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Abstract: This article presents a sequential domain extension scheme with minimum padding for
hashing using a compression function. The proposed domain extension scheme is free from the
length extension property. The collision resistance of a hash function using the proposed domain
extension is shown to be reduced to the collision resistance and the everywhere preimage resistance
of the underlying compression function in the standard model, where the compression function is
assumed to be chosen at random from a function family in some efficient way. Its indifferentiability
from a random oracle up to the birthday bound is also shown on the assumption that the underlying
compression function is a fixed-input-length random oracle or the Davies-Meyer mode of a block
cipher chosen uniformly at random. The proposed domain extension is also applied to the sponge
construction and the resultant hash function is shown to be indifferentiable from a random oracle up
to the birthday bound in the ideal permutation model. The proposed domain extension scheme is
expected to be useful for processing short messages.
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1. Introduction

1.1. Background

A cryptographic hash function takes as input a sequence of arbitrary length and produces as
output a sequence of fixed length. It usually consists of a primitive and a domain extension scheme.
A primitive is a compression function or a permutation, which takes a fixed-length input and produces
a fixed-length output. A domain extension scheme specifies how to process an input sequence with
arbitrary length using a primitive with fixed input length.

The standardized hash functions SHA-2 [1] use dedicated compression functions and a domain
extension scheme due to Merkle [2] and Damgård [3]. The domain extension scheme is called
strengthened Merkle-Damgård (SMD). It is a sequential iteration of a compression function and
its padding algorithm appends the binary representation of the length of an input message, which is
called MD strengthening.

A positive point of SMD is its preservation of collision resistance. Namely, a hash function using
SMD satisfies collision resistance if its underlying compression function satisfies it. On the other hand,
a negative point of SMD is its length extension property. Due to this property, the MAC function
HMAC [4] invokes the underlying hash function twice. It causes inefficiency for short messages.
The other negative point is that message blocks after padding may include a message block consisting
only of a padding sequence, which needs an additional call to the compression function.

A domain extension scheme with minimum padding and free from the length extension property
seems useful especially for processing short messages. Informally, we say that padding is minimum
if the produced message blocks include no message block only with the padding sequence for any
non-empty input message.
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1.2. Our Contribution

This article first presents a sequential domain extension scheme with minimum padding for
hashing using a compression function. The padding function of the domain extension is not
injective. It extends the MDP domain extension [5] and uses two distinct permutations for domain
separation. The permutations also prevent the length extension property. The permutations need not be
cryptographic transformations. A typical candidate for them is bitwise XOR with a nonzero constant.

Then, the security properties of a hash function using the proposed domain extension are analyzed.
The properties considered are the collision resistance and the indifferentiability.

The proposed domain extension does not preserve the collision resistance. However, it is shown
that the collision resistance of a hash function using the domain extension is reduced to the collision
resistance and the everywhere preimage resistance of the underlying compression function.

It is also shown that a hash function using the domain extension is indifferentiable from a
variable-input-length random oracle (VIL RO) up to the birthday bound if the underlying compression
function is a fixed-input-length random oracle (FIL RO) or the Davies-Meyer mode of a block cipher
chosen uniformly at random.

The proposed domain extension scheme can also be applied to the sponge construction in a
straightforward way. It is shown that the resultant hash function is indifferentiable from a VIL RO up
to the birthday bound if the underlying permutation is chosen uniformly at random.

1.3. Related Work

The presented domain extension of hashing was first considered for a pseudorandom function
using a compression function [6]. It is shown in [6] that keying via IV to the domain extension
presented in the current article produces a pseudorandom function if the underlying compression
function is a pseudorandom function against related-key attacks with respect to the permutations used
in the domain extension.

There are many proposals for domain extension of hashing. On the other hand, little attention has
been paid to padding.

The most related work was done by Bagheri et al. [7]. They proposed a generic scheme to construct
an iterated hash function which requires neither a fixed IV nor the MD strengthening. Their scheme
uses three distinct compression functions to get prefix-free and suffix-free property. It assumes injective
padding function. They also showed that their hash function is indifferentiable from a VIL RO if the
underlying compression functions are FIL ROs.

Nandi [8] showed that the suffix-free property of padding is necessary and sufficient for the plain
MD domain extension to preserve the collision resistance. He also presented a suffix-free padding
scheme which works for any input message M of arbitrary length. It appends O(log |M|) bits to M.
The padding scheme for SHA-2, which is based on Merkle’s [2], also appends only O(log |M|) bits.
However, it works only for input messages of bounded length.

Coron et al. [9] formalized the indifferentiability notion for hash functions in the framework
by Maurer et al. [10]. They also showed the indifferentiability of the following domain extension
schemes: prefix-free plain MD, plain MD with output truncation (chopMD), NMAC construction, and
HMAC construction, where HMAC construction is rather different from the MAC function HMAC [4].
They assumed injective padding. Their work was followed by Chang et al. [11,12].

Bellare and Ristenpart introduced the notion of multi-property preservation for domain extension [13].
They also presented the EMD (enveloped MD) domain extension and showed that it preserves collision
resistance, pseudorandom function, and indifferentiability assuming injective padding.

Merkle-Damgård with permutation (MDP) [5] is a variant of plain MD preventing its
length-extension property. A typical example of MDP was presented by Kelsey in [14]. It uses
bitwise XOR with a nonzero constant for the permutation.
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Minimum padding is already common among MAC functions based on a block cipher such
as CMAC [15] and PMAC [16]. The idea to finalize the iteration with multiple non-cryptographic
transformations for domain separation is used in the secure CBC-MAC variants GCBC1 and GCBC2 [17].

Sarkar [18] presented a domain extension scheme preserving the collision resistance based on
directed acyclic graphs. Bertoni et al. [19] formulated sufficient conditions for domain extension
schemes covering both tree and sequential structures to be indifferentiable up to the birthday bound.
Based on the sufficient conditions, a coding scheme for tree domain extension schemes is specified
in [20], which also covers sequential domain extension schemes.

The sponge construction [21] is a scheme to construct a hash function using a function with its input
length equal to its output length, which is typically a permutation. It was invented for the SHA-3 hash
function [22]. It is adopted by lightweight hash functions such as PHOTON [23] and SPONGENT [24].
It is also extended to design cryptographic schemes such as authenticated encryption [25].

1.4. Organization

Section 2 gives notations used in this article and defines some security properties required of
cryptographic hash functions. The proposed scheme is described in Section 3. The collision resistance
of the proposed hash function is discussed in the standard model in Section 4. The indifferentiability
is discussed in Section 5. The proposed domain extension is applied to the sponge construction in
Section 6. A concluding remark is given in Section 7.

2. Preliminaries

2.1. Notations

Let Σ = {0, 1}. Let Σ∗ =
⋃∞

i=0 Σi, and (Σn)+ =
⋃∞

i=1 Σni.
For binary sequences x and y, let x‖y be their concatenation. The empty sequence is denoted by ε.
The operation of selecting an element from set S uniformly at random and assigning it to s is

denoted by s � S.

2.2. Collision Resistance and Preimage Resistance

In this section, the collision resistance and everywhere preimage resistance [26] are defined in the
standard model. To do so, a family of hash functions should be introduced. Suppose that h is a hash
function chosen at random from some set of hash functions from X to Y in some efficient way.

Let A be an adversary which is given h as input and tries to find a collision pair for h. A collision
pair for h are a pair of distinct inputs mapped to the same output by h. The col-advantage of A against
h is given by

Advcol
h (A) = Pr[(M, M′)← A(h) : h(M) = h(M′) ∧M 6= M′],

where the probability is taken over the coin tosses by A and the distribution of h.
Let A be an adversary which is given h as input and tries to find a preimage of an output for h.

The pre-advantage of A against h is given by

Advepre
h (A) = max

Y∈Y
{Pr[M← A(h) : h(M) = Y]} ,

where the probability is taken over the coin tosses by A and the distribution of h.

2.3. Indifferentiability from Random Oracle

Maurer et al. [10] formalized the notion of indifferentiability as a generalized notion of
indistinguishability. Then, Coron et al. [9] tailored it for the security analysis of hash functions.

