

  cryptography-02-00032




cryptography-02-00032







Cryptography 2018, 2(4), 32; doi:10.3390/cryptography2040032




Article



A New Technique in Rank Metric Code-Based Encryption †



Terry Shue Chien Lau *,‡[image: Orcid] and Chik How Tan ‡





Temasek Laboratories, National University of Singapore, T-Lab Building, 5A, Engineering Drive 1, #09-02, Singapore 117411, Singapore









*



Correspondence: tsltlsc@nus.edu.sg; Tel.: +65-6516-1151






†



This paper is an extended version of our paper published in 23rd Australasian Conference on Information Security and Privacy (ACISP 2018).








‡



These authors contributed equally to this work.









Received: 29 August 2018 / Accepted: 11 October 2018 / Published: 15 October 2018



Abstract

:

We propose a rank metric codes based encryption based on the hard problem of rank syndrome decoding problem. We propose a new encryption with a public key matrix by considering the adding of a random distortion matrix over Fqm of full column rank n. We show that IND-CPA security is achievable for our encryption under assumption of the Decisional Rank Syndrome Decoding problem. Furthermore, we also prove some bounds for the number of matrices of a fixed rank with entries over a finite field. Our proposal allows the choice of the error terms with rank up to r2, where r is the error-correcting capability of a code. Our encryption based on Gabidulin codes has public key size of 13.68 KB, which is 82 times smaller than the public key size of McEliece Cryptosystem based on Goppa codes. For similar post-quantum security level of 2140 bits, our encryption scheme has a smaller public key size than the key size suggested by LOI17 Encryption.
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1. Introduction


1.1. Background and Motivations


In 1978, McEliece [1] proposed a public-key cryptosystem based on Goppa codes in Hamming metric. A message m is encrypted with the public key Gpub=SGP, where G is a generator matrix of Goppa code, S is some random invertible matrix and P is a permutation matrix which S and P hide the structure of matrix G. The ciphertext c is computed by adding the codeword mGpub with an error e of Hamming weight less than or equal to r, where r is the error correcting capability of Goppa code. By decoding cP−1 with respect to the Goppa code, mS can be obtained and thus retrieve m=mSS−1. Although the original McEliece cryptosystem is still considered secured today, the large key size of Goppa codes (approximately 1 MB) is less practical in application. Many variants based on alternative families of codes were proposed to tackle this problem, yet many of them were proved to be insecure (for instance, [2,3]).



As an alternative for the Hamming metric, in 1985, Gabidulin introduced the rank metric and the Gabidulin codes [4] over a finite field with qm elements, Fqm. Later, in 1991, Gabidulin et al. [5] proposed the first rank code based cryptosystem, namely the GPT cryptosystem that employs the similar idea as a McEliece cryptosystem to distort the public key matrix. They considered Gpub=SG+X, where S is a random invertible k×k matrix over Fqm, G is a generator matrix of Gabidulin codes, and X is a random matrix over Fqm with column rank t<n. However, the GPT cryptosystem is shown to be insecure against Gibson’s attack [6]. Since then, reparations on GPT were proposed (for instances, GPT [5], modified GPT [7,8], GGPT [9]); however, due to the weakness of Gabidulin codes containing huge vector space invariant under Frobenius automorphism, these cryptosystems were proved to be insecure by Overbeck’s attack [10]. Then, proposals such as Gabidulin’s General Reparation [11], Gabidulin, Rashwan and Honary [12], GPT with more general column scrambler [12], Loidreau’s GGPT [13], and Smart Approach [14] that claimed to resist Overbeck’s attack were proposed. The entries in P−1 need to be chosen over Fqm and over Fq in a certain pattern so that the rank of eP−1 will be less than or equal to r. However, proposals with P of such pattern are proved to be insecure as they could be reduced into GGPT form by attacks proposed by [15,16]. In addition, some general rank syndrome decoding attacks on Gabidulin codes (for instances [17,18,19]) are able to attack the variants above with their suggested parameters in polynomial time.



In 2017, two new research papers about rank metric encryption scheme were presented. The first one is proposed by Gaborit et al. [20], namely RankPKE in their construction of a code-based identity-based encryption scheme. The second attempt is a McEliece type encryption proposed by Loidreau (LOI17) [21] that considers a scrambler matrix P with its inverse P−1 over V, a λ-dimensional subspace of Fqm. The term cP−1=mSG+eP−1 has error eP−1 with e of rank t. In other words, the matrix P−1 amplifies the rank of e, and this leads to larger public key size as t has to be λ times smaller than r.




1.2. Contributions


In this paper, we propose an encryption scheme based on the hard problem of rank syndrome decoding problem. Our construction hides the structure of the generator matrix of the code by adding a distortion matrix of column rank n, with an error of rank larger than r being added into the ciphertext. In particular, let u∈Fqmn of rank n, a message m∈Fqmk′ is encrypted by


c2=(m∥ms)Gpub+e2=(m∥ms)(SG+Cirk(u)T)+e2,








where S is a random matrix in GLk(Fqm), G is a generator matrix for a code C with error-correcting capability r, Cirk(u) is a k-partial circulant matrix (refer to Definition 5 for formal definition), T is a random matrix in GLn(Fq), ms is a random vector in Fqmk−k′ and e2 is a random vector in Fqmn with rank r2≤r2. Note that the term ms could be chosen such that the term (m∥ms)Cirk(u)T+e2 in c2 has rank larger than n−r2 (which is greater than r).



