Review of the Protocol

The protocol by [41] works in two phases: registration phase and active phase. Figure 10 shows
the notations used for the protocol.

Figure 10. Notations for Ammayappan et al.’s protocol.

This protocol uses trusted third party (TTP) as a certifying authority. The protocol is presented in
Algorithm 8.

4.6.2. Man-In-The-Middle Attack on the Protocol

The adversary E has the same power as assumed by Ammayappan et al. in [41] while performing
the security analysis of their protocol. E is allowed to read and modify contents of messages over an
insecure channel (during the active phase of the protocol). The line of our attack is an MITM attack
where the objective of E would be to impersonate one party (e.g., A) while communicating with the
other (e.g., B). E is allowed to read and modify contents of messages over an insecure channel during
the active phase of the protocol. Ammayappan et al. claim that their protocol ensures security through
the elliptic curve discrete logarithm. However, the protocol can be compromised even with ECC being
used in the protocol as a security measure.

Cryptography 2017, 1, 9 21 of 25

Algorithm 8: Ammayappan et al.’s protocol.
Node A

1. Step A1. Choose a random number rA and computes QA = rA · P as its public key.
2. Step A2. Node A sends AReq(TokenA, RNA, QA) to Node B.

Node B

1. Step B1. Verify TokenA.
2. Step B2. Generate a random nonce RNB.
3. Step B3. Select a random integer rB and compute QB = rB · P.
4. Step B4. Compute SKBA = H((rB + b) · (QA + PubA)‖IDA‖IDB‖RNA‖RNB),

HMACB = H(SKBA‖H((QA · x + QB · x)‖(QA · y + QB · y)‖IDA‖IDB‖RNA‖RNB).
5. Step B5. Construct message m = RNA‖RNB‖QB‖HMACB.
6. Step B6. Generate SigB(m) = (r, s).
7. Step B7. Send Arep(m, SigB(m)) to Node A.

Node A

1. Step A3. Verify B’s signature SigB(m).
2. Step A4. Verify received RNA with previous RNA, if no match then
3. Step A5. Compute SKAB = H((rA + a) · (QB + PubB)‖IDA‖IDB‖RNA‖RNB),

HMACA = H(SKAB‖H((QA · x + QB · x)‖(QA · y + QB · y)‖IDA‖IDB‖RNA‖RNB).
4. Step A6. Compare computed HMACA with received HMACB for integrity check.
5. Step A7. Send an acknowledgment SigA(RNB‖HMACB) to B.

Proposed countermeasures for the man-in-the-middle attack: The vulnerability in this protocol
lies in the fact that the mechanism of public key distribution is not mentioned in it, e.g., how node A
receives the public key (PubB) of node B is not mentioned. The attack in Algorithm 9 succeeds if the
attacker E manages to make A believe that PubE is the public key of B. The countermeasure to this
attack is to use an integrity check in the messages sent from the TTP to nodes. The following steps
may be used to securely distribute (public) keys by the TTP. It is assumed that the TTP has a database
storing public keys of all users.

1. When node A wants to communicate to B, it sends the following message to the TTP: A⇒ TTP:
SigA(B‖TA), where TA is the current timestamp of A’s system.

2. TTP upon receipt of the message validates the timestamp.
3. TTP then sends the public key of B to A using the following message: TTP ⇒ A:

SigTTP(PubB‖TTTP‖H(S)), where TTTP is the current timestamp of TTP’s system, and S is a
secret value shared between A and the TTP.

4. Upon receipt of the message, A validates the timestamp, recomputes H(S), using the hash and
the secret value, and verifies it with the received H(S).

Security analysis of the fix: As mentioned before, the intention of the attacker E would be to
somehow send its own public key PubE to A, making A believe it has the public key of B. To achieve
this, E could do either of the following:

1. • Change A’s request to the TTPto SigA(E‖TA).
• Therefore, have the TTP send back SigTTP(PubE‖TTTP‖H(S)) to A.

2. Try to change the message SigTTP(PubB‖TTTP‖H(S)) to SigTTP(PubE‖TTTP‖H(S)).

E would not be able to do the first because E would not know the private key of A needed to
create a valid (duplicate) signature of A. The timestamp provides protection against a possible replay
of an old message by E. For the second, since E does not know the secret value S, it will not be able to
modify the message.

Cryptography 2017, 1, 9 22 of 25

Algorithm 9: Ammayappan et al.’s protocol under MITM attack.
Node A

1. Step A1. Choose a random number rA and computes QA = rA · P as its public key.
2. Step A2. Node A sends AReq(TokenA, RNA, QA) to Node B.