Let C be an algorithm with oracle access to an ideal primitive P . Here in this article, C is a domain
extension scheme using P with fixed input length and CP defines a hash function. Let R be a VIL
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random oracle and S be a simulator which has oracle access toR. SR simulates P in order to convince
an adversary thatR is CP . The indiff-advantage of adversary A against (C, S) is given by

Advindiff
C,S (A) =

∣∣∣Pr[ACP ,P = 1]− Pr[AR,SR = 1]
∣∣∣ ,

where the probabilities are taken over the coin tosses by A, S and the oraclesR and P . CP andR are
called VIL oracles, and P and SR are called FIL oracles.

3. Proposed Scheme

The proposed hash function consists of a compression function F : Σn × Σw → Σn, permutations
π0 and π1 over Σn, and an initialization vector IV ∈ Σn. For π0 and π1, it is assumed that π0(v) 6= v,
π1(v) 6= v and π0(v) 6= π1(v) for any v ∈ Σn.

Remark 1. Let c0 and c1 be distinct constants in Σn \ {0}. Let πi(v) = v⊕ ci for i = 0, 1. Then, for any
v ∈ Σn, π0(v) 6= v, π1(v) 6= v and π0(v) 6= π1(v).

Let π be a permutation over Σn. For 1 ≤ i ≤ x, let Xi ∈ Σw. The MDP domain extension [5] CF,π
IV :

(Σw)+ → Σn for F is defined as follows: CF,π
IV (X1‖X2‖ · · · ‖Xx) = vx, where v0 ← IV, vi ← F(vi−1, Xi)

for 1 ≤ i ≤ x− 1, and vx ← F(π(vx−1), Xx).
For M ∈ Σ∗, the padding function is defined as follows:

pad(M) =

{
M if |M| > 0 and |M| ≡ 0 (mod w),

M‖10d otherwise,

where d is the smallest non-negative integer such that |M|+ 1+ d ≡ 0 (mod w). The length of any output
of pad is a positive multiple of w. In particular, pad(ε) = 10w−1. If |M| > 0, then |pad(M)| = wd|M|/we.

The proposed hash function HF,{π0,π1}
IV : Σ∗ → Σn is defined as follows:

HF,{π0,π1}
IV (M) =

{
CF,π0

IV (pad(M)) if |M| > 0 and |M| ≡ 0 (mod w),

C
F,π1
IV (pad(M)) otherwise.

It is also depicted in Figure 1.

π0IV F F FF

Mm−1M1 M2 Mm

(a) For M such that |M| > 0 and |M| ≡ 0 (mod w). |Mm| = w.

π1IV F F FF

Mm−1M1 M2 Mm‖10*

(b) For M such that |M| = 0 or |M| 6≡ 0 (mod w). |Mm| = 0 if |M| = 0 and 1 ≤ |Mm| ≤
w− 1 otherwise.

Figure 1. The proposed hash function. M = M1‖M2‖ · · · ‖Mm, where |Mi| = w for 1 ≤ i ≤ m− 1.
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4. Collision Resistance

The collision resistance of HF,{π0,π1}
IV is discussed in the standard model. It is assumed that the

compression function F is chosen at random from some set of functions from Σn × Σw to Σn in some
efficient way.

The collision resistance of HF,{π0,π1}
IV needs a new security requirement for F, which is a

kind of collision resistance. A pair of distinct inputs (v, X) and (v′, X′) for F are called a
{π0, π1}-pseudo-collision pair if π0(F(v, X)) = π1(F(v′, X′)). The advantage of adversary A against
F with respect to {π0, π1}-pseudo-collision is defined similarly to the col-advantage. It is denoted by
Advpcol

F,{π0,π1}
(A).

It will be shown that the collision resistance of HF,{π0,π1}
IV is reduced to the collision resistance,

the {π0, π1}-pseudo-collision resistance and the everywhere preimage resistance of F.

Lemma 1. Any collision pair for HF,{π0,π1}
IV implies a collision pair, a {π0, π1}-pseudo-collision pair, or a

preimage of IV, π−1
0 (π1(IV)), or π−1

1 (π0(IV)) for F.

Proof. Let M and M′ be any collision pair for HF,{π0,π1}
IV . It is shown below that, by tracing

back the computation of HF,{π0,π1}
IV (M) and HF,{π0,π1}

IV (M′), one can find a collision pair for F,
a {π0, π1}-pseudo-collision pair for F, or a preimage of IV, π−1

0 (π1(IV)), or π−1
1 (π0(IV)) for F.

Let |pad(M)|/w = m and |pad(M′)|/w = m′.
Suppose that pad(M) = pad(M′). Then, one of HF,{π0,π1}

IV (M) and HF,{π0,π1}
IV (M′) uses π0 and

the other uses π1. Notice that π0(v) 6= π1(v) for any v ∈ Σn. If m = m′ = 1, then one finds a
collision pair for F since π0(IV) 6= π1(IV). If m = m′ ≥ 2, then one finds a collision pair or a
{π0, π1}-pseudo-collision pair for F since π0(v) = π1(v′) implies v 6= v′ for any v, v′ ∈ Σn.

Suppose that pad(M) 6= pad(M′).

(i) Suppose that one of HF,{π0,π1}
IV (M) and HF,{π0,π1}

IV (M′) uses π0 and the other uses π1. Assume

that HF,{π0,π1}
IV (M) uses π0 and HF,{π0,π1}

IV (M′) uses π1 without loss of generality. If m = m′ = 1,
then one finds a collision pair for F. If m = 1 and m′ ≥ 2, then one finds a collision pair for F
or a preimage of π−1

1 (π0(IV)) for F. If m ≥ 2 and m′ = 1, then one finds a collision pair for F
or a preimage of π−1

0 (π1(IV)) for F. If m ≥ 2 and m′ ≥ 2, then one finds a collision pair or a
{π0, π1}-pseudo-collision pair for F.

(ii) Suppose that both of HF,{π0,π1}
IV (M) and HF,{π0,π1}

IV (M′) uses a same permutation. If m = m′ = 1,
then one finds a collision pair for F. If m = 1 and m′ ≥ 2, or m ≥ 2 and m′ = 1, then one finds a
collision pair for F or a preimage of IV for F. If m ≥ 2 and m′ ≥ 2, then one finds a collision pair
or a preimage of IV for F.

Theorem 1. For any adversary A trying to find a collision pair for HF,{π0,π1}
IV with run time t, there exist

adversaries B1, B2 and B3 such that

Advcol
H

F,{π0,π1}
IV

(A) ≤ Advcol
F (B1) + Advpcol

F,{π0,π1}
(B2) + 3 Advepre

F (B3).

The run times of B1, B2 and B3 are about t + O((|pad(M)|+ |pad(M′)|)TF/w), where M and M′ are a
collision pair of HF,{π0,π1}

IV output by A and TF is the time required to compute F.

Proof. Let B be an algorithm which works as follows. B takes F as input. It first runs A with input
HF,{π0,π1}

IV . If A fails to find a collision pair for HF,{π0,π1}
IV , then it aborts. Otherwise, for a collision pair

M and M′ output by A, it computes HF,{π0,π1}
IV (M) and HF,{π0,π1}

IV (M′).
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Let B1 be an adversary trying to find a collision pair for F. Let B2 be an adversary trying to
find a {π0, π1}-pseudo-collision pair for F. Let B3 be an adversary trying to find a preimage of IV,
π−1

0 (π1(IV)), or π−1
1 (π0(IV)) for F. All of them first run B. From Lemma 1, if A succeeds in finding a

collision pair for HF,{π0,π1}
IV , then B1, B2 or B3 succeed.

5. Indifferentiability from Random Oracle

5.1. In the Random Oracle Model

In this section, to discuss the indifferentiability, the compression function F is assumed to be
chosen uniformly at random from all the functions from Σn × Σw to Σn.

The following theorem implies that the proposed hash function is indifferentiable from a random
oracle up to the birthday bound. The game-playing technique [27] is used for the proof.

Theorem 2. Suppose that the compression function F : Σn × Σw → Σn is chosen uniformly at random.
Then, for the hash function HF,{π0,π1}

IV , there exists a simulator S of F such that, for any adversary A making at
most q queries to its FIL oracle and queries to its VIL oracle which cost at most σ message blocks in total,

Advindiff
H

F,{π0,π1}
IV ,S

(A) ≤ 5(σ + q)2

2n +
3σq

2n − 6q + 1
,

and S makes at most q queries.