The term c1=(m∥ms)Cirk(u)+e1 is included in the ciphertext, where e1 is a random vector in Fqmn with rank r1≤r2. Decryption could be performed by decoding c2−c1T=(m∥ms)SG+e2−e1T with respect to the code C whenever rank of e2−e1T is less than or equal to r.



Advantages of Our Proposal. Our proposal has the following advantages:

	i.

	
The distortion matrix Cirk(u)T is of column rank n, which hides the generator matrix G since T is random over Fq.




	ii.

	
The error term (m∥ms)Cirk(u)T+e2 has rank at least n−r2. The adversary is not able to decode the ciphertext correctly since the generator matrix G is remained unknown and rank of (m∥ms)Cirk(u)T+e2 is greater than r.




	iii.

	
For the case in LOI17 Encryption and other Gabidulin codes based cryptosystem, the multiplication of P−1 into c often amplifies the rank of the error term, resulting in a choice of error term with smaller rank in the ciphertext. Similarly, the rank of the error term in RankPKE has to be λ times smaller than r. On the contrary, in our proposal, we have freedom for the choice of e1 and e2 with rank r1≤r2 and r2≤r2, respectively.









We show that our encryption scheme has IND-CPA security under assumption of a Decisional Rank Syndrome Decoding problem. We propose Gabidulin codes as a choice of decodable code in our encryption. Furthermore, for similar post quantum security level of 2140 bits, our encryption scheme has smaller public key size as compared to key size suggested by LOI17 Encryption [21].



This paper is organized as follows: we review some preliminaries for rank metric and circulant matrix in Section 2. We also introduce the hard problems that our encryption is based on and name the known best attacks on the problem. In Section 3, we prove some bounds for the number of matrices of a fixed rank over a finite field and some related results. In Section 4, we describe our proposed cryptosystem and provide proofs for its advantages. In Section 5, we prove that our encryption scheme has IND-CPA security under assumption of Decisional Rank Syndrome Decoding problem. In Section 6, we propose the use of Gabidulin codes as a choice for the decodable code C in our encryption, and analyze its security. We also provide some parameters for the proposal based on the Gabidulin codes. Finally, we give our considerations of this paper in Section 7.





2. Preliminaries


In this section, we recall the definition of rank metric, which is the core of rank metric code based cryptosystems. We also introduce the Decisional Rank Syndrome Decoding problem, a hard problem in coding theory for our encryption scheme. We name the known best generic attacks on the Rank Syndrome Decoding problem.



2.1. Rank Metric


Let Fqm be a finite field with qm elements where q is a power of prime. In addition, let {β1,…,βm} be a basis of Fqm over the base field Fq.



Definition 1.

Alinear codeof length n and dimension k is a linear subspace C of the vector space Fqmn.





Given a matrix M with coefficients in a field F, the rank of M, rk(M) is the dimension of the row span of M as a vector space over F. We denote the row span of a matrix M over F by ⟨M⟩F, or ⟨M⟩ when the context is clear. We now define the rank metric of a vector on Fqmn:



Definition 2.

Let x=(x1,…,xn)∈Fqmn. The rank of x in Fq, denoted by rkq(x) is the rank of the matrix X=(xij)∈Fqm×n, where xj=∑i=1mxijβi.





Equivalently, the rank of x is the dimension over Fq of the subspace of Fqm which is spanned by the coordinates of x. Note that the rank of a vector is a norm and is independent of the chosen basis. Similarly, we have the following definition of column rank for a matrix in Fqmk×n:



Definition 3.

Let M∈Fqmk×n. The column rank of M over Fq, denoted by colrkq(M) is the maximum number of linearly independent columns over Fq.





We now state a few results related to the rank metric which are important prerequisites for results in later sections.



Lemma 1.

Let x∈Fqmn such that rkq(x)=r, then there exists x^∈Fqmr with rkq(x^)=r and U∈Fqr×n with rkq(U)=r such that x=x^U. This decomposition is unique up to GLr(Fq)-operation between x^ and U [15].





Definition 4.

Let x∈Fqmn with rkq(x)=r and decomposition x=x^U as in Lemma 1. We call U a Grassman support matrix for x and suppGr(x)=⟨U⟩Fqm the Grassman support of x.





Lemma 2.

Let M∈Fqmk×n and colrkq(M)=s<n [16]. Then, there exists M′∈Fqmk×s with colrkq(M′)=s and K an invertible n×n matrix over Fq such that


MK=M′∣0k×(n−s).