Adversary E

1. Step E1. Modify the message to AReq(TokenA, RNE, QE) and sends to Node B.

Node B

1. Step B1. Compute SKBE = H((rB + b) · (QE + PubE)‖IDE‖IDB‖RNE‖RNB),
HMACB = H(SKBE‖H((QE · x + QB · x)‖(QE · y + QB · y)‖IDE‖IDB‖RNE‖RNB).

2. Step B2. Construct message m1 = RNE‖RNB‖QB‖HMACB.
3. Step B3. Generate SigB(m1) = (r, s).
4. Step B4. Send Arep(m1, SigB(m1)) to Node A.

Adversary E

1. Step E2. Intercept Arep(m1, SigB(m1)) sent by B (to A).
2. Step E3. Compute SKAE = H((rE + e) · (QA + PubA)‖IDA‖IDE‖RNA‖RNE),

HMACE = H(SKAE‖H((QA · x + QE · x)‖(QA · y + QE · y)‖IDA‖IDE‖RNA‖RNE)
3. Step E4. Construct message m2 = RNA||RNE||QE||HMACE
4. Step E5. Generate SigE(m2) = (r, s).
5. Step E6. Send Arep(m2, SigE(m2)) to Node A.

Node B

1. Step B5. Compute SKBE = H((rE + e).(QB + PubB)‖IDE‖IDB‖RNE‖RNB),
HMACE = H(SKBE‖H((QE · x + QB · x)‖(QE · y + QB · y)‖IDE‖IDB‖RNE‖RNB).

Node A

1. Step A3. Compute SKAE = H((rA + a) · (QE + PubE)‖IDA‖IDE‖RNA‖RNE),
HMACA = H(SKAE‖H((QA · x + QE · x)‖(QA · y + QE · y)‖IDA‖IDE‖RNA‖RNE).

5. Summary of the Results

In order to demonstrate the vulnerabilities of the five protocols considered, the author designed
generalized cryptanalysis algorithms to perform MITM, database and clogging attacks on the protocols
that use ECC as a security measure. First, the protocols of [26,33,36,38] were shown to be vulnerable to
the clogging attack. The vulnerability lies in the use of computationally-intensive ECC by the server in
the authentication process. In this analysis, it was observed that a combination of encryption, a nonce
and a timestamp would prevent clogging attack vulnerability in these three protocols. These protocols
were also shown to be vulnerable to database attacks, such as weak authentication, SQL injection,
desynchronization, unauthorized access, unauthorized tampering and database protocol vulnerability.
In this analysis, it was observed that using input validation, an updated ID process, a network firewall
and encryption would prevent database attack vulnerability in these protocols. The key agreement
protocol in [41] was analyzed next. Ammayappan et al. showed their protocol in [41] to be immune
to the MITM attack, and they claimed that the protocol’s security is based on the ECC algorithm.
However, in this work, their protocol was shown to be inherently vulnerable to the MITM attack.

Table 2 summarizes the vulnerabilities found in the protocols analyzed. A ‘Yes’ in a cell indicates
that we found the designated protocol vulnerable to the designated attack through a static analysis, and

Cryptography 2017, 1, 9 23 of 25

a ‘No’ means that no vulnerability was found. It is evident that most of the protocols are vulnerable to
classical clogging and database attacks.

Table 2. Summary of the vulnerabilities.

Protocol Clogging MITM Weak
Authentication

SQL
Injection

Unauth
Access

DB
Vulnerability Desynch Unauth

Tampering
Moosavi
et al. [33] Yes No No No No No No No

Xu
et al. [26] Yes No Yes Yes Yes No No No

Xu
et al. [36] Yes No Yes No No Yes Yes No

Hui
et al. [38] Yes No No No Yes No No Yes

Ammayappan
et al. [41] No Yes No No No No No No

The countermeasures are also summarized in Table 3. It must be emphasized that as everything
has costs involved, the level of security needed will determine the nature of the counter-measure.

Table 3. Summary of the results.

