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Abstract: Many e-voting techniques have been proposed but not widely used in reality. One of the
problems associated with most existing e-voting techniques is the lack of transparency, leading to
a failure to deliver voter assurance. In this work, we propose a transparent, auditable, stepwise
verifiable, viewable, and mutual restraining e-voting protocol that exploits the existing multi-party
political dynamics such as in the US. The new e-voting protocol consists of three original technical
contributions—universal verifiable voting vector, forward and backward mutual lock voting, and
in-process check and enforcement—that, along with a public real time bulletin board, resolves the
apparent conflicts in voting such as anonymity vs. accountability and privacy vs. verifiability.
Especially, the trust is split equally among tallying authorities who have conflicting interests and
will technically restrain each other. The voting and tallying processes are transparent/viewable to
anyone, which allow any voter to visually verify that his vote is indeed counted and also allow
any third party to audit the tally, thus, enabling open and fair election. Depending on the voting
environment, our interactive protocol is suitable for small groups where interaction is encouraged,
while the non-interactive protocol allows large groups to vote without interaction.
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1. Introduction

Voting is the pillar of modern democracies. Traditional voting, however, suffers from both low
efficiency and unintentional errors. The event surrounding the 2000 US presidential election witnessed
the shortcomings of punch-cards and other antiquated voting systems. The Help America Vote Act [1]
and the creation of the Election Assistance Commission (EAC) [2] highlighted the determination of the
US to deploy more modern voting systems. A survey sponsored by EAC shows that 17.5% of votes
in the 2008 US presidential election were cast as absentee ballots [3]. This demonstrates a demand
for less centralized voting procedures. One potential solution is to allow voters to cast ballots on
Internet-enabled mobile devices [4].

Online voting (electronic voting) has been an active research topic with many advantages over
traditional voting, but presents some unique challenges. For example, if a discrepancy is found
in the tally, votes need to be recounted and the source of the discrepancy needs to be identified.
The recounting and investigating should nevertheless preserve votes’ anonymity and voters’ privacy.
Other voting requirements, such as verifiability and receipt-freeness, make the problem even more
challenging due to their inherently contradicting nature [5,6].

Several online voting solutions [7–11] have been proposed. Some suggest keeping non-electronic
parallels of electronic votes, or saving copies of votes in portable storage devices. They either
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fail to identify sources of discrepancy or are susceptible to vote selling and voter coercion.
Most solutions [6,7,12–16] are based on cryptographic techniques, such as secret sharing, mix-nets,
and blind signature. These solutions are often opaque: Except casting their votes, voters do not directly
participate in collecting and tallying votes, and the voting results are typically acquired through
decryption by third parties only, such as talliers. This raises concerns over the trustworthiness and
transparency of the entire voting process. In addition, these solutions sometimes entrust the fairness
of the voting process onto the impartiality of authorities. Voting under multiple conflicts-of-interest
parties is not addressed by these solutions.

Furthermore, examination of current voting systems including online voting techniques shows
a gap between casting secret ballots and tallying/verifying individual votes. This gap is caused either
by the disconnection between the vote-casting process and the vote-tallying process (e.g., dropping
the ballot into a ballot box), or by the opaque transition (e.g., due to encryption) from the vote-casting
to the vote-tallying, thus damaging voter assurance associated with an open question: “Will my vote
count?” [17].

In terms of opaqueness, the term was raised as early as in a 2004 paper [18]: “Voting machines are
black boxes whose workings are opaque to the public.” Later in 2008, the authors in [12] states “some
people believe that any use of cryptography in a voting system makes the system too opaque for the
general public to accept.” Furthermore, authors in [19] states “once the vote is cast the voter loses sight
of it.” Finally, the authors in [20] states that the mixing part in Helios (and Zeus) is a black box to
voters. Thus, in this paper, by opaqueness we mean that the use of complex cryptographic techniques
involving encryption, mix-net, zero-knowledge, etc. causes some part of vote-casting, tallying and/or
verification not viewable to the general public even though the background cryptographic techniques
are mathematically sound and can fundamentally guarantee the integrity of the voting process and the
tallying result. On the other hand, by transparency, we mean that the voting process from vote-casting,
tallying, and verification is viewable to the general public and the integrity of the voting process and
tally are visually verifiable by any one, besides technical guarantee of the integrity of the tallying result.

In this work, we propose a transparent, auditable, and step-wise verifiable voting protocol that
exploits conflicts of interest in multiple tallying authorities, such as the two-party political system in
the US. It consists of a few novel techniques—universal verifiable voting vector, forward and backward
mutual lock voting, and proven in-process check and enforcement—that, in combination, resolves the
apparent conflicts such as anonymity vs. accountability and privacy vs. verifiability.

Our main contributions are as follows:
1. Light-weight ballot generation and tallying. The new e-voting protocol needs only (modular)

addition and subtraction in ballot generation and vote tallying, rather than encryption/decryption or
modular exponentiations. Thus, the newly proposed protocol is efficient.

2. Seamless transition from ballots to plain votes. In our protocol, individual ballots can be
aggregated one by one and the final aggregation reveals all individual votes (in their plain/clear
format). The aggregation is simply modular addition and can be performed by any one (with modular
addition knowledge and skills) without involvement of a third-party entity. The aggregation has the
all-or-nothing effect in the sense that all partial sums reveal no information about individual votes but
the final (total) sum exposes all individual votes. Thus, the newly proposed protocol delivers fairness
in the voting process.

3. Viewable/visual tallying and verification. The cast ballots, sum(s) of ballots, votes, and sum(s)
of votes (for each candidate) are all displayed on a public bulletin board. A voter or any one can view
them, verify them visually, and even conduct summations of ballots (and as well as votes) himself.
Thus, the newly proposed protocol delivers both individual verification and universal verification.

4. Transparency of the entire voting process. Voters can view and verify their ballots, plain
votes, and transition from ballots to votes and even perform self-tallying [21,22]. There is no gap or
black-box [20] which is related to homomorphic encryption or mix-net in vote-casting, tallying and
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verification processes. Thus, in the newly proposed protocol, the voting process is straightforward and
it delivers visible transparency.

5. Voter assurance. The most groundbreaking feature of our voting protocol, different from all
existing ones, is the separation and guarantee of two distinct voter assurances: (1) vote-casting assurance
on secret ballots—any voter is assured that the vote-casting is indeed completed (i.e., the secret ballot is
confirmatively cast and viewably aggregated), thanks to the openness of secret ballots and incremental
aggregation, and (2) vote-tallying assurance—any voter is assured that his vote is visibly counted in the
final tally, thanks to the seamless transition from secret ballots having no information to public votes
having complete (but anonymous) information offered by the simplified (n, n)-secret sharing scheme.
In addition, step-wise individual verification and universal verification allow the public to verify
the accuracy of the count, and political parties to catch fraudulent votes. Thus, the newly proposed
protocol delivers broader voter assurance.

Real time check and verification of any cast secret ballots and their incremental aggregation, along
with visibility and transparency, provide strong integrity and auditability of the voting process and
final tally. In particular, we relaxed the trust assumption a bit in our protocol. Instead of assuming
that tallying authorities who conduct tally are trustworthy, (Some protocols realize trustworthiness
(tally integrity) by using commitments and zero-knowledge proof to prevent a tallying authority from
mis-tallying and some use threshold cryptography to guarantee the trustworthiness of tallying results
(and vote secrecy) as long as t out of n tallying authorities behave honestly) the new protocol, like
the split trust in the split paper ballot voting [23], splits the trust equally among tallying authorities.
As long as one tallying authority behaves honestly, misbehaviors from one or all other tallying
authorities will be detected. In addition, as we will analyze later, any attacks, regardless of from inside
such as collusion among voters or between voters and one tallying authority or from outside such
as external intrusion, which lead to any invalid votes, can be detected via the tallied voting vector.
All these properties are achieved while still retaining what is perhaps the core value of democratic
elections—the secrecy of any voter’s vote. Thus, in order not to impress readers that we need trusted
central authorities, we chose to use a relatively neutral term called collectors in the rest of the paper.
We assume collectors will not collude since they represent parties with conflicting interests.

We understand the scalability concern with very large number of voters, but this concern can be
addressed by incorporating a hierarchical voting structure. In reality, most voting systems [24] present
a hierarchical structure such as a tree where voting is first carried out in each precinct (for example,
towns or counties) with relatively small number of voters and then vote totals from each precinct
are transmitted to an upper level central location for consolidation. We will have a more detailed
discussion about this later.

The rest of the paper is organized as follows. Section 2 gives an overview of the protocol including
assumptions and attack models. Building blocks are also introduced here. The technical details of the
voting protocol are presented in Section 3, followed by security and property analysis in Section 4.
Complexity analysis and simulation result are given in Section 5. Section 6 is the related work and
protocol comparison. Section 7 discusses scalability of our protocol. Section 8 concludes our paper and
lays out the future work.

This paper is an extension of our INFOCOM’14 work [25]. Mainly, we add the interactive protocol
design in Section 3.1, modify Sub-protocol 1 which suffered a possible brute-force attack originally
in [25] in Section 3.2.1, along with the rigorous proof of the revised Sub-protocol 1 in Section 4.1,
and provide an example of bulletin board dynamics in Section 3.4. The attack model covers more
diverse scenarios as mentioned in Section 2.1, with corresponding security analysis later in Section 4.
Additional experiments were conducted and the results are presented in Section 5. The related work in
Section 6 is more comprehensive. Section 7 is new for further discussion.

Notations used are summarized in Table 1.
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Table 1. Notations.