(1)










2.2. Circulant and Partial Circulant Matrix


As mentioned in Section 1, we use a k-partial circulant matrix as the distortion matrix for the code with an efficient decoding algorithm. Here, we give the definition of the circulant matrix and k-partial circulant matrix induced by a random vector, x.



Definition 5.

Let x=(x0,…,xn−1)∈Fqmn. The circulant matrix induced by x is defined as


Cirn(x):=x0xn−1…x1x1x0…x2⋮⋮⋱⋮xn−1xn−2…x0∈Fqmn×n.








The k-partial circulant matrix, Cirk(x), induced by x is the first k rows of Cirn(x).





In fact, a k-partial circulant matrix induced by x has column rank depending on rank of x. We have the following result, which helps us to ensure that the distortion matrix that we choose has column rank as desired:



Lemma 3.

Let x∈Fqmn with rkq(x)=t; then, colrkq(Cirk(x))≥t.





Proof. 

Suppose to the contrary that colrkq(Cirk(x))<t; then, there exists at most t−1 columns of Cirk(u) that are linearly independent over Fq. Consider the first row of Cirk(x): {x0,x1,…,xn−1}; then, at most t−1 elements in {x0,x1,…,xn−1} are linearly independent over Fq. In other words, rkq(x)≤t−1, which is a contradiction to rkq(x)=t. □






2.3. Hard Problems in Coding Theory


We describe the hard problems which our cryptosystem is based on.



Definition 6.

Rank Syndrome Decoding Problem (RSD). Let H be a full rank (n−k)×n matrix over Fqm, s∈Fqmn−k and w an integer. The Rank Syndrome Decoding Problem RSD(q,m,n,k,w) needs to determine x∈Fqmn such that rkq(x)=w and HxT=sT.





The RSD problem is analogous to the classical syndrome decoding problem with Hamming metric. Recently, the RSD problem has been proven to be hard with probabilistic reduction to the Hamming setting [22].



Given G∈Fqmk×n, a full rank parity-check matrix of H in an RSD problem and y∈Fqmn. Then, the dual version of RSD(q,m,n,k,w) is to determine m∈Fqmk and x∈Fqmn such that rkq(x)=w and y=mG+x.



Notation. 

If X is a finite set, we write x←$X to denote assignment to x of an element randomly sampled from the distribution on X.





We now give the definition of Decisional version of RSD problem in its dual form:



Definition 7.

Decisional RSD Problem (DRSD). Let G be a full rank k×n matrix over Fqm, m∈Fqmk and x∈Fqmn of rank r. The Decisional RSD Problem DRSD(q,m,n,k,w) needs to distinguish the pair (mG+x,G) from (y,G) where y←$Fqmn.





It was proved that DRSD is hard in the worst case [20]. Therefore, DRSD is eligible to be a candidate of hard problems in coding theory. The hardness of our cryptosystem relies on the DRSD problem (refer to Section 5).




2.4. Generic Attacks on RSD


There are generally two types of generic attacks on the RSD problem, namely the combinatorial attack and algebraic attack.



Combinatorial Attack. The combinatorial approach depends on counting the number of possible supports of size r for a rank code of length n over Fqm, which corresponds to the number of subspaces of dimension r in Fqm. We summarize the best combinatorial attacks with their conditions and complexities in Table 1.



Algebraic Attack. The nature of the rank metric favors algebraic attacks using Gröbner bases, as they are largely independent of the value q. These attacks became efficient when q increases. We summarize the complexity of algebraic attacks in Table 2.





3. Rank of Matrix


The following are some results related to the rank of a matrix over a finite field, which is crucial for the construction of our encryption. We provide some bounds for the number of m×n matrices over Fq of rank r<min{m,n}.



Proposition 1.

Denote Tr(m×n) as the number of m×n matrices over Fq of rank r; then, Tr(m×n)=Qr(qn)Qr(qm)Qr(qr), where Qr(x)=∏i=0r−1x−qi [25,26].





We need the following lemma to give some bounds for Tr(m×n).



Lemma 4.

For 0≤i≤r−1, if m≥n>r, then


qn−r<1−qiqmqn−i−1qr−i−1<qn−rqq−1.













Proof. 

Expand 1−qiqmqn−i−1qr−i−1=qm+n−2i+1−qn−i−qm−iqm−i(qr−i−1); it suffices for us to show that qn−r<qm+n−2i+1−qn−i−qm−iqm−i(qr−i−1)<qn−rqq−1. Since m−r+1>0, we have qm−i+qn−i≤qn+m−r−i+1, and thus


qm+n−2i−qm+n−r−i=qn+m−r−iqr−i−1<qm+n−2i−qm−i−qn−i+1,








which implies that


qn−r<qm+n−2i+1−qn−i−qm−iqm−i(qr−i−1).








Since 1+i≤r, then qm−i+qn−i+q<qm+1−i+qn+1−i and qm+n+1−r−i≤qm+n−2i. Adding these inequalities gives us


qm+n+1−2i+(qm−i+qn−i+q+qm+n+1−r−i)<qm+n+1−2i+1+(qm+1−i+qn+1−i+qm+n−2i).