Proof. Each game provides two interfaces to adversary A: H for the hash function and F for the
compression function. It is assumed without loss of generality that A makes no repeated queries both
toH and to F .

The game G1 is given in Figure 2. F simply calls F, which implements the compression function
F by lazy evaluation. F uses a partial function F. Initially, F[v, X] = ⊥ for every (v, X) ∈ Σn × Σw.
H computes HF,{π0,π1}

IV with the aid of F. Thus,

Pr
[
AH

F,{π0,π1}
IV ,F = 1

]
= Pr

[
AG1 = 1

]
.

Notice that F may receive repeated queries sinceH also calls F as well as F .
The game G2 is given in Figure 3a. F andH are not changed and omitted.
In G2, F constructs and maintains a directed graph (V , E) based on the queries to F. It also uses a

function findM, which will be described later. Initially, V = {} and E = {}. For a new query (v, X),
if findM(v, X) 6= ⊥, then F replaces V with V ∪ {v}. On the other hand, if findM(v, X) = ⊥, then F

replaces V with V ∪ {v, F[v, X]} and E with E ∪ {(v, F[v, X])}. The edge (v, F[v, X]) is labeled with X.
T and H are the sets of tails and heads of edges in (V , E), respectively. Vertices with no adjacent edges
in (V , E) are also included in T . Initially, T = {} and H = {}.
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InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← F(vi−1, Xi)
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← F(π0(vx−1), Xx)
107: else
108: vx ← F(π1(vx−1), Xx)
109: end if
110: return vx

Interface F (v, X):

200: return F(v, X)

Function F(v, X):

600: if F[v, X] = ⊥ then
601: F[v, X] � Σn

602: end if
603: return F[v, X]

Figure 2. Game G1. For the partial function F used in F, initially, F[v, X] = ⊥ for every (v, X) ∈ Σn × Σw.

Function F(v, X):

600: if F[v, X] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: F[v, X] � Σn

604: else
605: F[v, X] � Σn

606: if F[v, X] ∈ B then
607: bad← true
608: F[v, X] � Σn \ B
609: end if
610: H ← H ∪ {F[v, X]}
611: end if
612: T ← T ∪ {v}
613: end if
614: return F[v, X]

(a) F of G2

Function F(v, X):

600: if F[v, X] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: F[v, X] � Σn

604: else
605: F[v, X] � Σn \ B
606: H ← H ∪ {F[v, X]}
607: end if
608: T ← T ∪ {v}
609: end if
610: return F[v, X]

(b) F of G3

Figure 3. Games G2 and G3. F andH are omitted, which are identical to those of G1. B = T ∪π−1
0 (T)∪

π−1
1 (T) ∪ H ∪ π−1

0 (π1(H)) ∪ π−1
1 (π0(H)) ∪ {IV, π−1

0 (IV), π−1
1 (IV), π−1

0 (π1(IV)), π−1
1 (π0(IV))}.

Initially, T = {} and H = {}.

findM tries to find a path in (V , E) corresponding to the computation HF,{π0,π1}
IV (M) for some

M. Given (v, X) as input, findM first searches a path from IV to π−1
0 (v) or π−1

1 (v) in (V , E).
If IV equals π−1

0 (v) or π−1
1 (v), then the single vertex IV is regarded as a path. If findM finds a

path, then let X1, X2, . . . , Xl be the labels of the edges on the path. If the path is IV, then l = 0,
that is, X1‖X2‖ · · · ‖Xl = ε. If there exists some M ∈ Σ∗ such that pad(M) = X1‖X2‖ · · · ‖Xl‖X,
which depends on whether the terminal of the path is π−1

0 (v) or π−1
1 (v), then findM returns M.

Otherwise, findM returns ⊥. It will be shown that findM(v, X) finds at most one path.
F of G2 differs from F of G1 only if bad gets true in G2. This is because F[v, X] is chosen uniformly

at random in G2 until bad gets true. For the i-th call to F, |B| ≤ 6i− 1 since

B = T ∪ π−1
0 (T) ∪ π−1

1 (T) ∪ H ∪ π−1
0 (π1(H)) ∪ π−1

1 (π0(H)) ∪{
IV, π−1

0 (IV), π−1
1 (IV), π−1

0 (π1(IV)), π−1
1 (π0(IV))

}
,

|T | ≤ i− 1 and |H| ≤ i− 1. F is called at most (σ + q) times. Thus,

∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG2 = 1

]∣∣∣ ≤ Pr
[
AG2 sets bad

]
≤

σ+q

∑
i=1

6i− 1
2n =

3(σ + q)2 + 2(σ + q)
2n .
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For the game G3 in Figure 3b, the lines from 605 to 609 in G2 are replaced with the line 605 in G3.
Since they are equivalent, Pr

[
AG2 = 1

]
= Pr

[
AG3 = 1

]
.

The game G4 is given in Figure 4. It introduces a variable-input-length random oracle H, which is
implemented by lazy evaluation. Initially, H[M] = ⊥ for every M ∈ Σ∗. H may receive repeated
queries since it is called by both H and F . Different from F of G3, F assigns H(M) to F[v, X] at the
line 603 in G4. Different from H of G3, H(M) returns H(M) in G4. We will see that G4 is actually
equivalent to G3 in spite of these changes.

InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← F(vi−1, Xi)
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← F(π0(vx−1), Xx)
107: else
108: vx ← F(π1(vx−1), Xx)
109: end if
110: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface F (v, X):

200: return F(v, X)

Function F(v, X):

600: if F[v, X] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: F[v, X]← H(M)
604: else
605: F[v, X] � Σn \ B
606: H ← H ∪ {F[v, X]}
607: end if
608: T ← T ∪ {v}
609: end if
610: return F[v, X]

Figure 4. Game G4. Initially, H[M] = ⊥ for every M ∈ Σ∗.

First, let us see some properties of the graph (V , E). Both in G3 and in G4, at the beginning of each
run of F with (v, X) such that F[v, X] = ⊥, V ⊆ T ∪ H. Then, whenever this run adds F[v, X] to both
V and H, F[v, X] is chosen from Σn \ B, where {IV} ∪ T ∪ H ⊆ B. Thus, every vertex in (V , E) has at
most one incoming edge, and IV has no incoming edge. It implies that every vertex in (V , E) has at
most one simple path from IV. In addition, for every path (v1, v2, . . . , vl) with v1 = IV, vi’s are added
to (V , E) in this order. Furthermore, before vl is added to (V , E), neither (π0(vl), X′) nor (π1(vl), X′)
were asked to F for any X′ ∈ Σw since {π−1

0 (IV), π−1
1 (IV)} ∪ π−1

0 (T) ∪ π−1
1 (T) ⊆ B.

Suppose that findM(v, X) finds two paths in (V , E). Then, one is from IV to π−1
0 (v) and the other is

from IV to π−1
1 (v). Notice that π−1

0 (v) 6= π−1
1 (v) since π0(u) 6= π1(u) for every u ∈ Σn. Suppose that

both paths have two or more vertices. Then, both π−1
0 (v) and π−1

1 (v) are elements of H, which implies
that one was added to H after the other since at most one vertex is added to H during each run of F.
It contradicts π−1

1⊕b(πb(H)) ⊆ B for b ∈ Σ. Suppose that one path is the single vertex IV and the other
has two or more vertices. π−1

b (v) = IV contradicts π−1
1⊕b(πb(IV)) ⊆ B for b ∈ Σ. Thus, findM(v, X)

finds at most a single path in (V , E).
In G4, for a new query (v, X) to F, suppose that findM finds a path in (V , E) and returns M

corresponding to the path and (v, X). Then, M is a new query to H, that is H[M] = ⊥, and it is assigned
an element chosen uniformly at random from Σn. On the other hand, forH, vx = H(M). Thus, G4 is
equivalent to G3, and Pr

[
AG4 = 1

]
= Pr

[
AG3 = 1

]
.