(n, n)-SS (n, n)-secret sharing

LAS Location Anonymization Scheme

STPM Secure Two-Party Multiplication

V1, . . . , VN Voters. 1, . . . , N are voters’ indices

N Number of voters

M Number of candidates

C1, C2 Collectors

Z∗A, g Finite cyclic group, and generator of the group

vi Vi’s voting vector

vi; v′i Vi’s forward and backward voting values

VA; V′A Aggregated voting vector, and its reverse

Li Vi’s location vector

LA Aggregated location vector

L̂i Vi’s Chosen location in one round

L̄ Length of location vector

L Length of each voter’s voting vector

Li
Voter Vi’s real location (which is private to Vi)
or to say, voter Vi’s row number

Li
B, Li

B+1, . . . , Li
E

Vi’s voting positions/bits
or to say, the columns in row Li

Li
c A voting position where Vi sets to 1 (cast vote)

(Li
B ≤ Li

c ≤ Li
E) also referred to as a voting element or bit

sij(s′ij) Vi’s share of vi (v′i)

pi; p′i Vi’s secret ballots for vi and v′i , respectively

P; P′ Sum of pi, and sum of p′i (1 ≤ i ≤ N)

Si,Cj ; S′i,Cj

Sum of Vi’s shares that Cj (j = 1, 2) creates in the interactive
protocol or receives in the non-interactive protocol

S̃i,Cj ; S̃′i,Cj

Sum of shares sent to Vi from other voters in the interactive
protocol or Cj sends in the non-interactive protocol

Li Vi’s location vector (used in LAS)

LA Aggregated location vector (used in LAS)

L̂i Vi’s chosen location in one round (used in LAS)

L̄ Length of location vector (used in LAS)

2. Mutual Restraining Voting Overview

2.1. Assumptions and Attack Models

Suppose there are N (N > 3) voters, Vi (1 ≤ i ≤ N), and two tallying parties, or collectors, C1 and
C2 (The protocol can be extended to more than two with no essential difficulties). The number of
candidates in the election is M and each voter votes one out of M candidates. C1 and C2 have conflicting
interests: Neither will share information (i.e., the respective shares they have about a voter’s vote) with
the other. The assumption of multiple conflict-of-interest collectors was previously proposed by Moran
and Naor [23], and applies to real world scenarios like the two-party political system in the US.
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For the interactive voting protocol presented in Section 3.1, secure uncast channel is needed between
voters and between a voter and each collector. However, for the non-interactive protocol in Section 3.3,
secure uncast channel between a voter and each collector is needed only. Such a secure channel can be
easily provided with a public key cryptosystem. Our protocols utilize two cryptographic primitives
(1) simplified (n, n)-secret sharing and (2) tailored secure two-party multiplication (STPM) as building
blocks. We also use DLP under its hardness assumption. Simplified (n, n)-secret sharing is used in
vote-casting and STPM and DLP are used by two collectors to check the validity of the vote cast by
the voter.

In terms of attack model, we assume that majority of voters are benign since the colluding majority
can easily control the election result otherwise. The malicious voters can send inconsistent information
to different parties or deliberately deviate from the protocol, e.g., trying to vote for more than one
candidate. We will show that the protocol can detect such misbehaviors and identify them without
compromising honest voters’ privacy.

One fundamental assumption of the protocol is that the collectors are of conflict-of-interest and
will not collude. Here “collusion” specifically means that the collectors exchange the shares of the
voter’s vote directly, thus, discovering the voter’s vote (each of the two collectors has roughly half
amount of shares respectively). However, they DO collaborate to check and enforce the voter to follow
the protocol using STPM without compromising voter secrecy. Moreover, the collectors mutually check
and restrain each other, and thus, are assumed to follow the protocol. However, unlike many protocols
in which tallying authorities perform vote-tallying and certain trust is assumed on tallying authorities
for the integrity of the tallying result (In some protocols, trustworthiness of tallying authorities may
be achieved via cryptographic techniques such as commitment/zero knowledge proof), we do not
assume trustworthiness on the collectors for such integrity in the new protocol. The primary role of
the collectors in the protocol is to check the validity of the voter’s vote, i.e., the vote is for one and only
one candidate. It is not needed for the collectors to provide/guarantee vote secrecy or the integrity of
tallying result. Tallying and verification can be conducted by voters themselves. In fact, if we assume
voters are honest, they can execute the protocol themselves (that is why our interactive voting protocol
works) without the need/involvement of collectors. If one collector is honest, the misbehaviors of
other collectors will be detected. Furthermore, even though all collectors misbehave (independently),
such misbehaviors will be easily detected with overwhelming probability because such behaviors will
mostly result in an invalid voting vector.

We consider two types of adversaries: passive and active adversaries. The attacks can be either
misbehavior from voters, collusion among voters or voters and one collector, or external attack. In this
paper, we consider the attacks targeting at the voting protocol only, rather than those targeting at
general computers or network systems such a denial-of-service (DoS), DDoS, jamming, and Sybil
attacks. The purposes of the attacks are either to infer a voter’s vote (i.e., passive adversaries) or
to change the votes which favor a particular candidate or simply invalidate the votes (i.e., active
adversaries). As shown in Section 4, all these attacks can either be prevented or detected.

2.2. Cryptographic Primitives

2.2.1. Simplified (n, n)-Secret Sharing ((n, n)-SS)

A secret s is split into n shares si (1 ≤ i ≤ n), s = ∑n
i=1 si, over group Zm where m > 2n. For a group

of n members, each receives one share. All n members need to pool their shares together to recover
s [26]. The scheme is additively homomorphic [27]: The sum of two shares si + s′i (corresponding to s
and s′, respectively) is a share of the secret s + s′.

Theorem 1. The simplified (n, n)-SS scheme is unconditionally indistinguishable. That is, collusion of even up
to n− 2 participants cannot gain any bit of information on the shares of the rest. The proof is given in [27].
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2.2.2. Tailored Secure Two-Party Multiplication (STPM)

Tailored STPM (Secure two-party multiplication (STPM) in the original paper [28] does not reveal
the final product to both parties, which is different from the typical STPM where both parties know
the final product. In order not to confuse readers, we rename it to tailored STPM) is proposed in [28].
Initially, each party, Mi (i = 1, 2), holds a private input xi. At the end of the protocol, Mi will have
a private output ri, such that x1 × x2 = r1 + r2. The protocol works as follows:

(1) M1 chooses a private key d and a public key e for an additively homomorphic public-key
encryption scheme, with encryption and decryption functions being E and D, respectively.

(2) M1 sends E(x1, e) to M2.
(3) M2 selects a random number r2, computes E(x1, e)x2 E(r2, e)−1, and sends the result back to M1.
(4) M1 decrypts the received value into D(E(x1, e)x2 E(r2, e)−1, d), resulting in r1.

2.3. Web Based Bulletin Board

A web based bulletin board allows anyone to monitor the dynamic vote casting and tallying in real
time. Consequently, the casting and tallying processes are totally visible (i.e., transparent) to all voters.
The bulletin board will dynamically display (1) on-going vote-casting; (2) incremental aggregation of
the secret ballots; and (3) incremental vote counting/tallying. Note that all the incremental aggregations
of secret ballots, except the final one, reveal no information of any individual vote or any candidate’s
count. Only at the time when the final aggregation is completed are all individual votes suddenly
visible in their entirety, but in an anonymous manner. It is this sudden transition that precludes any
preannouncement of partial voting results. Moreover, this transition creates a seamless connection
from vote-casting and ballot confirmation to vote-tallying and verification so that both voter privacy
and voter assurance can be achieved simultaneously. This is a unique feature of our voting protocol,
comparing to all existing ones.

2.4. Technical Components (TPs)

The protocol includes three important technical components.
TP1: Universal verifiable voting vector. For N voters and M candidates, a voting vector vi for

Vi is a binary vector of L = N ×M bits. The vector can be visualized as a table with N rows and M
columns. Each candidate corresponds to one column. Via a robust location anonymization scheme
described in Section 3.5, each voter secretly picks a unique row. A voter Vi will put 1 in the entry at
the row and column corresponding to a candidate Vi votes for (let the position be Li

c), and put 0 in all
other entries. During the tally, all voting vectors will be aggregated. From the tallied voting vector
(denoted as VA), the votes for candidates can be incrementally tallied. Any voter can check his vote
and also visually verify that his vote is indeed counted into the final tally. Furthermore, anyone can
verify the vote total for each candidate.

TP2: Forward and backward mutual lock voting. From Vi’s voting vector (with a single entry of
1 and the rest of 0), a forward value vi (where vi = 2L−Li

c ) and a backward value v′i (where v′i = 2Li
c−1)

can be derived. Importantly, vi × v′i = 2L−1, regardless which candidate Vi votes for. During the
vote-casting, Vi uses simplified (n, n)-SS to cast his vote using both vi and v′i respectively. vi and v′i
jointly ensure the correctness of the vote-casting process, and enforce Vi to cast one and only one vote;
any deviation, such as multiple voting, will be detected.

TP3: In-process check and enforcement. During the vote-casting process, collectors will jointly
perform two cryptographic checks on the voting values from each voter. The first check uses tailored
STPM to prevent a voter from wrongly generating his share in the vote-casting stage. The second check
prevents a voter from publishing an incorrect secret ballot when collectors collect it from him. The secret
ballot is the modular addition of a voter’s own share and the share summations that the voter receives
from other voters in the interactive protocol or from collectors in the non-interactive protocol.
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We argue that there is no incentive for a voter to give up his own voting right and disrupt others.
However, if a voter indeed puts the single 1 in another voter’s location, the misbehaving voter’s
voting location in VA and V′A will be 0, leading to invalid VA and V′A. If this happens, C1 and C2 can
jointly find this location and then, along with the information collected during location anonymization,
identify the misbehaving person.

To prevent any collector from having all N− 1 shares of Vi, the protocol requires that C1 have only
half of Vi’s shares and C2 have the other half. Depending on whether the voting protocol is interactive
or non-interactive, the arrangement of which collector getting exactly which shares is slight different
as shown in Sections 3.1 and 3.3.

2.5. High-Level Description of the E-Voting Protocol

Let vi = (B1, . . . , BN) be a voting vector. Each Bk = (bk,1, . . . , bk,M) is a bit vector, 1 bit per
candidate. To cast a ballot, a voter Vi obtains a secret and unique index Li, which only Vi knows.
To vote for the candidate cj, Vi sets bit bLi ,j of BLi , and clears the other bits.

1. Voter registration. This is independent of the voting protocol. Each registered voter Vi obtains
a secret index Li using a Location Anonymity Scheme (LAS) described in Section 3.5.

2. Voting. The voter Vi votes for the candidate cj as follows:

(a) Set bLi ,j = 1 and all other bits in BLi and the other Bk, k 6= Li, to 0. Call this set bit
Li

c = (Li − 1)×M + j− 1; it is simply the number of the bit when vi is seen as a bit vector.
See TP1 in Section 2.4.