We have


(qm+n−2i+1−qn−i−qm−i)(q−1)=qm+n+1−2i+q−qn+1−i−qm+1−i−qm+n−2i−1+qm−i+qn−i<qm+n+1−2i−qm+n+1−r−i=qn−r+1qm−iqr−i−1,








which implies that


qm+n−2i+1−qn−i−qm−iqm−iqr−i−1<qn−r+1q−1=qn−rqq−1.








This completes the proof for the inequalities. □





Now, we prove an upper bound and a lower bound for Tr(m×n):



Proposition 2.

Let r<min{m,n}; then, the number of m×n matrices over Fq of rank r is bounded by


qr(m+n−r)<Tr(m×n)<qr(m+n+1−r)(q−1)r.













Proof. 

Assuming that m≥n>r, recall that Qr(x)=∏i=0r−1(x−qi), and we have


Tr(m×n)=Qr(qm)Qr(qn)Qr(qr)=qmr∏i=0r−11−qiqmqn−i−1qr−i−1.








By Lemma 4,


qmr∏i=0r−1qn−r=qr(m+n−r)<Tr(m×n)<qmr∏i=0r−1qn−rqq−1=qr(m+n+1−r)(q−1)r.








For n≥m>r, the statement could be proved by switching the term m and n in the statement and in Lemma 4. □





Proposition 3.

Assuming that m≥n≥5, then Tn−1(m×n)=(qn−1)(q−1)(qm−qn−1)Tn(m×n).





Proof. 

Recalling Proposition 1,


Tn−1(m×n)=Qn−1(qm)Qn−1(qn)Qn−1(qn−1)=∏i=0n−2(qn−qi)∏i=0n−2(qm−qi)∏i=0n−2(qn−1−qi)=(qn−1)qn−2∏i=0n−2(qn−1−qi)∏i=0n−2(qm−qi)(qn−1−qn−2)∏i=0n−2(qn−1−qi)=(qn−1)∏i=0n−2(qm−qi)(q−1)=(qn−1)∏i=0n−1(qm−qi)(q−1)(qm−qn−1)=(qn−1)(q−1)(qm−qn−1)Tn(m×n).











This completes the statement. □






4. A New Encryption Scheme


In this section, we propose our new encryption scheme which consists of a public matrix distorted by a matrix of column rank n. We will discuss some strengths of this encryption after the description of the scheme.



Presentation of the Encryption Scheme,PE=(SPE,KPE,EPE,DPE).



Setup,SPE generates global parameters m>n>k>k′≥1, k′=k2 and r≤n−k2. The plaintext space is Fqmk′. Output parameters =(m,n,k,k′,r).



Key Generation,KPE Generate invertible matrix S←$Fqmk×k. Generate a generator matrix G∈Fqmk×n of a linear code CG with an efficient decoding algorithm CG.Dec(·) able to correct error up to rank r. Generate vector u←$Fqmn such that rkq(u)=n. Generate invertible matrix T←$Fqn×n. Output public key κpub=Gpub=SG+Cirk(u)T,u and private key κsec=(S,G,T).



Encryption,EPE(κpub,m) Let m∈Fqmk′ be the message to be encrypted. Generate random ms←$Fqmk−k′ satisfying rkq(m∥ms)Cirk(u)>34(n−k). Generate random e1,e2←$Fqmn such that rkq(e1)=r1≤r2 and rkq(e2)=r2≤r2. Compute c1=(m∥ms)Cirk(u)+e1 and c2=(m∥ms)Gpub+e2. Output c=(c1,c2) as the ciphertext.



Decryption,DPEκsec,c Returns (m∥ms)=CG.Dec(c2−c1T)S−1.



Remark 1.

By Proposition 2, the number of e1 that can be chosen is at least Tr1m×n, which is at least qr1(m+n−r1). Similarly, the number of e2 that can be chosen is at least Tr2m×n, which is at least qr2(m+n−r2)





Correctness. The correctness of our encryption scheme relies on the decoding capability of the code C. Using the private keys, we have c2−c1T=(m∥ms)Gpub+e2−(m∥ms)Cirk(u)−e1T=(m∥ms)SG+e2−e1T. Since rkqe2−e1T≤rkqe2+rkqe1T=rkqe2+rkqe1≤r, then the decoding algorithm can decode correctly and retrieve (m∥ms)S=CG.Dec(c2−c1T). Finally, compute (m,ms)=(m∥ms)SS−1 to recover (m∥ms).



Strengths of the Proposed Encryption.



Recall from Section 1 that there are currently two approaches in constructing a rank metric code based encryption scheme. The idea of the first approach is to scramble the generator matrix G so that the matrix for encryption will appear to be random. As a result, the adversary is not able to decode it correctly. Therefore, the error chosen to encrypt the message in LOI17 Encryption must have rank λ times smaller than r. Nevertheless, in our construction, we can choose e1 and e2 with rank r1≤r2 and r2≤r2, respectively. Furthermore, the matrix G in our encryption is scrambled by adding a matrix X, i.e., Gpub=SG+X, where X=Cirk(u)T with column rank n as proved in the following:



Corollary 1.