Protocol Mode of Attack Countermeasure

Moosavi et al. [33] Classical Clogging Validity Checks

Xu et al. [26]
Classical Clogging, Weak
Authentication, SQL Injection,
Unauthorized Access

Efficient Algorithm, input
validation, Timestamp

He et al. [36]
Classical Clogging, Weak
Authentication, Database Protocol
Vulnerability, Desynchronization

Input Validation, Updating of ID,
Encryption, Timestamp

Hui et al. [38] Classical Clogging, Unauthorized
Access, Unauthorized Tampering

Usage of SSL, Timestamp, Network
firewalls

Ammayappan et al. [41] Man in the Middle Securing Public Key Management

6. Conclusions

In this work, clogging attacks and database attacks have been demonstrated on five advanced
ECC-based authentication schemes. The goal was to uncover the subtleties and challenges in designing
such protocols. ECC techniques guarantee a level of security. However, they might still contain an
easily-exploitable vulnerability if they are used without an additional level of protection. Hence, some
level of protection should be added to them to guarantee total security against clogging attacks.

It is concluded that ECC guarantees a level of security, but it might create a vulnerability if it
is used without an additional level of protection. Most of the multi-factor authentication and key
exchange protocols in the literature, whether smart card or RFID based, rely on ECC for their security.
Hence, an additional layer of defense should be added to them to guarantee increased security against
MITM, database and clogging attacks.

Directions of Future Research

Research on elliptic curve cryptography authentication protocols is ongoing. This research has
been conducted using static analysis. An obvious next step is to test the dynamic vulnerability of
these protocols. The documentation presented here will lay the groundwork for performing dynamic
analysis on ECC-based protocols. This documentation provides detailed steps and procedures to
perform static analysis. Our suggested countermeasures on strengthening the security flaws in the

Cryptography 2017, 1, 9 24 of 25

above protocols will provide a strong basis to perform dynamic analysis. Other kinds of security flaws
could potentially be discovered while performing dynamic analysis.

Acknowledgments: The research work presented in this article was supported in part by a seed grant awarded
by the University of North Florida to the first author. The second author was supported as a research assistant
from that grant. The authors thank the two anonymous reviewers for improving the quality of presentation of
this article.

Author Contributions: The ideas of cryptanalysis of the illustrated protocols in this work was conceived by S.R.
(the first author). C.K. (the second author) carried out the statical analysis to establish these ideas. The manuscript
was written mostly by S.R.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khatwani, C.; Roy, S. Security Analysis of ECC Based Authentication Protocols. In Proceedings of
the 2015 International Conference on Computational Intelligence and Communication Networks (CICN),
Jabalpur, India, 12–14 December 2015; pp. 1167–1172.

2. Burr, J. Elliptical Curve Cryptography (ECC). Available online: http://searchsecurity.techtarget.com/
definition/elliptical-curve-cryptography/ (accessed on 19 July 2016).

3. Abidi, A.; Bouallegue, B.; Kahri, F. Implementation of elliptic curve digital signature algorithm (ECDSA).
In Proceedings of the 2014 Global Summit on Computer & Information Technology (GSCIT), Sousse, Tunisia,
14–16 June 2014; pp. 1–6.

4. Choi, Y.; Lee, D.; Kim, J.; Jung, J.; Nam, J.; Won, D. Security enhanced user authentication protocol for
wireless sensor networks using elliptic curves cryptography. Sensors 2014, 14, 10081–10106.

5. Chuang, Y.H.; Hsu, C.L.; Shu, W.; Hsu, K.C.; Liao, M.W. A Secure Non-interactive Deniable Authentication
Protocol with Certificates Based on Elliptic Curve Cryptography. In New Trends in Intelligent Information and
Database Systems; Springer: Berlin, Germany, 2015; pp. 183–190.

6. Jin, C.; Xu, C.; Zhang, X.; Zhao, J. A secure RFID mutual authentication protocol for healthcare environments
using elliptic curve cryptography. J. Med. Syst. 2015, 39, 1–8.

7. Yeh, H.L.; Chen, T.H.; Shih, W.K. Robust smart card secured authentication scheme on SIP using elliptic
curve cryptography. Comput. Stand. Interfaces 2014, 36, 397–402.

8. Zhang, L.; Tang, S.; Chen, J.; Zhu, S. Two-Factor Remote Authentication Protocol with User Anonymity
Based on Elliptic Curve Cryptography. Wirel. Pers. Commun. 2015, 81, 53–75.

9. Chande, M.K.; Lee, C.C. An improvement of a elliptic curve digital signature algorithm. Int. J. Internet
Technol. Secur. Trans. 2016, 6, 219–230.

10. Hwang, M.S.; Lee, C.C.; Lee, J.Z.; Yang, C.C. A secure protocol for bluetooth piconets using elliptic curve
cryptography. Telecommun. Syst. 2005, 29, 165–180.

11. Lee, C.C.; Li, C.T.; Weng, C.Y.; Jheng, J.J.; Zhang, X.Q.; Zhu, Y.R. Cryptanalysis and Improvement of an ECC-Based
Password Authentication Scheme Using Smart Cards; CSS. Springer: Milpitas, CA, USA, 2013; pp. 338–348.