From G4 to G5, only F changes, which is given in Figure 5a. F of G5 is augmented with the lines
from 600 to 606 and the lines from 614 to 616. HA is the set of heads of edges in (V , E) in the view
of A. Initially, HA = {}. These changes do not affect the output of F. Thus, G5 is equivalent to G4,
and Pr

[
AG5 = 1

]
= Pr

[
AG4 = 1

]
.
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Function F(v, X):

600: if F[v, X] 6= ⊥ then
601: if (v, X) is from F then
602: if v ∈ Ba then
603: bad← true
604: end if
605: end if
606: end if
607: if F[v, X] = ⊥ then
608: M← findM(v, X)
609: if M 6= ⊥ then
610: F[v, X]← H(M)
611: else
612: F[v, X] � Σn \ B
613: H ← H ∪ {F[v, X]}
614: if (v, X) is from F then
615: HA ← HA ∪ {F[v, X]}
616: end if
617: end if
618: T ← T ∪ {v}
619: end if
620: return F[v, X]

(a) F of G5 and G6. Ba = (H \ HA) ∪ π0(H \ HA) ∪
π1(H \ HA). Initially, HA = {}.

InterfaceH(M):

100: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface F (v, X):

200: return F(v, X)

Function F(v, X):

600: M← findM(v, X)
601: if M 6= ⊥ then
602: F[v, X]← H(M)
603: else
604: F[v, X] � Σn \ B
605: H ← H ∪ {F[v, X]}
606: end if
607: T ← T ∪ {v}
608: return F[v, X]

(b) Game G7

Figure 5. Games G5, G6 and G7.

From G5 to G6, only H changes. H of G6 is identical to that of G7, which is given in Figure 5b.
In G6,H(M) does not call F and just returns H(M). In G6, F is called only by F and it does not receive
any repeated queries, which implies that bad never gets true. On the other hand, bad may get true in
G5. If bad gets true in G5, then A may trace some computation path of HF,{π0,π1}

IV in (V , E) from its
middle. |Ba| ≤ 3σ since Ba = (H \ HA) ∪ π0(H \ HA) ∪ π1(H \ HA) and |H \ HA| ≤ σ. A knows at
most 6q− 1 elements in B. Thus,∣∣∣Pr

[
AG5 = 1

]
− Pr

[
AG6 = 1

]∣∣∣ ≤ Pr
[
AG5 sets bad

]
≤ 3σq

2n − 6q + 1
.

From G6 to G7, only F changes. G7 is given in Figure 5b. F of G7 is obtained from F of G6
by removing the lines from 600 to 606 and the lines from 614 to 616. Since F does not receive any
repeated queries, the lines 607 and 619 are also removed. These changes do not affect the output of F.
Thus, Pr

[
AG7 = 1

]
= Pr

[
AG6 = 1

]
. F of G7 works as a simulator S of F.

From the discussion above, we have

Advindiff
H

F,{π0,π1}
IV ,S

(A) =
∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG7 = 1

]∣∣∣ ≤ Pr
[
AG2 sets bad

]
+ Pr

[
AG5 sets bad

]
≤ 3(σ + q)2 + 2(σ + q)

2n +
3σq

2n − 6q + 1
≤ 5(σ + q)2

2n +
3σq

2n − 6q + 1
.

5.2. In the Ideal Cipher Model

In this section, F : Σn × Σw → Σn is assumed to be the Davies-Meyer compression function [28]
using a block cipher E : Σw × Σn → Σn, where the key space of E is Σw. Namely, F(V, X) = E(X, V)⊕V.
E is assumed to be chosen uniformly at random.
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Theorem 3. Suppose that the compression function F : Σn × Σw → Σn is the Davies-Meyer mode of a block
cipher E chosen uniformly at random. Let D be the decryption function of E. Then, for the hash function
HF,{π0,π1}

IV , there exists a simulator S of (E, D) such that, for any adversary A making at most qe queries to its
FIL encryption oracle, qd queries to its FIL decryption oracle, and queries to its VIL oracle which cost at most σ

message blocks in total,

Advindiff
H

F,{π0,π1}
IV ,S

(A) ≤ 12(σ + qe + qd)
2

2n +
3σ(qe + qd)

2n − 6(qe + qd)− 5
,

and S makes at most qe queries.

Proof. Each game provides three interfaces to adversary A: H for the hash function, E for the
encryption and D for the decryption. It is assumed without loss of generality that A makes no
repeated queries both to H and to (E ,D). For E and D, once A gets a tuple (key, pt, ct) such that
E(key, pt) = ct by a query to E or D, A never makes any query on the tuple.

The game G1 is given in Figure 6. E and D simply call E and D, respectively. E and D implement
the encryption function and the decryption function by lazy evaluation, respectively. H computes
HF,{π0,π1}

IV with the aid of E. Thus,

Pr
[
AH

F,{π0,π1}
IV ,(E,D) = 1

]
= Pr

[
AG1 = 1

]
.

Notice that E and D may receive repeated queries sinceH also calls E as well as E .

InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← E(Xi, vi−1)⊕ vi−1
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← E(Xx, π0(vx−1))⊕ π0(vx−1)
107: else
108: vx ← E(Xx, π1(vx−1))⊕ π1(vx−1)
109: end if
110: return vx

Interface E(X, v):

200: return E(X, v)

Function E(X, v):

600: if E[X, v] = ⊥ then
601: E[X, v] � Σn \ CX
602: end if
603: return E[X, v]

Interface D(X, u):

300: return D(X, u)

Function D(X, u):

700: if D[X, u] = ⊥ then
701: D[X, u] � Σn \ PX
702: end if
703: return D[X, v]

Figure 6. Game G1. For the partial functions E and D, initially, E[X, v] = ⊥ for every (X, v) ∈ Σw × Σn

and D[X, u] = ⊥ for every (X, u) ∈ Σw × Σn. If u is assigned to E[X, v], then v is assigned to D[X, u]. If v
is assigned to D[X, u], then u is assigned to E[X, v]. PX and CX are the sets of values already assigned as
plaintexts and ciphertexts for key X, respectively.

From G1 to G2, only E and D are changed, which are given in Figure 7. In G2, E[X, v] and D[X, u]
are chosen uniformly at random from Σn. G1 and G2 are identical until bad gets true in G2. Since E

and D are called at most σ + qe + qd times in total and |PX | = |CX | ≤ σ + qe + qd,

∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG2 = 1

]∣∣∣ ≤ Pr
[
AG2 sets bad

]
≤ (σ + qe + qd)

2

2n .
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Function E(X, v):

600: if E[X, v] = ⊥ then
601: E[X, v] � Σn

602: if E[X, v] ∈ CX then
603: bad← true
604: end if
605: end if
606: return E[X, v]

Function D(X, u):

700: if D[X, u] = ⊥ then
701: D[X, u] � Σn

702: if D[X, u] ∈ PX then
703: bad← true
704: end if
705: end if
706: return D[X, u]

Figure 7. Game G2. H, E and D, which are not changed, are omitted.

From G2 to G3, only E and D are changed, which are given in Figure 8. In G3, E and D constructs
and maintains a directed graph (V , E) based on the queries to them. Initially, V = {} and E = {}.
For a new query (X, v), if findM(v, X) 6= ⊥, then E replaces V with V ∪ {v}. If findM(v, X) = ⊥,
then E replaces V with V ∪ {v, u′} and E with E ∪ {(v, u′)}, where u′ = E(X, v)⊕ v. The edge (v, u′)
is labeled with X. On the other hand, for a new query (X, u), D replaces V with V ∪ {v, v⊕ u} and E
with E ∪ {(v, v⊕ u)}, where v = D(X, u).