(b) Compute vi = 2L−Li
c and v′i = 2Li

c−1. This converts the bit vector to integers. Note
vi × v′i = 2L−1, which is a constant. See TP2 in Section 2.4.

(c) Think of shares of all voters’ ballots forming an N × N matrix (as shown in Table 2). Row i
represents the vote vi and Column i represents the ballot pi. Vi computes and casts his ballot
pi as follows.

i. In the non-interactive protocol, C1 and C2 generate (about) N−1
2 shares each for Vi.

They send the sum of the shares, Si,C1 and Si,C2 respectively, to Vi. In the interactive
protocol, Vi himself generates these N − 1 shares. Vi then computes his own share
as sii = vi − Si,C1 − Si,C1 , which corresponds to all elements on the main diagonal of
the matrix.

ii. In the non-interactive protocol, C1 sends voter Vi the sum S̃i,C1 of the shares C1 generated
for the first half of the voters (the “lower half”). Similarly, C2 sends voter Vi the sum
S̃i,C2 of the shares C2 generated for the second half of the voters (the “upper half”).
In the interactive protocol, Vi receives them from other voters. Then Vi computes and
publishes his ballot pi = sii + S̃i,C1 + S̃i,C2 .

(d) The previous step (c) is repeated, but with v′i instead of vi. The share Vi retains from this is s′ii
and the ballot from this is called p′i and is also public.

(e) Simultaneously with the previous step, the voter also publishes his commitments
(gsii , gs′ii , gsiis′ii ), where g is the base for the discrete logarithm problem. Two authorities
jointly verify the validity of each cast ballot. See TP3 in Section 2.4.

3. Tally and verification. The authorities (in fact any one can) sum all the ballots to get P = ∑N
i=1 pi

(and the corresponding P′ = ∑N
i=1 p′i). P and P′ are public too. VA and V′A are in a binary form of

P and P′, respectively. VA and V′A are bit-wise identical in reverse directions. Any voter (authority,
or a third party) can verify individual ballots, tallied voting vectors VA and V′A, individual plain
votes exposed in VA and V′A, sum of each candidate’s votes, and final tally.
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Table 2. The collectors generate all shares for each voter, with each collector generating half of N − 1
shares. vi is Vi’s vote. ˆsi,j (i 6= j) is generated by C1, and ˇsi,j (i 6= j) is by C2. Si,C1 is the sum of all shares
( ˆsi,j) in Row i generated by C1 (for Vi), and Si,C2 is the sum of all shares ( ˇsi,j) in Row i by C2 (for Vi).
si,i = vi − Si,C1 − Si,C2 . S̃i,C1 is the sum of all shares ( ˆsj,i) in Column i generated by C1, and S̃i,C2 is the
sum of all shares ( ˇsj,i) in Column i by C2.

← − C1 − → ← − C2 − →
S̃i,C1 S̃i,C2

⇓ ⇓
v1 s1,1 ˆs1,2 · · · ˆs1,N/2 ˇs1,N/2+1 · · · ˇs1,N

C1, Si,C1 ⇒
...

...
...

...
...

...
...

... ⇐Si,C2 , C2
vN/2 ˆsN/2,1 ˆsN/2,2 · · · sN/2,N/2 ˇsN/2,N/2+1 · · · ˇsN/2,N

vN/2+1 ˇsN/2+1,1 ˇsN/2+1,2 · · · ˇsN/2+1,N/2 sN/2+1,N/2+1 · · · ˆsN/2+1,N

C2, Si,C2 ⇒
...

...
...

...
...

...
...

... ⇐Si,C1 , C1
vN ˇsN,1 ˇsN,2 · · · ˇsN,N/2 ˆsN,N/2+1 · · · sN,N

⇑ ⇑
S̃i,C2 S̃i,C1

← − C2 − → ← − C1 − →

3. Mutual Restraining Voting Protocol

In this section, we first elaborate on the protocol in two scenarios: interactive protocol and
non-interactive protocol, together with two sub-protocols for in-process voting check and enforcement.
An example of a bulletin board is given next. In the end, we discuss the design of our location
anonymization scheme.

3.1. Interactive Voting Protocol

Stage 1: Registration (and initialization). The following computations are carried out on a cyclic
group Z∗A, on which the Discrete Logarithmic Problem (DLP) is intractable. A = max{A1, A2},
in which A1 is a prime larger than 21024 and A2 is a prime larger than 22L − 2L+1 + 1.

All voters have to register and be authenticated first before entering the voting system. Typical
authentication schemes, such as public key authentication, can be used. Once authenticated, voter Vi
executes LAS (in Section 3.5) collaboratively with other voters to obtain a unique and secret location
Li. Then Vi generates his voting vector vi of the length L = N ×M bits and arranges the vector into
N rows (corresponding to N voters) and M columns (corresponding to M candidates); Vi fills a 1
in his row (i.e., the Lith row) and the column for the candidate he votes, and 0 in all other entries.
Consequently, the aggregation of all individual voting vectors will create a tallied vector allowing
universal verifiability (TP1). This arrangement of vector can support voting scenarios including
“yes-no” voting for one candidate and 1-out-of-M voting for M candidates with abstaining or without.

Stage 2: Vote-casting. From the voting vector vi (with a singleton 1 and all other entries 0), Vi
derives two decimal numbers vi and v′i. vi is the decimal number corresponding to the binary string
represented by vi, while v′i is the decimal number corresponding to vi in reverse.

In other words, if Vi sets the Li
cth bit of vi to 1, we have vi = 2L−Li

c and v′i = 2Li
c−1, thus

vi × v′i = 2L−1. vi and v′i are said to be mutually restrained (TP2). This feature will lead to an effective
enforcement mechanism that enforces the single-voting rule with privacy guarantee: The vote given
by a voter will not be disclosed as long as the voter casts one and only one vote.

Next, Vi shares vi and v′i with other voters using (n, n)-SS. Note that the sharing process of vi and
v′i is independent. Assume that a secure communication channel exists between any two voters and
between any voter and any collector. The following illustrates of the sharing of vi:

1. Vi randomly selects N − 1 shares sil (1 ≤ l ≤ N, l 6= i) and distributes them to the other N − 1
voters with Vl getting sil . When i is odd, Vi sends sil to C1 if l is odd and otherwise to C2; when
i is even, Vi sends sil to C1 if l is even and otherwise to C2. The objective is to prevent a single
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collector from obtaining enough information to infer a voter’s vote. Vi then computes his own
share sii = vi −∑N

l=1,l 6=i sil , and publishes the commitment gsii .

Let the sum of shares that Cj(j = 1, 2) receives from Vi be Si,Cj . Vi’s own share can also be denoted
as: sii = vi − Si,C1 − Si,C2 .

2. Upon receiving N− 1 shares from other voters, Vi computes the secret ballot, pi = ∑N
l=1 sli, which

is the sum of the received N − 1 shares and his own share sii, and then broadcasts pi.

Two collectors also have these N − 1 shares, with each having a subset. Let the sum of the subset
of shares held by the collector Cj(j = 1, 2) be S̃i,Cj . The secret ballot can also be denoted as:
pi = sii + S̃i,C1 + S̃i,C2 .

The sharing of v′i is the same as above, and gs′ii is also published during this process. In addition,
Vi publishes gsiis′ii . These commitments, gsii , gs′ii , and gsiis′ii , are used by the collectors to enforce that
a voter generates and casts his vote by distributing authentic shares and publishing an authentic secret
ballot pi (i.e., the two sub-protocols described in Section 3.2).

Stage 3: Collection/Tally. Collectors (and voters if they want to) collect secret ballots pi (1 ≤ i ≤ N)
from all voters and obtain P = ∑N

i=1 pi. P is decoded into a tallied binary voting vector VA of length
L. The same is done for p′i (1 ≤ i ≤ N) to obtain P′, and consequently V′A. If voters have followed the
protocol, these two vectors will be reverse to each other by their initialization in Stage 1.

It might be possible that some voters do not cast their votes, purposely or not, which can prevent
VA or V′A from being computed. If Vi’s vote does not appear on the bulletin board after the close
of voting, all shares Vi sent to and received from other voters have to be canceled out from P. Since
sii = vi − Si,C1 − Si,C2 and pi = sii + S̃i,C1 + S̃i,C2 , we have:

pi = vi − Si,C1 − Si,C2 + S̃i,C1 + S̃i,C2

Without Vi casting his secret ballot, we simply deduct (Si,C1 + Si,C2 − S̃i,C1 − S̃i,C2 ) from P. Similar
deduction also applies to P′.

Stage 4: Verification. Anyone can verify whether VA is a reverse of V′A and whether each voter
has cast one and only one vote. Vi can verify the entry Li

c (corresponding to the candidate that Vi votes
for) has been correctly set to 1 and the entries for other candidates are 0. Furthermore, the tallied votes
for all candidates can be computed and verified via VA and V′A. In summary, both individual and
universal verification are naturally supported by this protocol.

3.2. Two Sub-Protocols

A voter may misbehave in different ways. Examples include: (1) multiple voting; (2) disturbing
others’ voting; and (3) disturbing the total tally. All examples of misbehavior are equivalent to
an offender inserting multiple 1s in the voting vector. The following two sub-protocols, which are
collectively known as in-process check and enforcement (TP3), ensure that each voter should put a single
1 in his voting vector, i.e., vote once and only once.

3.2.1. Revised Sub-Protocol 1

Sub-protocol 1 in [25] suffers from a possible brute-force attack, so Step 3 here has been redesigned
accordingly to avoid such an attack.

(1) Recall that in Stage 2, Vi sends N − 1 shares sil (1 ≤ l ≤ N, l 6= i) of his secret vote vi to the
other N − 1 voters as well as the two collectors; each of the two collectors, C1 and C2, has a subset of
the N − 1 shares denoted as Si,C1 and Si,C2 respectively. Similarly for v′i, Cj(j = 1, 2) gets S′i,Cj

.