12. Lo, J.W.; Lee, C.C.; Hwang, M.S.; Chu, Y.P. A secure and efficient ECC-based AKA protocol for wireless
mobile communications. Int. J. Innov. Comput. Inf. Control 2010, 6, 5249–5258.

13. Chande, M.K.; Li, C.T.; Lee, C.C. A CAE Scheme Using ECC Based Self Certified PKC. J. Comput. Sci. 2016,
12, 527–533.

14. Guide, R. Elliptical Curve Cryptography (ECC). Available online: http://www.sysax.com/ftblog/windows-
ftp/elliptic-curve-cryptography-ecc/ (accessed on 19 July 2016).

15. Farash, M.S.; Ahmadian-Attari, M. A Pairing-Free ID-Based Key Agreement Protocol with Different PKGs.
IJ Netw. Secur. 2014, 16, 143–148.

16. Bhargav-Spantzel, A.; Squicciarini, A.C.; Modi, S.; Young, M.; Bertino, E.; Elliott, S.J. Privacy preserving
multi-factor authentication with biometrics. J. Comput. Secur. 2007, 15, 529–560.

17. Owen, W.N.; Shoemaker, E. Multi-Factor Authentication System. U.S. Patent 7,373,515, 13 May 2008.
18. Sabzevar, A.P.; Stavrou, A. Universal multi-factor authentication using graphical passwords. In Proceedings

of the 2008 IEEE International Conference on Signal Image Technology and Internet Based Systems,
Bali, Indonesia, 30 November–3 December 2008; pp. 625–632.

http://searchsecurity.techtarget.com/definition/elliptical-curve-cryptography/
http://searchsecurity.techtarget.com/definition/elliptical-curve-cryptography/
http://www.sysax.com/ftblog/windows-ftp/elliptic-curve-cryptography-ecc/
http://www.sysax.com/ftblog/windows-ftp/elliptic-curve-cryptography-ecc/

Cryptography 2017, 1, 9 25 of 25

19. Chang, R.; Jiang, G.; Ivancic, F.; Sankaranarayanan, S.; Shmatikov, V. Inputs of coma: Static detection of
denial-of-service vulnerabilities. In Proceedings of the 2009 22nd IEEE Computer Security Foundations
Symposium, Port Jefferson, NY, USA, 8–10 July 2009; pp. 186–199.

20. Sullivan, N. A (Relatively Easy to Understand) Primer on Elliptic Curve Cryptography. Available
online: https://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-
curve-cryptography/ (accessed on 24 October 2013).

21. Hankerson, D.; Menezes, A.J.; Vanstone, S. Guide to Elliptic Curve Cryptography; Springer Science & Business
Media: Berlin, Germany, 2006.

22. Graham, J.; Olson, R.; Howard, R. Cyber Security Essentials; CRC Press: Boca Raton, FL, USA, 2016.
23. Koblitz, N. Elliptic curve cryptosystems. Math. Comput. 1987, 48, 203–209.
24. Koc, C.K. Elliptic Curve Cryptography. Available online: https://koclab.cs.ucsb.edu/ (accessed on

2 February 2017).
25. Garrett, K.; Talluri, S.R.; Roy, S. On vulnerability analysis of several password authentication protocols.

Innov. Syst. Softw. Eng. 2015, 11, 167–176.
26. Xu, L.; Wu, F. An improved and provable remote user authentication scheme based on elliptic curve

cryptosystem with user anonymity. Secur. Commun. Netw. 2015, 8, 245–260.
27. Higgins, K.J. Hacker’s Choice: Top Six Database Attacks. Available online: http://www.darkreading.com/

risk/hackers-choice-top-six-database-attacks/d/d-id/1129481?/ (accessed on 19 July 2016).
28. Winkler, D.C. Securing Your Password Database with Bcrypt. Available online: https://en.wikipedia.org/

wiki/Elliptic_curve_Diffie-Hellman/ (accessed on 19 July 2016).
29. Wikipedia. Elliptic Curve Diffie-Hellman. Available online: http://blog.mgm-tp.com/2013/02/securing-

your-password-database-using-bcrypt/ (accessed on 19 July 2016).
30. LaMacchia, B.A.; Manferdelli, J.L. New Vistas in elliptic curve cryptography. Inf. Secur. Tech. Rep. 2006,

11, 186–192.
31. Bos, J.; Kaihara, M.; Kleinjung, T.; Lenstra, A.K.; Montgomery, P.L. On the Security of 1024-Bit RSA and 160-Bit

Elliptic Curve Cryptography; EPFL-REPORT-164549, 2009.
32. Sherwood, T.; Irvine, C.; Huffmire, T.; Levin, T.; Valamehr, J.; Kaya Koc, C.; Kastner, R. A Qualitative Security

Analysis of a New Class of 3-D Integrated Crypto Co-processors. In Cryptography and Security: From Theory
to Applications; Springer Verlag GmbH: Heidelberg, Germany, 2012.