Let u∈Fqmn such that rkq(u)=n. Then, for any invertible T∈Fqn×n, the column rank of Cirk(u)T, colrkq(Cirk(u)T)=n.





Proof. 

It suffices to show that colrkq(Cirk(u))=n. Since colrkq(Cirk(u))≥rkq(u)=n by Lemma 3, and colrkq(Cirk(u))≤n, then colrkq(Cirk(u))=n. □





By Corollary 1, our X=Cirk(u)T chosen has column rank n instead of t<n. This will make the reduction of X into the form XK=(X′∣0) (as in Lemma 2) impossible, where K is an invertible n×n matrix over Fq.



On the other hand, the second approach in constructing rank metric code based encryption is to make the generator matrix G publicly known, and introduces an error e with big rank (greater than r) into the ciphertext c to ensure the decoding for retrieval of plaintext m^ is hard, i.e., c=m^G+e and rkq(e)>r.



In fact, in our encryption scheme, the error term (m∥ms)Cirk(u)T+e2 in the ciphertext c2 has error larger than r, i.e., rkq(m∥ms)Cirk(u)T+e2>r:



Proposition 4.

Let u=(u0,u1,…,un−1)∈Fqmn such that rkq(u)=n. Given m^=(m,ms)∈Fqmk such that rkq(m,ms)Cirk(u)>34(n−k). Then, for any e2∈Fqmn such that rkq(e2)=r2, we have rkq(m,ms)Cirk(u)T+e2>r.





Proof. 

Given m^=(m∥ms)∈Fqmk and rkq(m∥ms)Cirk(u)>34(n−k), then, for any e2∈Fqmn such that rkq(e2)=r2,


rkq(m∥ms)Cirk(u)T+e2≥rkq(m∥ms)Cirk(u)T−rkq(e2)>34(n−k)−r2≥32r−r2>32r−12r=r








since T∈Fqn×n is invertible. □





By Proposition 4, we have rkq((m∥ms)Cirk(u)T+e2)>r. The adversary is not able to recover the plaintext m from c2=(m∥ms)SG+((m∥ms)Cirk(u)T+e2) even if he knows the structure of the generator matrix G. However, in practicality, G remains unknown to the adversary.




5. IND-CPA Secure Encryption


The desired security property of a public-key encryption scheme is indistinguishability under chosen plaintext attack (IND-CPA). This is normally defined by a security game that is interacting between a challenger and an adversary A. The security game is described as follows:



	Set up: Given a security parameter, the challenger first runs the key generation algorithm and send κpub to A.

Challenge: A chooses two equal length plaintexts m0 and m1; and sends these to the challenger.

Encrypt challenge messages: The challenger chooses a random b∈{0,1}, computes a challenge ciphertext c=EPE(κpub,mb) and returns c to A.

Guess: A outputs a bit b′∈{0,1}. A wins if b′=b.








The advantage of an adversary A is defined as


AdvPE,AIND−CPA(λ)=Pr[b′=b]−12.











A secure public-key encryption scheme against chosen plaintext attack is formally defined as follows:



Definition 8.

A public-key encryption scheme PE=(SPE,KPE,EPE,DPE) is (t,ϵ)-IND-CPAsecure if, for any probabilistic t-polynomial time, the adversary A has the advantage less than ϵ, that is, AdvPE,AIND−CPA(λ)<ϵ.





Lemma 5.

Let T1, T2 and F be events. Suppose the event T2∧¬F occurs if and only if T1∧¬F occurs, then |Pr[T2]−Pr[T1]|≤Pr[F](Difference Lemma [27]).





We have the following result which is important in our encryption.



Lemma 6.

Given m≥n, k≥1, j≥2 and r<n2. Let x,y∈Fqmn, then there exists e∈Fqmn with rkq(e)=r′≤rj such that rkq(x+e)≥r′+1 and rkq(y+e)≥r′+1.





Proof. 

Let x,y∈Fqmn such that rkq(x)=a and rkq(y)=b. We prove the statement by consider different cases for a and b.



Case 1 (2jr+1≤a≤n and 2jr+1≤b≤n): Let e be any element in Fqmn such that rkq(e)=r′≤rj. Then rkq(x+e)≥rkq(x)−rkq(e)=a−rj≥2jr+1−rj=rj+1≥r′+1. Similarly, rkq(y+e)≥rkq(y)−rkq(e)=b−rj≥2jr+1−rj=rj+1≥r′+1.



Case 2 (1≤a≤2jr and 2jr+1≤b≤n): Since rkq(x)=a, by Lemma 1, x=(x1,…,xa)A, where x1,…,xa are linearly independent and A is an a×n matrix over Fq of rank a. Let X={x1,…,xa}, consider a basis B of Fqm such that X⊂B and let Be=B\X. Note that |Be|=m−a≥n−a≥n−2jr>rj≥r′. Then, we can form e of rank r′ by choosing r′ elements from Be, and we have rkq(x+e)≥r′+1 since elements in x are linearly independent with elements in e. With this e, we have rkq(y+e)≥rkq(y)−rkq(e)=b−r′≥2jr+1−r′≥r′+1.