(2) Since Vi has published gsii and gs′ii , C1 can compute (gsii)
S′i,C1 and (gs′ii)Si,C1 . In addition, C1

computes gSi,C1
S′i,C1 . Similarly, C2 computes (gsii)

S′i,C2 , (gs′ii)Si,C2 , and gSi,C2
S′i,C2 .
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(3) C1 and C2 cooperatively compute gSi,C1
S′i,C2 × gS′i,C1

Si,C2 . A straightforward application of

Diffie-Hellman key agreement [29] to obtain gSi,C1
S′i,C2 and gS′i,C1

Si,C2 will not work. (If C1 exchanges

his gSi,C1 and gS′i,C1 with C2’s gSi,C2 and gS′i,C2 , since gsii and gs′ii are published by Vi, C1 and C2 each

can obtain gsii+Si,C1
+Si,C2 and gs′ii+S′i,C1

+S′i,C2 which correspond to gvi and gv′i . Because there are only
L possibilities of each voter’s vote, C1 and C2 each can simply try L values to find out the vote vi.
This violates both vote anonymity (the vote is known) and voter privacy (the location is known))

Hence, tailored STPM is used to compute gSi,C1
S′i,C2 × gS′i,C1

Si,C2 without disclosing gSi,C1 , gS′i,C1 , gSi,C2 and

gS′i,C2 as follows:

• Execute tailored STPM, C1 and C2 obtain r1 and r′2 respectively such that r1 + r′2 = Si,C1 S′i,C2
.

• Execute tailored STPM, C1 and C2 obtain r′1 and r2 respectively such that r′1 + r2 = S′i,C1
Si,C2 .

(Exchanging r1 and r′2 or r′1 and r2 between C1 and C2 will not work. (If C1 and C2 exchange r1

and r′2 for an example, C2 can obtain gSi,C1 since he has r′2 and S′i,C2
. With gsii being public, and

vi = sii + Si,C1 + Si,C2 , C2 can get gvi by trying out L values and consequently find out the vote vi.
Likewise, C1 can also find out vi.)

• C1 computes gr1+r′1 , C2 computes gr2+r′2 . Obviously gr1+r′1 × gr2+r′2 = gr1+r′2+r′1+r2 = gSi,C1
S′i,C2 ×

gS′i,C1
Si,C2 . (C1 and C2 cannot exchange gr1+r′1 and gr2+r′2 directly. Doing so will result in

a brute-force attack which is able to obtain the voter’s vote, as described in Section 4.1.)

(4) C1 computes a combined product P1 = (gsii)
S′i,C1 × (gs′ii)Si,C1 × gSi,C1

S′i,C1 × gr1+r′1 and similarly,

C2 computes a combined product P2 = (gsii)
S′i,C2 × (gs′ii)Si,C2 × gSi,C2

S′i,C2 × gr2+r′2 and then they exchange
P1 and P2.

(5) Using Vi’s commitment gsiis′ii and P1, P2, each collector obtain gsiis′ii × P1 × P2 = gsiis′ii ×
(gsii)

S′i,C1 × (gs′ii)Si,C1 × gSi,C1
S′i,C1 × (gsii)

S′i,C2 × (gs′ii)Si,C2 × gSi,C2
S′i,C2 × gSi,C1

S′i,C2 × gS′i,C1
Si,C2 . The collectors

can verify that the product equals g2L−1
. If not, Vi must have shared vi and/or v′i incorrectly.

3.2.2. Sub-Protocol 2

While the revised Sub-protocol 1 ensures that Vi should generate sii and all shares properly,
Sub-protocol 2 enforces that Vi should faithfully publish the secret ballots, pi and p′i.

(1) Recall that in the sharing of vi, Vi receives N − 1 shares from other voters, and these shares are
also received by collectors. Each of the collectors, C1 and C2, receives a subset of these N − 1 shares,
so trust is split between two collectors. The sum of the subset of shares held by the collector Cj(j = 1, 2)

is S̃i,Cj . Cj(j = 1, 2) will publish g
S̃i,Cj . Similarly for v′i, Cj(j = 1, 2) will publish g

S̃′i,Cj .

(2) From the published pi and p′i, the collectors compute gpi and gp′i . Since gsii and gs′ii are published

and verified in Sub-protocol 1, collectors will verify that gsii gS̃i,C1 gS̃i,C2 = gpi and gs′ii gS̃′i,C1 gS̃′i,C2 = gp′i . If
either of these fails, Vi must have published the wrong secret ballots pi and/or p′i.

3.3. Non-Interactive Voting Protocol

The protocol presented in Section 3.1 is suitable for voting scenarios such as small group election
where voters are encouraged to interact with each other. However, it is often the case that an election
involves a large group of people where the interaction is impossible to be realistic. In this scenario,
we allow collectors to carry the duties of creating voters’ shares. While this eliminates the interaction
between voters, the properties of our voting protocol remain held as we will discuss in the next section.

In the interactive voting, a voter depends on other voters’ shares in order to cast his ballot.
However, it is not practical to require all voters to interact with each other during vote-casting for
a large group of voters. Fortunately, our (n, n)-SS based voting protocol can be designed to allow voters
to vote non-interactively. Table 2 illustrates how the two collectors generate respective shares for voters.
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In this non-interactive vote-casting, two collectors generate shares for every voter, and interact with
a voter for vote-casting whenever the voter logs into the system to vote. Compared to the interactive
protocol, only Stage 2 is different, while the rest of the stages are the same. Steps in this new Stage 2
are given below.

• The two collectors work together to generate all N− 1 shares for each voter Vi in advance as shown
in Table 2, with ˆsi,j (i 6= j) by C1 and ˇsi,j (i 6= j) by C2. sii is derived by Vi himself. Specifically,
for the voters V1 to VN/2, C1 generates their first N/2− 1 shares (up-left of the matrix) and C2

generates their last N/2 shares (up-right of the matrix). For the voters VN/2+1 to VN , C1 generates
their last N/2 − 1 shares (lower-right of the matrix) and C2 generates their first N/2 shares
(lower-left of the matrix). Figure 1 (left) illustrates a case of four voters.

• Whenever a voter Vi logs into the system to cast his vote, the two collectors will each send their
half of N − 1 shares (in fact, the sum of these shares, denoted as Si,Cj in Table 2, where j = 1 or
2) to this voter. Specifically, C1 sends Si,C1 (sum of shares in one half of the ith row) to the voter,
and C2 sends Si,C2 (sum of shares in the other half of the ith row) to the voter. The voter Vi will
compute his own share as sii = vi − Si,C1 − Si,C2 , and send the two collectors his commitments
(i.e., gsii , gs′ii , gsiis′ii ). Figure 1 (middle) shows the communication between collectors and voters.
Under the assumption that the two collectors have conflicting interests, neither of them can derive
the voter’s vote from Vi’s commitment.

• The two collectors verify a voter’s vote using Sub-protocol 1 and if passed, send the shares from
the other N− 1 voters (one from each voter) to this voter. Specifically, C1 sends S̃i,C1 (sum of shares
in one half of the ith column as shown in Table 2) to the voter, and similarly C2 sends S̃i,C2 (sum of
shares in the other half of the ith column). The voter sums the shares from the two collectors and
his own share, and then sends the secret ballot of sii + S̃i,C1 + S̃i,C2 to the two collectors, as shown
in Figure 1 (right) as an example. (Optionally, the voter can send to only one of the collectors
to prevent the collector initiated voter coercion.) The two collectors can verify the voter’s ballot
using Sub-protocol 2.

Figure 1. Collectors interact with voters to avoid voters’ interaction among themselves: left—generate
shares for voters; middle—interact with a casting voter; right—interact with the casting voter.

It is clear that although the two collectors generate shares for a voter, neither of them can obtain the
voter’s own share sii or the voter’s vote vi, unless two collectors collude and exchange the shares they
generated. As proven by Theorem 1, any k voters, as long as k ≤ N − 2, can not obtain the share (thus,
the vote) of any other voters in an unconditionally secure manner. Again, as in the interactive protocol,
it may be possible that some voters do not cast their votes, preventing VA from being computed. The
solution discussed in Stage 3 of Section 3.1 still applies.

3.4. One Example of Web Based Bulletin Board

As discussed earlier, our web based bulletin board displays the on-going vote casting and tallying
processes. The incremental aggregation of secret ballots does not reveal information about any
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individual vote. Only when the final aggregation is completed, all individual votes in the voting vector
are suddenly visible in their entirety to the public, but in an anonymous manner. It is this sudden
transition that precludes preannouncement of any partial voting results.

Table 3 gives an example of 4 voters with their corresponding shares and secret ballot in a case of
2 candidates. Figure 2 illustrates the aggregation and tallying on the bulletin board. It is obvious that
the incremental aggregation does not disclose any information until the last secret ballot, V3’s 30, is
counted in.

Table 3. A voting example involving 4 voters and 2 candidates (R and B).

Voter Location Vote Shares Secret Ballot

V1 2 B (32) 12 + 5 + 8 + 7 45 (= 12 + 1 + 15 + 17)

V2 3 R (4) 1 + 13 + (−3) + (−7) 28 (= 5 + 13 + 7 + 3)

V3 4 B (2) 15 + 7 + (−10) + (−10) 30 (= 8 + (−3) + (−10) + 35)

V4 1 R (64) 17 + 3 + 35 + 9 −1 (= 7 + (−7) + (−10) + 9)

Voter Secret Ballot  Aggregation 

V2 28 28 

V1 45 73 

V4 -1 72 

V3 30 102 

1.Incremental aggregation of the cast secret ballots 
2. All partial aggregations  28, 73, and 72 has no  
    information on votes 
3. Last aggregation 102 (=32+4+2+64) exposes all votes  
     and it is the final tallied voting vector VA  

   Bulletin Board  
           Incremental aggregation                               Incremental tallying 
 

  

 VA       Vote      R counts     B counts  

0 

1 

1 

2 

1 

1 

2 

2 

R 

B 

R 

B 

0 

1 

1 

0 

0 

1 

1 

0 

Figure 2. Real Time Bulletin Board.

3.5. Design of a Robust and Efficient LAS

Inspired by the work in [27], we propose a new location anonymization scheme (LAS) that
is robust and efficient. Our new scheme solves the following problem with the previous scheme:
If a member misbehaves in next rounds by selecting multiple locations or a location that is already
occupied by another member, the location selection in [27] may never finish. Our new LAS is based on
the mutual lock voting mechanism and works as follows:

1. Each voter Vi initializes a location vector Li (of length L̄) with 0s. Vi randomly selects a location
L̂i (1 ≤ L̂i ≤ L̄) and sets the L̂ith element/bit of Li to 1.