Function E(X, v):

600: if E[X, v] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: u′ � Σn

604: else
605: u′ � Σn

606: if u′ ∈ Be then
607: bad← true
608: u′ � Σn \ Be
609: end if
610: H ← H ∪ {u′}
611: end if
612: T ← T ∪ {v}
613: end if
614: E[X, v]← u′ ⊕ v
615: return E[X, v]

Function D(X, u):

700: if D[X, u] = ⊥ then
701: v � Σn

702: if v ∈ Bd then
703: bad← true
704: v � Σn \ Bd
705: end if
706: end if
707: T ← T ∪ {v}
708: H ← H ∪ {v⊕ u}
709: D[X, u]← v
710: return D[X, u]

Figure 8. Game G3. H, E and D are not changed and omitted. Be = T ∪ π−1
0 (T) ∪ π−1

1 (T) ∪
H ∪π−1

0 (π1(H))∪π−1
1 (π0(H))∪{IV, π−1

0 (IV), π−1
1 (IV), π−1

0 (π1(IV)), π−1
1 (π0(IV))}. Bd = T ∪H ∪

(u⊕ T) ∪ (u⊕ H) ∪ π0(H) ∪ π1(H) ∪ {IV, u⊕ IV, π0(IV), π1(IV)}. Initially, T = H = {}.

T and H are the sets of tails and heads of edges in (V , E), respectively. Vertices with no adjacent
edges in (V , E) are also in T . Initially, T = H = {}.

findM tries to find a path in (V , E) corresponding to the computation HF,{π0,π1}
IV (M) for some

M. Given (v, X) as input, findM first searches a path from IV to π−1
0 (v) or π−1

1 (v) in (V , E).
If IV equals π−1

0 (v) or π−1
1 (v), then the single vertex IV is regarded as a path. If findM finds a

path, then let X1, X2, . . . , Xl be the labels of the edges on the path. If the path is IV, then l = 0,
that is, X1‖X2‖ · · · ‖Xl = ε. If there exists some M ∈ Σ∗ such that pad(M) = X1‖X2‖ · · · ‖Xl‖X,
which depends on whether the terminal of the path is π−1

0 (v) or π−1
1 (v), then findM returns M.

Otherwise, findM returns ⊥.
E of G3 always assigns to E[X, v] a value chosen uniformly at random from Σn until bad gets true

at line 607. D of G3 always assigns to D[X, u] a value chosen uniformly at random from Σn until bad
gets true at line 703. Thus, G3 is identical to G2 until bad gets true in G3. Since |T | ≤ σ + qe + qd
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and |H| ≤ σ + qe + qd, |Be| ≤ 6(σ + qe + qd) + 5 and |Bd| ≤ 6(σ + qe + qd) + 4. E is called at most
(σ + qe) times and D is called at most qd times and Thus,∣∣∣Pr

[
AG2 = 1

]
− Pr

[
AG3 = 1

]∣∣∣ ≤ Pr
[
AG3 sets bad

]
≤ (6(σ + qe + qd) + 5)(σ + qe)

2n +
(6(σ + qe + qd) + 4)qd

2n

=
6(σ + qe + qd)

2 + 5σ + 5qe + 4qd
2n .

For the game G4 in Figure 9, the lines from 605 to 609 of G3 are replaced with the line 605 of G4,
and the lines from 701 to 705 of G3 are replaced with the line 701 of G4. Since these changes do not
affect the behavior, Pr[AG3 = 1] = Pr[AG4 = 1].

Function E(X, v):

600: if E[X, v] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: u′ � Σn

604: else
605: u′ � Σn \ Be
606: H ← H ∪ {u′}
607: end if
608: T ← T ∪ {v}
609: end if
610: E[X, v]← u′ ⊕ v
611: return E[X, v]

Function D(X, u):

700: if D[X, u] = ⊥ then
701: v � Σn \ Bd
702: end if
703: T ← T ∪ {v}
704: H ← H ∪ {v⊕ u}
705: D[X, u]← v
706: return D[X, u]

Figure 9. Game G4. H, E and D are not changed and omitted.

The game G5 is given in Figure 10. It introduces a variable-input-length random oracle H, which is
implemented by lazy evaluation. Initially, H[M] = ⊥ for every M ∈ Σ∗. H may receive repeated
queries since it is called by both H and F . Different from E of G4, E of G5 assigns H(M) to u′ at the
line 603. Different fromH of G4,H of G5 returns H(M). We will see that G5 is actually equivalent to
G4 in spite of these changes.

First, let us see some properties of the graph (V , E). At the beginning of each run of E with (X, v)
such that E[X, v] = ⊥, V ⊆ T ∪ H. Whenever u′ is added to both V and H by this run, it is chosen
from Σn \ Be, where T ∪ H ∪ {IV} ⊆ Be. On the other hand, at the beginning of each run of D with
(X, u) such that D[X, u] = ⊥, V ⊆ T ∪ H. Then, v is chosen from Σn \ Bd, and v⊕ u is added to both
V and H by this run, where T ∪ H ∪ {IV} ∪ (u⊕ (T ∪ H ∪ {IV})) ⊆ Bd. Thus, every vertex in (V , E)
has at most one incoming edge, and IV has no incoming edge. It implies that every vertex in (V , E) has
at most one simple path from IV. In addition, every path (v1, v2, . . . , vl) with v1 = IV is constructed
only by queries to E, and vi’s are added to (V , E) in this order. Furthermore, before vi is added to
(V , E), neither π0(vi) nor π1(vi) existed in (V , E) since π−1

0 (T)∪ π−1
1 (T)∪ {π−1

0 (IV), π−1
1 (IV)} ⊆ Be.

Neither π0(vi) nor π1(vi) are added to (V , E) as tails by the queries to D after vi since π0(H)∪π1(H)∪
{π0(IV), π1(IV)} ⊆ Bd.
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InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← E(Xi, vi−1)⊕ vi−1
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← E(Xx, π0(vx−1))⊕ π0(vx−1)
107: else
108: vx ← E(Xx, π1(vx−1))⊕ π1(vx−1)
109: end if
110: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface E(X, v):

200: return E(v, X)

Function E(X, v):

600: if E[X, v] = ⊥ then
601: M← findM(v, X)
602: if M 6= ⊥ then
603: u′ ← H(M)
604: else
605: u′ � Σn \ Be
606: H ← H ∪ {u′}
607: end if
608: T ← T ∪ {v}
609: end if
610: E[X, v]← u′ ⊕ v
611: return E[X, v]

Figure 10. Game G5. D and D are not changed and omitted. Initially, H[M] = ⊥ for every M ∈ Σ∗.

Suppose that findM(v, X) finds two paths in (V , E). Then, one is from IV to π−1
0 (v) and the other is

from IV to π−1
1 (v). Notice that π−1

0 (v) 6= π−1
1 (v) since π0(u) 6= π1(u) for every u ∈ Σn. Suppose that

both paths have two or more vertices. Then, both π−1
0 (v) and π−1

1 (v) are elements of H, which implies
that one was added to H after the other since at most one vertex is added to H during each run of E.
It contradicts π−1

1⊕b(πb(H)) ⊆ Be for b ∈ Σ. Suppose that one path is the single vertex IV and the other
has two or more vertices. π−1

b (v) = IV contradicts π−1
1⊕b(πb(IV)) ⊆ Be for b ∈ Σ. Thus, findM(v, X)

finds at most a single path in (V , E).
In G5, for a new query (v, X) to E, suppose that findM finds a path in (V , E) and returns M

corresponding to the path and (v, X). Then, M is a new query to H, that is H[M] = ⊥, and it is assigned
an element chosen uniformly at random from Σn. On the other hand, forH, vx = H(M). Thus, G5 is
equivalent to G4, and Pr[AG5 = 1] = Pr[AG4 = 1].

From G5 to G6, E and D change, which are given in Figure 11. E of G6 is augmented with the
lines from 600 to 606 and the lines from 614 to 616. HA is the set of heads of edges in (V , E) in the view
of A. Initially, HA = {}. These changes do not affect the output of E. D of G6 is augmented with the
lines from 700 to 704 and the line 710. These changes do not affect the output of D, either. Thus, G6 is
equivalent to G5, and Pr[AG6 = 1] = Pr[AG5 = 1].

From G6 to G7, only H changes. H of G7 is identical to that of G8, which is given in Figure 12.
In G7, H(M) does not call E and just returns H(M). In G7, E is called only by E and it does not
receive any repeated queries. D does not receive any repeated queries, either. Thus, bad never
gets true in G7. On the other hand, bad may get true in G6. |Bae| ≤ 3σ and |Bad| ≤ 3σ since Bae =

(H \HA)∪π0(H \HA)∪π1(H \HA), Bad = (v⊕ (H \HA))∪ (H(M)⊕ (π0(H \HA)∪π1(H \HA))),
and |H \ HA| ≤ σ. A knows at most 6(qe + qd) + 5 elements in Be. Thus,∣∣∣Pr

[
AG6 = 1

]
− Pr

[
AG7 = 1

]∣∣∣ ≤ Pr
[
AG6 sets bad

]
≤ 3σ(qe + qd)

2n − 6(qe + qd)− 5
.