Case 3 (2jr+1≤a≤n and 1≤b≤2jr): This case follows the proof of Case 2 by interchanging the term a with b, and x with y.



Case 4 (1≤a≤2jr and 1≤b≤2jr): Since rkq(x)=a, by Lemma 1, x=(x1,…,xa)A, where x1,…,xa are linearly independent and A is an a×n matrix over Fq of rank a. Similarly, since rkq(y)=b, by Lemma 1, y=(y1,…,yb)B, where y1,…,yb are linearly independent and B is an b×n matrix over Fq of rank b. Let X={x1,…,xa} and Y={y1,…,yb}, consider a basis B of Fqm such that X∪Y⊂B and let Be=B\(X∪Y).



If j≥3, since |X∪Y|≤4jr and jn≥3n≥6r, then |Be|≥m−4jr≥n−4jr≥6jr−4jr>rj>r′. We can form e of rank r′ by choosing rj elements from Be. Thus, we have rkq(x+e)≥r′+1 since elements in x are linearly independent with elements in e, and rkq(y+e)≥r′+1 since elements in y are linearly independent with elements in e.



If j=2, then we further break this case into the following subcases:



1≤a≤r2 or 1≤b≤r2: WLOG, assume that 1≤a≤r2, then |Be|=m−(a+b)≥n−(a+b)≥n−r2+r>r2≥r′. We can form e of rank r′ by choosing r′ elements from Be. Thus, we have rkq(x+e)≥r′+1 since elements in x are linearly independent with elements in e, and rkq(y+e)≥r′+1 since elements in y are linearly independent with elements in e.



1+r2≤a≤r and 1+r2≤b≤r: WLOG, assume that a≥b. If Y⊆X, then |Be|=m−a≥n−a≥n−r>r2≥r′. We can form e of rank r′ by choosing r′ elements from Be. Thus, we have rkq(x+e)≥r′+1 since elements in x are linearly independent with elements in e, and rkq(y+e)≥r′+1 since elements in y are linearly independent with elements in e. If Y⊈X, let Z=X∩Y and t=|Z|. Let a′=a−r2, b′=b−r2, and v=r2−t, pick v elements x1′,…,xv′∈X\Z and another v elements y1′,…,yv′∈Y\Z. Then, considering BN=B\({x1′,…,xv′,y1′,…,yv′}∪Z), we have |BN|=m−(2v+t)≥n−(2v+t)=n−(r−t)=n−r+t>n−r>r2≥r′. We can form e of rank r′ by choosing r′ elements from BN (with at least one element from Be), and the elements picked will only decrease the rank of x and y at most by a′−1 and b′−1, respectively. Therefore, we have rkq(x+e)≥a−(a′−1)≥r2+1≥r′+1 and rkq(y+e)≥b−(b′−1)≥r2+1≥r′+1. □





Now, suppose the challenger adversary chooses two equal length plaintexts m0,m1∈Fqmk′ and sends these to the challenger. By the following lemma, the challenger is able to choose a random ms∈Fqmk−k′, e1,e2∈Fqmn such that the conditions (2)–(7) are satisfied:



Lemma 7.

Given m0,m1∈Fqmk′ and ms∈Fqmk−k′, there exists e1,e2∈Fqmn such that


rkq(e1)=r1≤r/2,



(2)






rkq((0k′∥ms)Cirk(u)+e1)≥r1+1,



(3)






rkq((m0+m1∥ms)Cirk(u)+e1)≥r1+1,



(4)






rkq(e2)=r2≤r/2,



(5)






rkq((0k′∥ms)Gpub+e2)≥r2+1,



(6)






rkq((m0+m1∥ms)Gpub+e2)≥r2+1.



(7)









Proof. 

Let rkq((0k′∥ms)Cirk(u))=a1 and rkq((m0+m1∥ms)Cirk(u)=b1, rkq((0k′∥ms)Gpub)=a2 and rkq((m0+m1∥ms)Gpub)=b2. Then, apply Lemma 6 accordingly. □





Therefore, without knowing any information on ms, A is not able to distinguish between c1+(m0∥0k−k′)Cirk(u) and c1+(m1∥0k−k′)Cirk(u), between c2+(m0∥0k−k′)Gpub and c2+(m1∥0k−k′)Gpub, as e1, e2 are chosen such that Labels (2)–(7) are satisfied. For convenience sake, we have the following notation:



Notation. 

Denote Ecir(m0,m1,ms) as the set of all elements in Fqmn that satisfy (2)–(4); and EGpub(m0,m1,ms) as the set of all elements in Fqmn that satisfy (5)–(7).