2. From Li, Vi obtains two values li and l′i by: (1) encoding Li into a decimal number li (A decimal
encoding, instead of a binary one, is used to encode Li. The motivation is illustrated below.
Assume that the binary encoding is adopted. Let the location vectors of voters Vi, Vj and Vk
be Li = 000010, Lj = 000010, and Lk = 000100, respectively. Therefore, LA = 001000: Voters
cannot tell if they have obtained unique locations. This will not be the case if Li uses a larger
base. However, encoding Li in a larger base consumes more resources. Decimal is a trade-off
we adopted to strike a balance between fault tolerance and performance. The probability of
having more than 10 voters collide at the same location is considerably lower than that of 2); and
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(2) reversing Li to be L′i and encoding it into a decimal number l′i . For example, if Li = [000010],
we obtain li = 10 and l′i = 10, 000. Evidently, li × l′i = 10L̄−1.

3. Vi shares li and l′i using (n, n)-SS as in Stage 2. All voters can obtain the aggregated location vector
LA and L′A. If Vi has followed the protocol, LA and L′A are the reverse of the other.

4. Vi checks if the L̂ith element/bit of LA is 1. If so, Vi has successfully selected a location without
colliding with others. Vi also checks if everyone has picked a non-colliding location by examining
whether max(LA) = 1. If there is at least one collision, steps 1 through 3 will restart. In a new
round, voters who have successfully picked a location without collision in the previous round
keep the same location, while others randomly select from locations not been chosen.

5. The in-process check and enforcement mechanism (in Section 3.2) is concurrently executed by
collectors to enforce that a voter will select one and only one location in each round. Furthermore,
the mechanism, to be proved in Section 4.5, ensures that any attempt of inducing collision
by deliberately selecting an occupied position will be detected. Hence, such misbehavior will
be precluded.

6. Once all location collisions are resolved in a round, each voter removes non-occupied locations

ahead of his own and obtains his real location Li = ∑L̂i
j=1(LA)j. After the adjustment, the occupied

locations become contiguous. The length of the adjusted Li equals to the number of voters, N.

We will complement the above discussion with analysis (in Section 4.5) and simulation result (in
Section 5.2).

Notes: (1) Location anonymization, a special component in our protocol, seems to be an additional
effort for voters. However, it is beneficial since voters not only select their secret locations, but also
learn/practice vote-casting ahead of the real election. The experiments show that 2 to 3 rounds are
generally enough; (2) Location anonymization can be executed non-interactively; (3) A malicious
participant deliberately inducing a collision by choosing an already occupied location will be identified.

Under the assumption that C1 and C2 have conflicting interests and thus will check each other
but not collude, more deterministic and efficient LAS can be designed. One algorithm can be: two
collectors perform double encryption (of 1 to N) and double shuffle before sending results to voters in
a way such that neither can determine which voter gets which number, even though a collector may
collude with some voter(s).

4. Security and Property Analysis

In this section, we demonstrate a few important properties and also analyze the robustness of
our protocol.

4.1. Analysis of Main Properties

Here we give main properties of our voting protocol.
Attack-resistance. A random attack against the tallied voting vector with this vector being valid

will succeed with the probability of MN/2MN = 1/2(M−logM)N .
Since M ≥ 2 and N is large, the probability of any attack without being detected is negligibly

small. As an example, with M = 2 and N = 1000, the probability is 2−1000!
Furthermore, even if a valid tallied vector is generated, there must be a certain location containing

a vote which does not match what the voter in this location has voted for. Thus, it can be detected and
reported by the voter who owns this location.

Completeness (Correctness). All votes are counted correctly in this voting protocol. That is,
the aggregated voting vector VA of the length N in binary is the sum of all individual voting vector vi
from each voter (VA = ∑N

i=1 vi). Likewise, V′A = ∑N
i=1 v′i.

Verifiability. Due to its transparency, the protocol provides a full range of verifiability with
four levels:

1. A voter can verify that his secret ballot is submitted correctly.
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2. A voter (and any third party) can verify that the aggregated voting vector is computed correctly.
3. A voter can verify that his vote is cast correctly.
4. A voter (and any third party) can verify that the final tally is performed correctly.

About individual verification, different techniques may have different meanings and adopt
different mechanisms to implement. For example, majority of typical e-voting techniques encrypt
the votes and a voter verifies his cast ballot in an encrypted format [30,31], rather than in plain text
format/clear vote. In this case, tallying is normally done via homomorphic cryptosystem. Here due to
the fundamental principle of homomorphic encryption, voters should be convinced that the final tally
is accurate and their votes are accurately included in the final tally. Some e-voting techniques utilize
pairs of (pseudo-voter ID, vote) and a voter verifies his cast vote (in plain format) according to his
pseudo-voter ID. The relation between a voter’s real identity and his pair is hidden/anonymized via
an anonymous channel or Mix-nets [13,32]. One representative case of this kind is the technique in the
paper [33]. A voter casts his encrypted vote via an anonymous channel, and then sends his encryption
key via the same channel for the counter to decrypt/open his vote. The voter can verify his vote in
plain format (as well as in encrypted format). In this case, the voter’s real identity is hidden by blind
signature and anonymous channel. Here the assumption is that the anonymous channel, Mix-nets
and blind signature are trustworthy or they can prove their faithful conformation to the protocol via
commitment/zero-knowledge proof. Furthermore, for all these verification scenarios, the mechanisms
used for anonymization and individual verification act as one kind of black-box and introduce a gap
between a voter’s ballot and real vote.

Like the technique in [33], our technique allows a voter to verify his vote in plain text format.
However, different from [33], the verification in our technique is visibly realized due to transparency
and seamless transition from ballots (no information about any vote) to all individual votes (each clear
vote is anonymous to any one except the vote’s owner). No gap exists and no trustworthy assumptions
are required.

Anonymity. The protocol preserves anonymity if no more than N − 2 voters collude. This claim
follows the proof of Theorem 1. Also, the protocol splits trust, traditionally vested in a central authority,
now between two non-colluding collectors with conflicting interests. One collector does not have
enough information to reveal a vote.

Especially in the revised Sub-protocol 1, we eliminate the possibility for an attacker to perform
brute-force search against the intermediate result as in the original Sub-protocol 1 in [25]. Basically,
in the original Sub-protocol 1, two collectors exchange gr1+r′1 and gr2+r′2 , so both obtain gr1+r′2+r′1+r2

such that
gr1+r′2+r′1+r2 = gSi,C1

S′i,C2 × gS′i,C1
Si,C2

= (gSi,C2 )
S′i,C1 × (gS′i,C2 )Si,C1

(1)

Without loss of generality, let us assume C1 wants to find out vi. Since C1 has Si,C1 and S′i,C1
, gsii and

gs′ii are published, and vi × v′i = 2L−1, C1 guesses vi = 2j (with v′i being 2(L−1−j)) for j = 0, 1, . . . , L− 1,

and constructs ˆgSi,C2 and
ˆ

gS′i,C2 based on Equations (2) and (3) respectively.

gSi,C2 = gvi−sii−Si,C1 = gvi (gsii )−1g−Si,C1 (2)

gS′i,C2 = gv′i−s′ii−S′i,C1 = gv′i (gs′ii )−1g−S′i,C1 (3)

C1 then verifies if (
ˆgSi,C2 )

S′i,C1 × (
ˆ

gS′i,C2 )Si,C1 (corresponding to the right hand side RHS of
Equation (1)) equals to gr1+r′2+r′1+r2 (the left hand side LHS of Equation (1)). If they are equivalent, Vi’s
vote vi is found to be 2j. Otherwise, C1 guesses next vi = 2j+1 until he finds out the correct vi.

However, in the revised Sub-protocol 1 presented here, P1 contains a random value of r1 + r′1, and
similarly, P2 has r2 + r′2. C1 can compute either P2 × gr1+r′1 as shown in LHS of Equation (4), or P1 × P2

as shown in LHS of Equation (5) to get rid of the randomness. C1 then guesses vi as before and plugs it
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into RHS of Equation (4) or (5) to verify if the equations hold true. But they will always hold true no
matter what value vi is guessed. Thus, C1 will not be able to find out vi with brute-force search. Vote
anonymity is preserved.

P2 × gr1+r′1 = gSi,C2
(s′ii+S′i,C1

+S′i,C2
)+S′i,C2

(sii+Si,C1
)
= gSi,C2

v′i+S′i,C2
(sii+Si,C1

)

= g(vi−sii−Si,C1
)v′i+(v′i−s′ii−S′i,C1

)(sii+Si,C1
)

= gvi×v′i−siis′ii−siiS′i,C1
−s′iiSi,C1

−Si,C1
S′i,C1

(4)

P1 × P2 = g(sii+Si,C1
+Si,C2

)×(s′ii+S′i,C1
+S′i,C2

)−siis′ii = gvi×v′i−siis′ii (5)

Ballot validity and prevention of multiple voting. The forward and backward mutual lock
voting allows a voter to set one and only one of his voting positions to 1 (enforced by Sub-protocol 1).

The ballot of pi and p′i is ensured to be generated correctly in the forms of pi = sii + S̃i,C1 + S̃i,C2

and p′i = s′ii + S̃′i,C1
+ S̃′i,C2

(enforced by Sub-protocol 2).
Fairness. Fairness is ensured due to the unique property of (n, n)-SS: no one can obtain any

information before the final tally, and only when all N secret ballots are aggregated, all votes are
obtained anonymously. It is this sudden transition that precludes any preannouncement of partial
voting results, thus achieving fairness.

Eligibility. Voters have to be authenticated for their identities before obtaining voting locations.
Traditional authentication mechanisms can be integrated into the voting protocol.

Auditability. Collectors collaboratively audit the entire voting process. Optionally we can even
let collectors publish their commitment to all shares they generate (using hash functions, for example).
With the whole voting data together with collectors’ commitments, two collectors or a third authority
can review the voting process if necessary.

Transparency and voter assurance. Many previous e-voting solutions are not transparent in
the sense that although the procedures used in voting are described, voters have to entrust central
authorities to perform some of the procedures. Voters cannot verify every step in a procedure [34].
Instead, our voting protocol allows voters to visually check and verify their votes on the bulletin board.
The protocol is transparent where voters participate in the whole voting process.