From G7 to G8, E and D changes. G8 is given in Figure 12. E of G8 is obtained from E of G7
by removing the lines from 600 to 606 and the lines from 614 to 616. Since E does not receive any
repeated queries, the lines 607 and 619 are also removed. These changes do not affect the output of E.
Similarly, D of G8 is obtained from D of G7 by removing the lines from 700 to 704, the lines 705, 707,
and 710. These changes do not affect the output of D. Thus, Pr[AG8 = 1] = Pr[AG7 = 1]. (E, D) of G8
works as a simulator S of (E, D).
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Function E(X, v):

600: if E[X, v] 6= ⊥ then
601: if (X, v) is from E then
602: if v ∈ Bae then
603: bad← true
604: end if
605: end if
606: end if
607: if E[X, v] = ⊥ then
608: M← findM(v, X)
609: if M 6= ⊥ then
610: u′ ← H(M)
611: else
612: u′ � Σn \ Be
613: H ← H ∪ {u′}
614: if (X, v) is from E then
615: HA ← HA ∪ {u′}
616: end if
617: end if
618: T ← T ∪ {v}
619: end if
620: E[X, v]← u′ ⊕ v
621: return E[X, v]

Function D(X, u):

700: if D[X, u] 6= ⊥ then
701: if u ∈ Bad then
702: bad← true
703: end if
704: end if
705: if D[X, u] = ⊥ then
706: v � Σn \ Bd
707: end if
708: T ← T ∪ {v}
709: H ← H ∪ {v⊕ u}
710: HA ← HA ∪ {v⊕ u}
711: D[X, u]← v
712: return D[X, u]

Figure 11. E and D of G6 and G7. Bae = (H \HA)∪π0(H \HA)∪π1(H \HA). Bad = (v⊕ (H \HA))∪
(H(M)⊕ (π0(H \ HA)∪ π1(H \ HA))), where D[X, u] = v and findM(v, X) = M. Initially, HA = {}.

InterfaceH(M):

100: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface E(X, v):

200: return E(X, v)

Function E(X, v):

600: M← findM(v, X)
601: if M 6= ⊥ then
602: u′ ← H(M)
603: else
604: u′ � Σn \ Be
605: H ← H ∪ {u′}
606: end if
607: T ← T ∪ {v}
608: E[X, v]← u′ ⊕ v
609: return E[X, v]

Interface D(X, u):

300: return D(X, u)

Function D(X, u):

700: v � Σn \ Bd
701: T ← T ∪ {v}
702: H ← H ∪ {v⊕ u}
703: D[X, u]← v
704: return D[X, u]

Figure 12. Game G8.

From the discussion above, we have

Advindiff
H

F,{π0,π1}
IV ,S

(A) =
∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG8 = 1

]∣∣∣
≤ Pr

[
AG2 sets bad

]
+ Pr

[
AG3 sets bad

]
+ Pr

[
AG6 sets bad

]
≤ 7(σ + qe + qd)

2 + 5σ + 5qe + 4qd
2n +

3σ(qe + qd)

2n − 6(qe + qd)− 5

≤ 12(σ + qe + qd)
2

2n +
3σ(qe + qd)

2n − 6(qe + qd)− 5
.
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6. Application to Sponge Construction

6.1. Scheme

Let P : Σb → Σb be a permutation and b = w + c, where b, w and c are positive integers.
The sponge hash function using the proposed domain extension consists of the permutation P,
permutations π0 and π1 over Σc, and an initialization vector IV ∈ Σb. For π0 and π1, it is assumed
that π0(u) 6= u, π1(u) 6= u and π0(u) 6= π1(u) for every u ∈ Σc.

For y ∈ Σb, let y = yr‖yc, where yr ∈ Σw and yc ∈ Σc. In the remaining parts, some notations are
abused for simplicity. For permutation π over Σc and string y ∈ Σb, π(y) represents yr‖π(yc). Namely,
π is applied to the c least significant bits (LSBs) of y. For strings y ∈ Σb and X ∈ Σw, y⊕ X represents
(yr ⊕ X)‖yc.

Let π be a permutation over Σc. For 1 ≤ i ≤ x, let Xi ∈ Σw. The tweaked sponge construction SP,π
IV :

(Σw)+ → Σn is defined as follows: SP,π
IV (X1‖X2‖ · · · ‖Xx) = v̂x, where v0 ← IV, vi ← P(vi−1 ⊕ Xi) for

1 ≤ i ≤ x− 1, vx ← P(π(vx−1)⊕ Xx), and v̂x is the n most significant bits (MSBs) of vx.
The sponge hash function GP,{π0,π1}

IV : Σ∗ → Σn based on the proposed domain extension is
defined as follows:

GP,{π0,π1}
IV (M) =

{
SP,π0

IV (pad(M)) if |M| > 0 and |M| ≡ 0 (mod w),

S
P,π1
IV (pad(M)) otherwise.

It is also depicted in Figure 13.

π0
IV P

Mm−1M1 M2

P P P

Mm

(a) For M such that |M| > 0 and |M| ≡ 0 (mod w). |Mm| = w.

π1
IV P

Mm−1M1 M2

P P P

Mm‖10*

(b) For M such that |M| = 0 or |M| 6≡ 0 (mod w). |Mm| = 0 if |M| = 0 and 1 ≤ |Mm| ≤
w− 1 otherwise.

Figure 13. The sponge hash function based on the proposed domain extension. M = M1‖M2‖ · · · ‖Mm,
where |Mi| = w for 1 ≤ i ≤ m− 1.

6.2. IRO in the Ideal Permutation Model

In this section, P : Σb → Σb is assumed to be chosen uniformly at random. The following theorem
implies that the proposed hash function is indifferentiable from a random oracle up to the birthday
bound.

Theorem 4. Suppose that the permutation P : Σb → Σb is chosen uniformly at random. Then, for the hash
function GP,{π0,π1}

IV , there exists a simulator S of (P, P−1) such that, for any adversary A making at most qf
queries to its FIL forward oracle, qb queries to its FIL backward oracle, and queries to its VIL oracle which cost
at most σ message blocks in total,
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Advindiff
G

P,{π0,π1}
IV ,S

(A) ≤ 12(σ + qf + qb)
2

2c +
3σ(qf + qb)

2c − 6(qf + qb)− 5
,

and S makes at most qf queries.

Proof. Each game provides three interfaces to adversary A: H for the hash function, P for the
permutation and P−1 for its inverse. It is assumed without loss of generality that A makes no repeated
queries both to H and to (P ,P−1). For P and P−1, once A gets a pair (y, z) such that P(y) = z by a
query to P or P−1, A never makes any query on the pair.

The game G1 is given in Figure 14. P and P−1 simply call P and P−1, respectively. P and P−1

implement P and P−1 by lazy evaluation, respectively. H computes GP,{π0,π1}
IV with the aid of P and

P−1. Thus,

Pr
[
AG

P,{π0,π1}
IV ,(P,P−1) = 1

]
= Pr

[
AG1 = 1

]
.

Notice that P and P−1 may receive repeated queries sinceH also calls P as well as P .

InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← P(vi−1 ⊕ Xi)
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← P(π0(vx−1)⊕ Xx)
107: else
108: vx ← P(π1(vx−1)⊕ Xx)
109: end if
110: return n MSBs of vx

Interface P(Y):
200: return P(Y)

Function P(Y):

600: if P[Y] = ⊥ then
601: P[Y] � Σb \ Z
602: end if
603: return P[Y]

Interface P−1(Z):

300: return P−1(Z)

Function P−1(Z):

700: if P−1[Z] = ⊥ then
701: P−1[Z] � Σb \ Y
702: end if
703: return P−1[Z]

Figure 14. Game G1. For the partial function P and its inverse P−1, initially, P[Y] = ⊥ for every Y ∈ Σb

and P−1[Z] = ⊥ for every Z ∈ Σb. If Z is assigned to P[Y], then Y is assigned to P−1[Z]. If Y is assigned
to P−1[Z], then Z is assigned to P[Y]. Y and Z are the sets of values already assigned as inputs and
outputs of P and P−1, respectively. Initially, Y = Z = {}.