We now state the assumptions for which our encryption is based on:



The Decisional Rank Syndrome Decoding (DRSD) assumption. Let D be a distinguishing algorithm that takes as input a vector in Fqmn and a matrix M∈Fqmk×n, and outputs a bit. The DRSD advantage of D is defined as


AdvM,n,kDRSD(D)=Prv←$Fqmk,e←$En,w,x=vM+e:D(M,x)=1−Pry←$Fqmn:D(M,y)=1,








where En,w:={e∈Fqmn:rkq(e)=w}. The DRSDM assumption is the assumption that the advantage AdvM,n,kDRSD(D) is negligible for any D, i.e., AdvM,n,kDRSD(D)<εM.



Now, we prove that our encryption is IND-CPA secure under DRSDCirk(u) and DRSDGpub assumptions.



Theorem 1.

Under the DRSDCirk(u) and DRSDGpub assumptions, the proposed public-key encryption schemePEisIND-CPAsecure.





Proof. 

To prove the security of the scheme, we are using a sequence of games.



Game G0: This is the real IND-CPA attack game against an adversary A in the definition of semantic security. We run the following attack game algorithm:



	S←$Fqmk×k, u←$Fqmn, T←$Fqn×n, κpub←(SG+Cirk(u)T,u), κsec←(S,G,T)

(m0,m1)←$A(κpub)

b←${0,1}, ms←$Fqmk−k′, e1←$Ecir(m0,m1,ms), e2←$EGpub(m0,m1,ms),

c1←(mb∥ms)Cirk(u)+e1, c2←(mb∥ms)Gpub+e2

b^←A(κpub,c1,c2)

if b^=b then return 1 else return 0








Denote S0 the event that A wins in Game G0. Then,


AdvPE,AIND−CPA(λ)=Pr[S0]−12.











Game G1: We now make one small change to G0. In this game, we pick a random vector y←$Fqmn and replace c1 in G0 for EPE(κpub,(mb∥ms)) by c1←y:



	S←$Fqmk×k, u←$Fqmn, T←$Fqn×n, κpub←(SG+Cirk(u)T,u), κsec←(S,G,T)

(m0,m1)←$A(κpub)

b←${0,1}, ms←$Fqmk−k′, e1←$Ecir(m0,m1,ms), e2←$EGpub(m0,m1,ms),

y←$Fqmn,c1←y,c2←(mb∥ms)Gpub+e2

b^←A(κpub,c1,c2)

if b^=b then return 1 else return 0








We denote S1 the event that A wins in Game G1. Under the DRSDCirk(u) assumption, the two games G1 and G0 are indistinguishable with Pr[S1]−Pr[S0]≤εCirk(u).



Game G2: We now make one small change to G1. In this game, we pick a random vector z←$Fqmn and replace c2 in G1 for EPE(κpub,(mb∥ms)) by c2←z:



	S←$Fqmk×k, u←$Fqmn, T←$Fqn×n, κpub←(SG+Cirk(u)T,u), κsec←(S,G,T)

(m0,m1)←$A(κpub)

b←${0,1}, ms←$Fqmk−k′, e1←$Ecir(m0,m1,ms), e2←$EGpub(m0,m1,ms),

y←$Fqmn, c1←y, z←$Fqmn,c2←z,

b^←A(κpub,c1,c2)

if b^=b then return 1 else return 0








We denote S2 the event that A wins in Game G2. Under the DRSDGpub assumption, the two games G2 and G1 are indistinguishable with Pr[S2]−Pr[S1]≤εGpub.



As the ciphertext challenge c=(c1,c2) is perfectly random, b is hidden to any adversary A without any advantage; therefore, Pr[S2]=12. We have


AdvPE,AIND−CPA(λ)=Pr[S0]−12=Pr[S0]−Pr[S2]≤Pr[S0]−Pr[S1]+Pr[S1]−Pr[S2]≤εCirk(u)+εGpub.











Therefore, under the DRSDCirk(u) and DRSDGpub assumption, the proposed public-key encryption scheme PE is IND-CPA secure. □






6. Our Encryption Based on Gabidulin Codes


We propose Gabidulin code as the decodable code C in our encryption. We analyze the security of the scheme by considering possible structural attacks to cryptanalyze the system based on Gabidulin code. We also give some parameters for our proposal using Gabidulin codes.



6.1. Gabidulin Codes


First, we give the definition for Moore matrix and Gabidulin codes.



Definition 9.

A matrix G=(Ga,b)∈Fqmk×n is called aMoore matrixinduced by g if there exists a vector g=(g1,…,gn)∈Fqmn such that ith row of G is equal to g[i−1] for i=1,…,k, i.e., G is in the form of


G=g1g2…gng1[1]g2[1]…gn[1]⋮⋮⋱⋮g1[k−1]g2[k−1]…gn[k−1],



(8)




where [i]:=qi is the ith Frobenius power. Similarly, we define G([i])=Ga,b[i]. In addition, for any set S⊂Fqmn, we denote S(l)={s([l])∣s∈S}.





Definition 10.

Let g∈Fqmn with rkq(g)=n. The [n,k]-Gabidulin code Gabn,k(g) over Fqm of dimension k and generator vector g is the code generated by a Moore matrix G induced by g.