4.2. Robustness Against Voting Misbehavior

The protocol is robust in the sense that a misbehaving voter will be identified. In the interactive
voting protocol, a misbehaving voter Vi may:

• submit an invalid voting vector vi (v′i) with more than one (or no) 1s;

• generate wrong sii (s′ii), thus wrong commitment gsii (gs′ii );
• publish an incorrect secret ballot pi (p′i) such that pi 6= sii + S̃i,C1 + S̃i,C2 (p′i 6= s′ii + S̃′i,C1

+ S̃′i,C2
).

First, we show that a voter submitting an invalid voting vector vi (v′i) with more than one 1s will
be detected. Without loss of generality, we assume two positions, Li

c and Li
c
′, are set to 1. (A voter can

also misbehave by putting 1s at inappropriate positions, i.e., positions assigned to other voters; we will
analyze this later.) Thus the voter Vi obtains vi (v′i), such that

vi = 2(L−Li
c) + 2(L−Li

c
′
), v′i = 2(Li

c−1) + 2(Li
c
′−1),

vi × v′i = 2L−1 + 2L−1 + 2L−Li
c+Li

c
′−1 + 2L−Li

c
′
+Li

c−1.
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All the computations are moduli operations. By using Z∗A, which has at least 22L − 2L+1 + 1
elements/bits, we have vi × v′i 6= 2L−1, thus gvi×v′i 6= g2L−1

. Assuming Vi generates an invalid voting
vector without being detected, this will lead to the following contradiction by Sub-protocol 1:

g2L−1
= gsiis′ii × (gsii )

S′i,C1 × (gs′ii )Si,C1 × gSi,C1
S′i,C1 × (gsii )

S′i,C2

×(gs′ii )Si,C2 × gSi,C2
S′i,C2 × gSi,C1

S′i,C2 × gS′i,C1
Si,C2

= g(sii+Si,C1
+Si,C2

)(s′ii+S′i,C1
+S′i,C2

)
= gviv′i .

Similar proof applies to an invalid voting vector without 1s.
Next, we show that Vi cannot generate wrong sii or s′ii such that sii + Si,C1 + Si,C2 6= vi or s′ii + S′i,C1

+

S′i,C2
6= v′i. If Sub-protocol 1 fails to detect this discrepancy, there is: g(sii+Si,C1

+Si,C2
)(s′ii+S′i,C1

+S′i,C2
)
= g2L−1

.
Since the computation is on Z∗A, we have: (sii + Si,C1 + Si,C2)(s

′
ii + S′i,C1

+ S′i,C2
) = 2L−1. Given that:

sii + Si,C1 + Si,C2 6= vi, s′ii + S′i,C1
+ S′i,C2

6= v′i,

(sii + Si,C1 + Si,C2)(s
′
ii + S′i,C1

+ S′i,C2
) = 2L−1,

there must exist one and only one position Li
c
′ which is set to 1 and Li

c
′ 6= Li

c. This indicates that Vi gives
up his own voting positions, but votes at a position assigned to another voter Vj (i 6= j). In this case, Vi’s
voting positions in VA and V′A will be 0 (Unless, of course, another voter puts a 1 in Vi’s position. We
can either trace this back to a voter that has all 0s in his positions, or there is a loop in this misbehaving
chain, which causes no harm to non-misbehaving voters). This leads to an invalid tallied vector where
Vi’s voting positions have all 0s and possibly Vj’s have multiple 1s. If this happens, C1 and C2 can
collaboratively find Vi’s row that has all 0 s in the voting vector (arranged in an N×M array).

Third, we show that a voter cannot publish an incorrect pi (p′i) to disturb the tally. Given that
a misbehaving Vi publishes pi (p′i) such that sii + S̃i,C1 + S̃i,C2 6= pi (s′ii + S̃′i,C1

+ S̃′i,C2
6= p′i), we obtain

gsii+S̃i,C1
+S̃i,C2 6= gpi (gs′ii+S̃′i,C1

+S̃′i,C2 6= gp′i) which will fail in Sub-protocol 2. Note that gsii and gs′ii have
passed the verification of Sub-protocol 1, and S̃i,C1 and S̃i,C2 (also, S̃′i,C1

and S̃′i,C2
) are computed by two

collectors with conflicts of interest. Thus, there is no way for the voter to publish an incorrect pi (p′i)
without being detected.

The discussion shows all these misbehaviors should be caught by the collectors using Sub-protocol 1
or Sub-protocol 2. However, assume two cases as below:

• One misbehavior mentioned above mistakenly passes both Sub-protocol 1 and Sub-protocol 2;
• Vi does give up his own voting locations and cast vote at Vj’s locations (i 6= j).

For Case 1, the possibility leading to a valid voting vector is negligibly small as we have discussed
earlier in this section. Even if the voting vector is valid, any voter can still verify whether the vote in
his own location is correct. This is the individual verifiability our protocol provides.

For Case 2, if Vi casts the same as Vj at Vj’s locations, there will be a carry, ending up one 1,
but not the vote Vj has cast. If Vi casts a vote different from Vj, there will be two 1s at Vj’s locations.
Because all Vi’s locations now have 0 s, the tallied voting vector will be invalid for both scenarios.
Furthermore, Vj can detect it since his vote has been changed. Again, as we assumed earlier, there is
no reason/incentive for a voter to give up his own voting right and disturb other unknown voters.

The analysis above also applies to the non-interactive voting protocol.

4.3. Robustness against Collusion

Here we analyze the robustness against different collusions and attacks. With the assumption
that collectors have conflicting interests, they will not collude, so we exclude such a scenario.
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4.3.1. Robustness against Collusion among Voters

By Theorem 1, the protocol is robust against collusions among voters to infer vote information
(passive adversaries) as long as no more than N− 2 voters collude.

The protocol is robust against cheating by colluding voters such as double or multiple voting
(active adversaries). Colluding voters want to disrupt the voting process. However, even they collude,
the commitments and the secret ballots of each colluding voter have to pass the verification of both
Sub-protocol 1 and Sub-protocol 2 by two collectors. Thus the disruption will not succeed as discussed
in Section 4.2.

The analysis above applies to both the interactive protocol and the non-interactive protocol.

4.3.2. Robustness against Collusion among Voters and a Collector

In the interactive protocol, one collector has only a subset of any voter’s shares, so the discussion
about passive adversaries in Section 4.3.1 still holds here. That is, if no more than N− 2 voters collude
with a collector, no information of votes can be disclosed before the final tally is done.

In the non-interactive protocol, the situation is slightly different. Since collectors generate shares
for each voter, they seem to be more powerful than in the interactive protocol. However, all shares
of an individual voter are jointly generated by two collectors as shown in Table 2, with each creating
only half of shares. The property of (n, n)-SS still applies here. As long as no more than N− 2 voters
collude with a collector, the robustness against collusion among voters and a collector to infer vote
information still holds.

For both interactive and non-interactive protocols, when voters collude with a collector to disrupt
the voting by cheating, each individual voter still has to pass Sub-protocol 1 and Sub-protocol 2 by two
collectors. However, since one collector is colluding, the voter may succeed in passing the verification.

Assume Vi colludes with C1. Vi generates s̄ii and s̄′ii (deviating from authentic sii and s′ii) and
publishes commitments gs̄ii , gs̄′ii , and gs̄ii s̄′ii . For Sub-protocol 1, C1 can derive S̄i,C1 and S̄′i,C1

(deviating
from authentic Si,C1 and S′i,C1

) based on Vi’s s̄ii and s̄′ii, such that:

(s̄ii + S̄i,C1 + Si,C2)(s̄
′
ii + S̄′i,C1

+ S′i,C2
) = 2L−1

Similarly, Vi’s p̄i and p̄′i (deviating from authentic pi and p′i) can also pass Sub-protocol 2 by
colluding with C1.

However, since there are non-colluding voters, the probability of leading to a valid tallied voting
vector is negligibly slim as discussed earlier in this section. Even by any chance a valid tallied voting
vector is created, any voter can still tell if the vote in the final vector is what he intended by the property
of individual verifiability.

As a result, such collusion with the purpose of cheating will be detected too.

4.4. Robustness against Outside Attack

The protocol is robust against an outsider inferring any vote information. The outsider does not
have any information. If he colludes with insiders (voters), he will not gain any information as long as
no more than N− 2 voters collude with him.

The protocol is also robust against an outsider disrupting the voting. First, if the outsider intercepts
data for a voter from secure channel during the voting, he will not learn any information about vote
because the data itself is encrypted. Second, if the outsider wants to change a voter’s vote or even the
tallied voting vector by colluding with voters or a collector, he will not succeed as discussed in Section 4.3.

4.5. Robustness of Location Anonymization

The analysis in Section 4.2 shows that no voter can choose more than one positions during
the location anonymization process. However, this does not address the problem that a malicious
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participant deliberately induces collisions by choosing a location that is already occupied by another
voter. We will demonstrate that our proposed LAS is robust against this.

Let the collision happen at L̂i, i.e., L̂i is chosen by Vi in the previous round, and both Vi and
Vj claim L̂i in the current round. In this case, Vj is the voter who deliberately introduces collision.
To identify a voter who chooses L̂i in a given round, C1 and C2 do the following collaboratively.

For each voter, using the tailored STPM, C1 and C2 compute Q = gg
Si,C1

+Si,C2 (Q′ = gg
S′i,C1

+S′i,C2 ) and

check if gg10
˜̂L−L̂i /gsii = Q (gg10L̂i−1

/gs′ii = Q′). By doing this, the collectors identify the voter who selects
L̂i without divulging others’ locations. Although the honest voter Vi who chooses L̂i is exposed along
with the malicious Vj, Vi can restore location anonymity by selecting another location in the next round
and Vj should be punished.

Of course, voters may collude to infer location information. If k voters collude, they will know that
the rest non-colluding N− k voters occupy the remaining N− k voting locations. Since we assumed in
Section 2.1 that majority of voters is benign, we consider the leaking of location information in this
case is acceptable and will not endanger the voting process.

5. Complexity Analysis and Simulation

We provide complexity analysis and then simulation results.

5.1. Performance and Complexity Analysis

Here we analyze the computational complexity and communication cost for both voters and
collectors in the protocol. Suppose that each message takes T bits. Since the protocol works on a cyclic
group Z∗A (A = max{A1, A2}, in which A1 is a prime greater than 21024 and A2 is a prime greater than
22L − 2L+1 + 1), we see that T = O(L).