From G1 to G2, only P and P−1 are changed, which are given in Figure 15. In G2, P[Y] and P−1[Z]
are chosen uniformly at random from Σb. G1 and G2 are identical until bad gets true in G2. Since P

and P−1 are called at most σ + qf + qb times in total and |Y | = |Z| ≤ σ + qf + qb,

∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG2 = 1

]∣∣∣ ≤ Pr
[
AG2 sets bad

]
≤ (σ + qf + qb)

2

2b .

From G2 to G3, only P and P−1 are changed, which are given in Figure 16. In G3, P and P−1

constructs and maintains a directed graph (V , E) based on the queries to them. Initially, V = {}
and E = {}. For a new query Y, if findM(Y) = ⊥, then P replaces V with V ∪ {Yc, Zc} and E with
E ∪ {(Yc, Zc)}. If there exists some Z′ such that Z′ = IV or P−1[Z′] 6= ⊥, and Z′c = Yc, then the edge
(Yc, Zc) is labeled with Z′r ⊕ Yr. Otherwise, it is labeled with ⊥. If findM(Y) 6= ⊥, then P replaces V
with V ∪ {Yc}. On the other hand, for a new query Z, P−1 replaces V with V ∪ {Yc, Zc} and E with
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E ∪ {(Yc, Zc)}. If there exists some Z′ such that Z′ = IV or P−1[Z′] 6= ⊥, and Z′c = Yc, then the edge
(Yc, Zc) is labeled with Z′r ⊕Yr. Otherwise, it is labeled with ⊥.

Function P(Y):

600: if P[Y] = ⊥ then
601: P[Y] � Σb

602: if P[Y] ∈ Z then
603: bad← true
604: end if
605: end if
606: return P[Y]

Function P−1(Z):

700: if P−1[Z] = ⊥ then
701: P−1[Z] � Σb

702: if P−1[Z] ∈ Y then
703: bad← true
704: end if
705: end if
706: return P−1[Z]

Figure 15. Game G2. H, P and P−1, which are not changed, are omitted.

Function P(Y):

600: if P[Y] = ⊥ then
601: M← findM(Y)
602: if M 6= ⊥ then
603: Z � Σb

604: else
605: Zr � Σw

606: Zc � Σc . Z = Zr‖Zc
607: if Zc ∈ Bf then
608: bad← true
609: Zc � Σc \ Bf
610: end if
611: H ← H ∪ {Zc}
612: end if
613: T ← T ∪ {Yc}
614: end if
615: P[Y]← Z
616: return P[Y]

Function P−1(Z):

700: if P−1[Z] = ⊥ then
701: Yr � Σw

702: Yc � Σc . Y = Yr‖Yc
703: if Yc ∈ Bb then
704: bad← true
705: Yc � Σb \ Bb
706: end if
707: end if
708: T ← T ∪ {Yc}
709: H ← H ∪ {Zc}
710: P−1[Z]← Y
711: return P−1[Z]

Figure 16. Game G3. H, P and P−1 are not changed and omitted. Bf = T ∪ π−1
0 (T) ∪

π−1
1 (T)∪ H ∪ π−1

0 (π1(H))∪ π−1
1 (π0(H))∪ {IVc, π−1

0 (IVc), π−1
1 (IVc), π−1

0 (π1(IVc)), π−1
1 (π0(IVc))}.

Bb = H ∪ π0(H) ∪ π1(H) ∪ {IVc, π0(IVc), π1(IVc)}. Initially, T = H = {}.

T and H are the sets of tails and heads of edges in (V , E), respectively. Vertices with no adjacent
edges in (V , E) are also in T . Initially, T = H = {}.

findM tries to find a path in (V , E) corresponding to the computation GP,{π0,π1}
IV (M) for some

M. Given Y as input, findM first searches a path from IVc to π−1
0 (Yc) or π−1

1 (Yc) in (V , E). If IVc

equals π−1
0 (Yc) or π−1

1 (Yc), then the single vertex IVc is regarded as a path. If findM finds a path,
then let X1, X2, . . . , Xl be the labels of the edges on the path. If the path is IVc, then l = 0, that is,
X1‖X2‖ · · · ‖Xl = ε. Suppose that Z̃c is the terminal of the path and P−1[Z̃r‖Z̃c] 6= ⊥ for some Z̃r.
If there exists some M ∈ Σ∗ such that pad(M) = X1‖X2‖ · · · ‖Xl‖(Z̃r⊕Yr), which depends on whether
Z̃c equals π−1

0 (Yc) or π−1
1 (Yc), then findM returns M. Otherwise, findM returns ⊥.

P of G3 always assigns to P[Y] a value chosen uniformly at random from Σb until bad gets true at
line 608. P−1 of G3 always assigns to P−1[Z] a value chosen uniformly at random from Σb until bad
gets true at line 704. Thus, G3 is identical to G2 until bad gets true in G3. Since |T | ≤ σ + qf + qb and
|H| ≤ σ + qf + qb, |Bf| ≤ 6(σ + qf + qb) + 5 and |Bb| ≤ 3(σ + qf + qb) + 3. P is called at most (σ + qf)

times and P−1 is called at most qb times. Thus,
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∣∣∣Pr
[
AG2 = 1

]
− Pr

[
AG3 = 1

]∣∣∣ ≤ Pr
[
AG3 sets bad

]
≤ (6(σ + qf + qb) + 5)(σ + qf)

2c +
(3(σ + qf + qb) + 3)qb

2c

≤ 6(σ + qf + qb)
2 + 5(σ + qf + qb)

2c .

For the game G4 in Figure 17, the lines from 606 to 610 of G3 are replaced with the line 606 of G4,
and the lines from 702 to 706 of G3 are replaced with the line 702 of G4. Since these changes do not
affect the behaviour, Pr[AG3 = 1] = Pr[AG4 = 1].

Function P(Y):

600: if P[Y] = ⊥ then
601: M← findM(Y)
602: if M 6= ⊥ then
603: Z � Σb

604: else
605: Zr � Σw

606: Zc � Σc \ Bf
607: H ← H ∪ {Zc}
608: end if
609: T ← T ∪ {Yc}
610: end if
611: P[Y]← Z
612: return P[Y]

Function P−1(Z):

700: if P−1[Z] = ⊥ then
701: Yr � Σw

702: Yc � Σc \ Bb
703: end if
704: T ← T ∪ {Yc}
705: H ← H ∪ {Zc}
706: P−1[Z]← Y
707: return P−1[Z]

Figure 17. Game G4. H, P and P−1 are not changed and omitted.

The game G5 is given in Figure 18. It introduces a variable-input-length random oracle H, which is
implemented by lazy evaluation. Initially, H[M] = ⊥ for every M ∈ Σ∗. H may receive repeated
queries since it is called by both H and P . Different from P of G4, P of G5 assigns to Z an element
chosen uniformly at random from {H(M)} × Σb−n at the line 603. Different from H of G4, H of G5
returns H(M). We will see that G5 is actually equivalent to G4 in spite of these changes.

InterfaceH(M):

100: X1‖X2‖ · · · ‖Xx ← pad(M)
101: v0 ← IV
102: for 1 ≤ i ≤ x− 1 do
103: vi ← P(vi−1 ⊕ Xi)
104: end for
105: if |M| > 0 and |M| ≡ 0 (mod w) then
106: vx ← P(π0(vx−1)⊕ Xx)
107: else
108: vx ← P(π1(vx−1)⊕ Xx)
109: end if
110: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface P(Y):
200: return P(Y)

Function P(Y):

600: if P[Y] = ⊥ then
601: M← findM(Y)
602: if M 6= ⊥ then
603: Z � {H(M)}×Σb−n

604: else
605: Zr � Σw

606: Zc � Σc \ Bf
607: H ← H ∪ {Zc}
608: end if
609: T ← T ∪ {Yc}
610: end if
611: P[Y]← Z
612: return P[Y]

Figure 18. Game G5. P−1 and P−1 are not changed and omitted. Initially, H[M] = ⊥ for every M ∈ Σ∗.