33. Moosavi, S.R.; Nigussie, E.; Virtanen, S.; Isoaho, J. An elliptic curve-based mutual authentication scheme for
RFID implant systems. Procedia Comput. Sci. 2014, 32, 198–206.

34. Orman, H. The OAKLEY Key Determination Protocol; Technical Report; University of Arizona Tucson:
Tucson, AZ, USA, 1998.

35. Li, C.T. A new password authentication and user anonymity scheme based on elliptic curve cryptography
and smart card. IET Inf. Secur. 2013, 7, 3–10.

36. He, D.; Kumar, N.; Chilamkurti, N.; Lee, J.H. Lightweight ECC based RFID authentication integrated with
an ID verifier transfer protocol. J. Med. Syst. 2014, 38, 1–6.

37. Liao, Y.P.; Hsiao, C.M. A secure ECC-based RFID authentication scheme integrated with ID-verifier transfer
protocol. Ad Hoc Netw. 2014, 18, 133–146.

38. Wang, S.-H.; Chang, S.-Q.; Wang, Z.W.; Sun, G.Z. A Password Authentication and Update Scheme Based on
Elliptic Curve Cryptography. Int. J. Adv. Comput. Technol. 2012, 4, 84–90.

39. Islam, S.H.; Biswas, G. Design of improved password authentication and update scheme based on elliptic
curve cryptography. Math. Comput. Model. 2013, 57, 2703–2717.

40. Telelink Telecommunication Services Ltd. Unauthorized Access Attack. Available online: http://itsecurity.
telelink.com/unauthorized-access-attack/ (accessed on 19 July 2016).

41. Ammayappan, K.; Negi, A.; Sastry, V.; Das, A.K. An ECC-based two-party authenticated key agreement
protocol for mobile ad hoc networks. J. Comput. 2011, 6, 2408–2416.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://arstechnica.com/security/2013/10/a-relatively-easy-to-understand-primer-on-elliptic-curve-cryptography/
https://koclab.cs.ucsb.edu/
http://www.darkreading.com/risk/hackers-choice-top-six-database-attacks/d/d-id/1129481?/
http://www.darkreading.com/risk/hackers-choice-top-six-database-attacks/d/d-id/1129481?/
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie-Hellman/
https://en.wikipedia.org/wiki/Elliptic_curve_Diffie-Hellman/
http://blog.mgm-tp.com/2013/02/securing-your-password-database-using-bcrypt/
http://blog.mgm-tp.com/2013/02/securing-your-password-database-using-bcrypt/
http://itsecurity.telelink.com/unauthorized-access-attack/
http://itsecurity.telelink.com/unauthorized-access-attack/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Problem Statement, Goal and Contribution
	Organization of This Paper

	ECC Background
	Computational Nature of ECC

	Framework for Cryptanalysis
	Clogging Attack
	Application of Algorithm 1
	Database Attack
	Man-In-The-Middle Attack
	Application of Algorithm 3

	Cryptanalysis of the Protocols
	Choice of Protocols
	Moosavi et al.'s Protocol for RFID Implant Systems
	Review of the Protocol
	Analysis of Moosavi et al.'s Protocol
	Clogging Attack on Moosavi et al.'s Protocol
	Proposed Countermeasures from the Attack

	Xu et al.'s Smart Card-Based Protocol
	Review of the Protocol
	Clogging Attack on Xu et al.'s Protocol
	Weak Authentication and SQL Injection Attack
	Unauthorized Access Attack

	He et al.'s RFID-Based Authentication Protocol
	Clogging Attack on He et al.'s Protocol
	Weak Authentication Attack
	Desynchronization Attack

	Hui et al.'s Protocol
	Review of the Protocol
	Clogging Attack on Hui et al.'s Protocol
	Unauthorized Access Attack
	Unauthorized Tampering Attack

	Ammayappan et al.'s Protocol
	Review of the Protocol
	Man-In-The-Middle Attack on the Protocol

	Summary of the Results
	Conclusions