The voting protocol involves two independent sharing processes of vi and v′i. The communication
cost is calculated as follows. In the interactive protocol, each voter sends shares of vi to the other N− 1
voters and the two collectors, which costs O(NT). In the non-interactive protocol however, each voter
receives shares from the collectors only, so the cost is O(T). In both protocols, each voter also publishes
pi and the commitments gsii , gs′ii , and gsiis′ii , which costs O(T). Therefore, the total communication cost
of sharing of vi for a voter is O(NT) +O(T) in the interactive protocol and O(T) in the non-interactive
protocol. The cost of sharing v′i is the same.

Each voter’s computation cost includes computing vi, generating N shares (in the interactive
protocol only), computing the secret ballot pi, and computing the commitments gsii , gs′ii , and gsiis′ii , each
of which costs O(T), O(NT) (in the interactive protocol only), O(NT) in the interactive protocol and
O(T) in the non-interactive protocol, and O(T3) respectively. The same cost applies to the sharing of v′i.
Notes: The commitments can typically be computed by a calculator efficiently, thus, the complexity of
O(T3) will not become a performance issue.

The collector Cj’s communication cost involves: (1) receiving O(N2) shares from voters in the
interactive protocol with the cost of O(N2T), or sending sums of shares in the non-interactive protocol
with the cost of O(T); (2) exchanging data with the other collector in Sub-protocol 1 with the cost

of O(T̃) (assuming that the STPM messages are encoded into T̃-bits); and (3) publishing g
S̃i,Cj or

g
S̃′i,Cj for each voter in Sub-protocol 2 with the cost of O(T). With N voters, the total cost for each

collector is O(N2T) + (O(T̃) +O(T))N for the interactive protocol and (O(T) +O(T̃) +O(T))N for
the non-interactive protocol.

The computation cost of each collector includes generating N(N− 1)/2 shares for all voters (in the
non-interactive protocol only) which costs O(N2T), summing up the pi during voting collection/tally,
which costs O(NT), and the computation costs of Sub-protocol 1 and Sub-protocol 2.

In Sub-protocol 1, for the collector Cj, (1) computing g
siiS′i,Cj , g

s′iiSi,Cj and g
Si,Cj

S′i,Cj costs O(T3);
(2) computing Pj involves tailed STPM; and (3) computing gsiis′ii × P1 × P2 costs O(T2). Computing
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Pj consists of obtaining rj (r′j) with tailored STPM, computing grj+r′j and multiplying this with other
terms. Let the complexity for tailored STPM be O(TPMC). The total computation cost of Sub-protocol
1 for each collector is O(T3) +O(T2) +O(TPMC) per voter.

In Sub-protocol 2, the collectors: (1) compute S̃i,Cj and S̃′i,Cj
; (2) compute g

S̃i,Cj and g
S̃′i,Cj ; (3) multiply

gsii , gS̃i,C1 and gS̃i,C2 , and also gs′ii , gS̃′i,C1 and gS̃′i,C2 ; and (4) compute gpi and gp′i . These computations cost
O(NT), O(T3), O(T2) and O(T3), respectively. Thus, the total computation cost of Sub-protocol 2 is
O(NT) +O(T3) +O(T2) +O(T3) for each voter.

LAS uses similar mechanisms of the voting protocol during each round. Thus for each round,
we obtain similar complexity. Roughly, the message length T in LAS is O(L̄).

5.2. Simulation Result

The results presented here are from our protocol simulation implemented in Java. The experiments
were carried out on a computer with a 1.87 GHz CPU and 32 GB of memory. For each experiment,
we took the average of 10 rounds of simulation. 1-out-of-2 voting is simulated. Thus, the length of the
voting vector is L = 2N where N is the number of voters.

Figure 3 shows the number of rounds needed for completing location anonymization. The length
of the location vector L̄ varied from 1.5, 2, to 3 times of number of voters N. The number of voters N
varied from 64 to 1000 by an increment of 16. As shown in Figure 3, the number of rounds needed for
completing location anonymization is relatively stable for different N under a given ratio L̄/N.

Figure 4 shows the time spent on location anonymization by each voter. The length of the location
vector L̄ and the number of voters N varied the same as in Figure 3. The length of the location vector
is L̄ = O(N); the aggregation of location vectors is dominated by the (n, n)-SS. The execution time
is O(NL̄2). Thus, the time spent on location anonymization is O(N2). When the ratio L̄/N = 3, 2
to 3 rounds were sufficient for completing location anonymization. For example, with 1000 voters,
it took no more than 0.05 s to anonymize voters’ locations. This demonstrates the efficiency of the
proposed LAS.
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Figure 3. Location Anonymity Scheme (LAS): number of rounds needed for location anonymization.

In the non-interactive protocol, the computation time for a voter Vi is negligible since only two
subtractions are needed for sii and two additions for pi, and the commitments can be obtained by
using a calculator sufficiently. Collectors however require heavy load of calculation, so our simulation
focuses on collectors’ operations.

Figures 5 and 6 show the computation time of Sub-protocol 1 and Sub-protocol 2, respectively.
Sub-protocol 1 was dominated by tailored STPM, due to the computationally intensive Paillier
Cryptosystem used in our implementation. However, this should not be an issue in real life since the
collectors usually possess much greater computing power.
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Figure 5. Collectors run Sub-protocol 1 in TP3 against one voter.
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Figure 6. Collectors run Sub-protocol 2 in TP3 against one voter.

Figure 7 shows the time for one collector to collect and tally votes. The execution time depends
on the number of voters N and the length L. As L increases, the voting collection/tally time increases
by NL = O(L2).

The simulation results confirm the performance analysis in Section 5.1. Most operations are quite
efficient. For example, when L = 4000 (and N = 2000), collecting and tallying votes took only 0.005 s.
For the in-process enforcement protocol however, it took the collectors 332 s to complete Sub-protocol
1 and 0.515 s to complete Sub-protocol 2. To amortize the relatively high cost, the collectors may
randomly sample voters for misbehavior checking and only resort to full checking when a discrepancy
in the tally is detected or reported.
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Figure 7. One collector collects/tallies votes.

6. Related Work and Comparison

Extensive research on voting, particularly online voting recently, has been conducted. A number
of voting schemes and systems have been proposed [7–12,17,30,35–43].

Cryptographic technique has been an indispensable component of most online voting systems.
A variety of cryptographic techniques, such as mix-nets, blind signature, homomorphic encryption,
zero-knowledge proof, and secret sharing, are deployed in electronic voting protocols to secure
voter’s vote. The first e-voting scheme proposed by Chaum [44] in 1981 utilizes anonymous channels
(i.e., mix-nets). Additional schemes [7,13,45–50] based on mix-nets are proposed afterwards with
various optimization. For example, Aditya et al. [49] improve the efficiency of Lee et al.’s scheme [46]
through modified optimistic mix-nets. The scheme in [7] uses two kinds of mix-nets to prevent vote
updating from being detected by coercers. However, due to the usage of mix-nets, transparency cannot
be guaranteed.

A blind signature allows an authority to sign an encrypted message without knowing the
message’s context [14,33,50–55]. However, it is difficult to defend against misbehavior by authorities.
Moreover, some participants (e.g., authorities) know intermediate results before the counting stage.
This violates fairness of the voting protocol. Ring signature is proposed to replace the single signing
authority. The challenge of using the ring signature is in preventing voters from double voting.
Chow et al. [56] propose using a linkable ring signature, in which messages signed by the same
member can be correlated, but not traced back to the member. A scheme combining blind signature
and mix-nets is proposed in [52]. Similarly, blind signature is used in a debate voting [55] with
messages of varying length where anonymous channel is assumed.

Voting schemes based on homomorphic encryption can trace back to the seminal works by
Benaloh [16,57] and later development in efficiency [31,58], and receipt-freeness [15,59–61]. Rjaskova’s
scheme [15] achieves receipt-freeness by using deniable encryption, which allows a voter to produce
a fake receipt to confuse the coercer. But eligibility and multi-voting prevention are not addressed.
DEMOS-2 proposed by Kiayias et al. [62] utilizes additively homomorphic public keys on bilinear
groups with assumption that symmetric external Diffie-Hellman on these groups is hard. Its voting
support machine (VSD) works as a “voting booth” and the voting protocol is rather complex.

Several voting schemes exploit homomorphism based on secret sharing [15,16,57,59–61]. Some
schemes [31,58] utilize Shamir’s threshold secret sharing [63], while some [64] are based on Chinese
remainder theorem. In contrast, ours is based on a simplified (n, n)-SS scheme. In existing voting
schemes, the secret sharing is utilized among authorities in two ways generally: (a) to pool their shares
together to get the vote decryption key which decrypts the tallied votes [15,16,57–60,65]; and (b) to
pool their shares together to recover the encrypted or masked tally result [31,64]. Instead, in our
scheme, the secret sharing is used among voters to share their secret votes and then recover their open
yet anonymous votes.
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Particularly, some existing protocols require physical settings such as voting booths [23], a tamper
resistant randomizer [46,60,66,67], or specialized smart cards [68]. Our protocol does not require
specialized devices and is distributed by design.

We also examined experimental voting systems. Most existing systems have voter verifiability
and usually provide vote anonymity and voter privacy by using cryptographic techniques. Typically,
the clerks/officers at the voting places will check eligibility by verifying voters’ identity.

Using the voting booth settings, system scalability in terms of voter numbers is hard to evaluate.
Prêt à Voter [45,69] encodes a voter’s vote using a randomized candidate list. The randomization
ensures the secrecy of a voter’s vote. After casting his vote in a voting booth, a voter is given a receipt
such that the voter can verify if his receipt appears on the bulletin board. Unlike our proposed protocol
however, a voter will not see directly that his vote is counted. A number of talliers will recover the
candidate list through the shared secret key and obtain the voter’s vote.

ThreeBallot [70,71] solves the verification and anonymity problem by giving each voter three
ballots. The voter is asked to choose one of the three ballots to be verifiable. The ThreeBallot system
requires a trusted authority to ensure that no candidate is selected on all three ballots to avoid
multiple-vote fraud.