First, let us see some properties of the graph (V , E). At the beginning of each run of P with Y such
that P[Y] = ⊥, V ⊆ T ∪H. Whenever Zc is added to both V and H by this run, it is chosen from Σc \ Bf,
where T ∪ H ∪ {IVc} ⊆ Bf. On the other hand, at the beginning of each run of P−1 with Z such that
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P−1[Z] = ⊥, V ⊆ T ∪ H. Then, Yc is chosen from Σn \ Bb, where H ∪ {IVc} ⊆ Bb. Thus, every vertex
in (V , E) has at most one incoming edge labeled with some element in Σw, and every incoming edge
of IVc is labeled with ⊥. It implies that every vertex in (V , E) has at most one simple path from IVc

without edges labeled by ⊥. In addition, every path (v1, v2, . . . , vl) with v1 = IVc is constructed only
by queries to P, and vi’s are added to (V , E) in this order. Furthermore, before vi is added to (V , E),
neither π0(vi) nor π1(vi) existed in (V , E) since π−1

0 (T) ∪ π−1
1 (T) ∪ {π−1

0 (IVc), π−1
1 (IVc)} ⊆ Bf.

Neither π0(vi) nor π1(vi) are added to (V , E) as tails by the queries to P−1 after vi since π0(H) ∪
π1(H) ∪ {π0(IVc), π1(IVc)} ⊆ Bb.

Suppose that findM(Y) finds two paths in (V , E) without edges labeled by⊥. Then, one is from IVc

to π−1
0 (Yc) and the other is from IVc to π−1

1 (Yc). Notice that π−1
0 (Yc) 6= π−1

1 (Yc) since π0(v) 6= π1(v)
for every v ∈ Σc. Suppose that both paths have two or more vertices. Then, both π−1

0 (Yc) and π−1
1 (Yc)

are elements of H, which implies that one was added to H after the other since at most one vertex
is added to H during each run of P. It contradicts π−1

1⊕a(πa(H)) ⊆ Bf for a ∈ Σ. Suppose that one
path is the single vertex IVc and the other has two or more vertices. π−1

a (Yc) = IVc contradicts
π−1

1⊕a(πa(IVc)) ⊆ Bf for a ∈ Σ. Thus, findM(Y) finds at most a single path in (V , E) without edges
labeled by ⊥.

In G5, for a new query Y to P, suppose that findM finds a path in (V , E) and returns M
corresponding to the path and Y. Then, M is a new query to H, that is, H[M] = ⊥, and it is assigned
an element chosen uniformly at random from Σn. On the other hand, forH, the n MSBs of vx equals
H(M). Thus, G5 is equivalent to G4, and Pr[AG5 = 1] = Pr[AG4 = 1].

From G5 to G6, P and P−1 change, which are given in Figure 19. P of G6 is augmented with the
lines from 600 to 606 and the lines from 615 to 617. HA is the set of heads of edges in (V , E) in the view
of A. Initially, HA = {}. These changes do not affect the output of P. P−1 of G6 is augmented with
the lines from 700 to 704 and the line 711. These changes do not affect the output of P−1. Thus, G6 is
equivalent to G5, and Pr[AG6 = 1] = Pr[AG5 = 1].

From G6 to G7, only H changes. H of G7 is identical to that of G8, which is given in Figure 20.
In G7,H(M) does not call P and just returns H(M). In G7, P is called only by P and it does not receive
any repeated queries. P−1 does not receive any repeated queries, either. Thus, bad never gets true in G7.
On the other hand, bad may get true in G6. |Ba| ≤ 3σ since Ba = (H \HA)∪π0(H \HA)∪π1(H \HA)

and |H \ HA| ≤ σ. A knows at most 6(qf + qb) + 5 elements in Bf. Thus,∣∣∣Pr
[
AG6 = 1

]
− Pr

[
AG7 = 1

]∣∣∣ ≤ Pr
[
AG6 sets bad

]
≤ 3σ(qf + qb)

2c − 6(qf + qb)− 5
.

From G7 to G8, P and P−1 change. G8 is given in Figure 20. P of G8 is obtained from P of G7
by removing the lines from 600 to 606 and the lines from 615 to 617. Since P does not receive any
repeated queries, the lines 607 and 620 are also removed. These changes do not affect the output of
P. Similarly, P−1 of G8 is obtained from P−1 of G7 by removing the lines from 700 to 704, the lines
705, 708 and 711. These changes do not affect the output of P−1. Thus, Pr[AG8 = 1] = Pr[AG7 = 1].
(P, P−1) of G8 works as a simulator S of (P, P−1).
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Function P(Y):

600: if P[Y] 6= ⊥ then
601: if Y is from P then
602: if Yc ∈ Ba then
603: bad← true
604: end if
605: end if
606: end if
607: if P[Y] = ⊥ then
608: M← findM(Y)
609: if M 6= ⊥ then
610: Z � {H(M)}×Σb−n

611: else
612: Zr � Σw

613: Zc � Σc \ Bf
614: H ← H ∪ {Zc}
615: if Y is from P then
616: HA ← HA ∪ {Zc}
617: end if
618: end if
619: T ← T ∪ {Yc}
620: end if
621: P[Y]← Z
622: return P[Y]

Function P−1(Z):

700: if P−1[Z] 6= ⊥ then
701: if Yc ∈ Ba then
702: bad← true
703: end if
704: end if
705: if P−1[Z] = ⊥ then
706: Yr � Σw

707: Yc � Σc \ Bb
708: end if
709: T ← T ∪ {Yc}
710: H ← H ∪ {Zc}
711: HA ← HA ∪ {Zc}
712: P−1[Z]← Y
713: return P−1[Z]

Figure 19. P and P−1 of G6 and G7. Ba = (H \ HA) ∪ π0(H \ HA) ∪ π1(H \ HA). Initially, HA = {}.

InterfaceH(M):

100: return H(M)

Function H(M):

500: if H[M] = ⊥ then
501: H[M] � Σn

502: end if
503: return H[M]

Interface P(Y):
200: return P(Y)

Function P(Y):

600: M← findM(Y)
601: if M 6= ⊥ then
602: Z � {H(M)} × Σb−n

603: else
604: Zr � Σw

605: Zc � Σc \ Bf
606: H ← H ∪ {Zc}
607: end if
608: T ← T ∪ {Yc}
609: P[Y]← Z
610: return P[Y]

Interface P−1(Z):

300: return P−1(Z)

Function P−1(Z):

700: Yr � Σw

701: Yc � Σc \ Bb
702: T ← T ∪ {Yc}
703: H ← H ∪ {Zc}
704: P−1[Z]← Y
705: return P−1[Z]

Figure 20. Game G8.

From the discussion above, we have

Advindiff
H

F,{π0,π1}
IV ,S

(A) =
∣∣∣Pr
[
AG1 = 1

]
− Pr

[
AG8 = 1

]∣∣∣
≤ Pr

[
AG2 sets bad

]
+ Pr

[
AG3 sets bad

]
+ Pr

[
AG6 sets bad

]
≤ (σ + qf + qb)

2

2b +
6(σ + qf + qb)

2 + 5(σ + qf + qb)

2c +
3σ(qf + qb)

2c − 6(qf + qb)− 5

≤ 12(σ + qf + qb)
2

2c +
3σ(qf + qb)

2c − 6(qf + qb)− 5
.
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7. Conclusions

In this article, a domain extension scheme which extends MDP [5] has been presented for iterated
hashing. The collision resistance and indifferentiability from a random oracle of an iterated hash
function using the domain extension have been confirmed under reasonable assumptions. For the
pseudorandom-function property of the iterated hash function keyed via IV, readers are asked to
see [6] for details.

The domain extension can also be applied to the sponge construction. The indifferentiability from
a random oracle of the resultant hash function has been confirmed in the ideal permutation model.

The presented domain extension is simple and efficient. It is expected to be useful for lightweight
cryptography.
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