Punchscan/Scantegrity [72–75] allows the voter to obtain a confirmation code from the paper
ballot. Through the confirmation code, the voter can verify the code is correct for his ballot. Similarly
to Prêt à Voter, a voter will not directly see that his vote is counted. A number of trustees will generate
the tally which is publicly auditable.

SplitBallot [23] is a (physical) split ballot voting mechanism by splitting the trust between two
conflict-of-interest parties or tallying authorities. It requires the untappable channels to guarantee
everlasting privacy.

Prêt à Voter, Punchscan/Scantegrity, ThreeBallot, and SplitBallot utilize paper ballots and/or are
based on voting booths, but ours does not. ThreeBallot and SplitBallot seem similar to ours in terms of
split trust, however both of them depend on splitting paper ballots, unlike our protocol which utilizes
electronic ballots that are split equally between two tallying collectors.

Bingo Voting [76] requires a random number list for each candidate which contains as many
large random numbers as there are voters. In the voting booth, the system requires a random
number generator.

VoteBox [77,78] utilizes a distributed broadcast network and replicated log, providing robustness
and auditability in case of failure, misconfiguration, or tampering. The system utilizes an immediate
ballot challenge to assure a voter that his ballot is cast as intended. Additionally, the vote decryption
key can be distributed to several mutually-untrusted parties. VoteBox provides strong auditing
functionality but does not address how a voter can verify if his vote is really counted.

Prime III [79,80] is a multimodal voting system especially devoted to the disabled and it allows
voters to vote, review, and cast their ballots privately and independently through speech and/or touch.
It offers a robust multimodal platform for the disabled but has not considered how individual or
universal verification is done.

Scytl [81–84] requires dedicated hardware - a verification module (a physical device) on top of
the DRE. Also, the trust, previously on the DRE, is transferred to the verification module. In contrast,
ours is cost-efficient and does not require additional hardware devices.

In the ADDER [85] system, a public key is set up for the voting system, and the private key is
shared by a set of authorities. Each voter encrypts his vote using the public key. The encrypted vote
and its zero-knowledge proof are published on the bulletin board. Due to the homomorphic property,
the encrypted tally is obtained by multiplying all encrypted votes on the bulletin board. The authorities
then work together to obtain the decrypted tally. ADDER [85] is similar to ours in terms of Internet
based voting and split trust, yet ADDER does not provide a direct view for a voter to see if his vote is
indeed counted in the tally.
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Unfortunately, due to the strict and conflicting e-voting requirements [5], there is not any
scheme/system currently satisfying all voting properties at the same time [42]. Security weakness
is found even in highly referenced voting schemes [86]. The papers [87,88] particularly analyze two
fundamental but important properties, privacy and verifiability. They reviewed the formal definitions
of these two properties in the literature, and found that the scope and formulation of each property
vary from one protocol to another. As a result, they propose a new game-based definition of privacy
called BPRIV in [87] and a general definition of verifiability in [88].

Comparison with Helios. Helios [89] implements Benaloh’s vote-casting approach [90] on the
Sako-Kilian mix-nets [91]. It is a well-known and highly-accepted Internet voting protocol with good
usability and operability. Our voting protocol shares certain features with Helios including open
auditing, integrity, and open source.

However, there exist some important differences. First, about individual verification, Helios allows
voters to verify their encrypted votes but our new protocol allows voters to verify their plain votes, in
a visual manner. Thus, individual verification in the new protocol is more straightforward. Second,
about transparency, as acknowledged by the author of Zeus, the mixing part in Helios (and Zeus) is
a black box to voters [20]. Instead, in our new protocol, the voting process including ballot-casting,
ballot aggregation, plain vote verification, and tallying are all viewable (on public bulletin board) to
voters. Thus, our new protocol is visibly transparent. Third, in terms of voter assurance, the transition
from ballots to plain votes in Helios involves mix-net (shuffling and re-encryption) and decryption.
In contrast, such transition in our new protocol is seamless and viewable. In addition, the voter
can conduct self-tallying. Thus, voter assurance in our new protocol is direct and personal. Fourth,
about the trust issue (in terms of integrity of the tallying result), Helios depends on cryptographic
techniques including zero knowledge proof to guarantee the trustworthiness of the mix-net which
finally transforms to the integrity of the tallying result. In contrast, our new protocol is straightly
based on simple addition and viewable verification. Thus, accuracy of the tallying result in our new
protocol is self-evident and is easier to justify. Fifth, about the trust issue (in terms of vote secrecy),
Helios can use two or more mix-servers to split trust. However, it assumes that at least a certain
number of mix-servers do not collude. In this case, it is similar to our assumption that two or more
collectors have conflicting interests and will not collude. Sixth, about computational complexity,
Helios’ ballot preparation requires modular exponentiations for each voter and the tallying process
involves exponentiations (decryption). However, our ballot generation and tallying need only modular
subtractions and additions. Thus, our new protocol is more efficient.

Besides Zeus [20] and Helios 2.0 [92], there are some variants of Helios such as BeleniosRF [93].
BeleniosRF is built upon Belenios. It introduces signatures on randomizable ciphertexts to achieve
receipt-freeness. A voting authority is assumed to be trustworthy.

Comparison with existing interactive voting protocols. In aforementioned voting protocols,
most are centralized. Our non-interactive protocol is similar in this regard. However, some e-voting
protocols are decentralized or distributed: each voter bears the same load, executes the same protocol,
and reaches the same result autonomously [94]. One interesting application domain of distributed
e-voting is boardroom voting [21]. In such scenario, the number of voters is not large and all the
voters in the voting process will interact with each other. Two typical boardroom voting protocols are
the ones in [22,95] and our interactive voting protocol is similar to them too. In all these protocols
including ours, tallying is called self-tallying: each voter can incrementally aggregate ballots/votes
themselves by either summing the votes [95]) (as well as ours) or multiplying the ballots [22]) (and then
verify the correctness of the final tally). One main advantage of our interactive voting protocol
over other distributed e-voting protocols is its low computation cost for vote casting and tallying.
As analyzed in [21], in terms of vote casting, the protocol in [22] needs 4N + 10 exponentiations per
voter and the protocol in [95] needs 2N + 2. However, our interactive voting protocol needs only 6.
In terms of tallying [21], the protocol in [22] needs 11N− 11+(N+M

M )/2 and the protocol in [95] needs
19N2 + 58N− 14Nt− 17t + 35 (here t is the threshold in distributed key generation scheme). However,
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our interactive voting protocol does not need any exponentiations beyond simple modular additions.
Another property of our interactive voting protocol in terms of transparency is the viewability of the
voter’s plain vote: each voter knows and can see which plain vote is his vote. However, in [22], plain
votes are not viewable, and in [95], even though plain votes are viewable but the voter does not know
which one is his because the shuffling process changes the correspondence between the initial ballots
and (decrypted) individual plain votes.

7. Discussion of Scalability and Hierarchical Design

In this section, we discuss about scalability and design of our protocol, mainly for the
non-interactive protocol.

Given the number of candidates M, the size of the voting vector determines the number of voters
in one voting group and furthermore determines how large the integral vote values can be. Currently,
most languages support arithmetical operations on big integers of arbitrary sizes. We conducted
preliminary experiments with a voting group of 2000 voters and 2 candidates (i.e., voting vectors of
4000 bits) in Section 5.2. The results showed an encouraging and impressive running time. Based on
a 2004 survey by the US EAC on voting booth based elections, the average precinct size is approximately
1100 registered voters in the US 2004 presidential election [96]. Thus, our proposed voting system
is realistic and practical. Furthermore, by following the US government structure and the precinct
based election practice, we propose the following hierarchical tallying architecture which can apply to
various elections of different scales.

• Level 1: Precinct based vote-casting. Voters belonging to a precinct form a voting group
and execute the proposed vote-casting. Precincts may be based on the physical geography
previously using voting booths or logically formed online to include geographically remote voters
(e.g., overseas personnel in different countries).

• Level 2: Statewide vote tally. Perform anonymous tally among all precincts of a state.
• Level 3: Conversion of tallied votes. There can be a direct conversion. The numbers of votes

for candidates from Level 2 remain unchanged and are passed to Level 4 (the popular vote).
Otherwise, they may be converted from Level 2 by some rules before being passed to Level 4,
to support hierarchies like the Electoral Colleges in the US.

• Level 4: National vote tally.

8. Conclusions and Future Work

We proposed a fully transparent, auditable, and end-to-end verifiable voting protocol to enable
open and fair elections. It exploits the conflicts of interest in multiple tallying authorities, such
as the two-party political system in the US. Our protocol is built upon three novel technical
contributions—verifiable voting vector, forward and backward mutual lock voting, and proven
in-process check and enforcement. These three technical contributions, along with transparent vote
casting and tallying processes, incremental aggregation of secret ballots, and incremental vote tallying
for candidates, deliver fairness and voter assurance. Each voter can be assured that his vote is counted
both technically and visually. In particular, the interactive protocol is suitable for election within
a small group where interaction is encouraged, while the non-interactive protocol is designed for
election within a large group where interaction is not needed and not realistic. Through the analysis
and simulation, we demonstrated the robustness, effectiveness, and feasibility of our voting protocol.

As the future work, we plan to further improve our protocol, focusing particularly on receipt
freeness and voter coercion. They are the most challenging problems in e-voting, compared to other
requirements. As pointed out in [20], e-voting is inherently coercible. Specifically in our protocol, since
the tallied voting vector VA contains all individual votes, a voter’s location can potentially become
a self-claimed receipt and the voter can exploit it for vote selling.
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To prevent vote selling, we plan to have collectors jointly shuffle/shift the locations together with
votes in VA randomly and then publish the skewed VA. In this case, individual verification cannot
be done visually but a voter can perform 1 out of N oblivious transfer with collectors for verification.
To prevent voter coercion, we plan to let each voter have multiple locations, for example, one real
location and one fake location. The coerced voter can cast the vote as what a coercer asked for using
the fake location during the presence of the coercer and then cast his real vote in the real location
afterward. To prevent both, some combination of these can be deployed, or solutions based on secure
two-party computation can be developed.

Recent research by Grewal et al. [6] acknowledges the toughness of the voter coercion issue, and
they propose to redefine its meaning and scope. Even for the century-old Australian ballot which used
to be coercion free, voter coercion is becoming an issue because of new emerging video technology [97].
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