The error-correcting capability of Gabn,k(g) is r=⌊n−k2⌋. There exist efficient decoding algorithms for Gabidulin codes up to the rank error correcting capability (for example, [4]).




6.2. Structural Attack on Gabidulin Code


We examine some common existing attacks against Gabidulin codes and argue that our proposal resists these attacks.



Frobenius Weak Attack. The principle of the Frobenius weak attack (for more details, please refer to [18]) is to form an extension code Cext from the code Cpub generated by Gpub and the error term in the ciphertext. In particular,


Cext:=∑i=0r−1C+⟨e⟩[t′i],








where gcd(t′,m)=1 and rkq(e)=r. One of the necessary conditions for the complexity of solving the RSD for C to be polynomial time, via the proposed method is dimFqmCext≠n. Although in our system our error terms e1 and e2 both have ranks of r2, due to the structure of Gpub, we have dimFqmCext=n when C is chosen to be generated by Gpub, which makes the system secure against this attack.



Key Recovery Attack. Consider the structure of Gpub:


Gpub=SG+Cirk(u)T=s11…s1k⋮⋱⋮sk1…skkg1…gng1[1]…gn[1]⋮⋱⋮g1[k−1]…gn[k−1]+u0u1…un−1un−1u0…un−2⋮⋮⋱⋮un−k+1un−k+2…un−kt11…t1n⋮⋱⋮tn1…tnn.











Note that the above linear system has kn equations, with k2+kn unknown variables over Fqm and n2 linear variables over Fq. Now, consider Gpub[i]:


Gpub[1]=S[1]G[1]+Cirk(u)[1]T[1]=s11[1]…s1k[1]⋮⋱⋮sk1[1]…skk[1]g1[1]…gn[1]g1[2]…gn[2]⋮⋱⋮g1[k]…gn[k]+u0[1]…un−1[1]un−1[1]…un−2[1]⋮⋱⋮un−k+1[1]…un−k[1]t11…t1n⋮⋱⋮tn1…tnn.











This new linear system has kn equations, with k2+n new unknown variables over Fqm. Then, the linear systems Gpub,…,Gpub[m−k] have a total of (m−k+1)kn equations with a total of (m−k+1)k2+mn unknown variables over Fqm and n2 unknown variables over Fq. However, note that solving the equations in Gpub,…,Gpub[m−k] is equivalent to solving a multivariant quadratic problem.



  Reduction Attack. Otmani, Kalachi, and Ndjeya [16] show that a matrix of the form Gpub=SG+X where X is a random k×n matrix over Fqm with column rank t<r<n could be reduced into the form


Gpub=SG+X=S(G+S−1X)=S(X¯∣G¯)Q,



(9)




where X¯ is some random k×t matrix over Fqm, Q is an invertible n×n matrix over Fq and G¯ is a generator matrix of a [n−t,k]-Gabidulin code generated by some g′∈Fqmn−t. By applying Lemma 2, this reduction is possible due to the structure of X which can be written into the form of XK=(X′∣0k×(n−t)), where colrkq(X′)=t and K is an invertible n×n matrix over Fq. These n−t columns of zeroes enable the adversary to decompose G+S−1X into random components, X¯ and a Moore matrix component, G¯. The adversary can then apply Overbeck’s attack [10] and cryptanalyze the system.



However, in our encryption system, Gpub=SG+Cirk(u)T. By Corollary 1, Cirk(u)T has column rank n, thus the adversary is not able to rewrite Cirk(u)T in the form of Label (1) which has columns of zero. Therefore, Gpub could not be reduced into components of random matrix and Moore matrix of the form (9). Overbeck’s attack cannot be applied in our case.



Moore Decomposition Attack. The Moore Decomposition attack on GPT cryptosystem is the extension of the Overbeck attack [10]. Therefore, it suffices for us to show that a cryptosystem is resistant to the Moore Decomposition attack. We now briefly present the idea of Moore Decomposition attack in the following (for more details, please refer to Section 3 and Section 4 [18]):



Consider Gpub=SG+X=S(G+S−1X), since colrkq(X)=t<r, we have colrkq(S−1X)=t. Consider a minimal column rank Moore decomposition for S−1X=XMoore+Z, where XMoore is a Moore matrix and Z is a non-Moore component which has the lowest possible column rank. Denote s=colrkq(Z). Since dRmin(Gabn,k(g))=n−k+1≥s+t+2, by Corollary 3.12 in [18], all the elements of rank one in ∑i=0s⟨G+X⟩([i]) belong to the Grassman support of X. The adversary is able to find a full rank matrix U∈Fqs′×n for s≤s′≤t such that suppGr(Z)⊆⟨U⟩Fqm⊆suppGr(X) and compute H∈Fq(n−s′)×n, a parity check matrix for ⟨U⟩Fqm. By Theorem 4.1 in [18], the adversary can recover m in polynomial time.



In our encryption system, Cirk(u)T has column rank n by Corollary 1. Consider a minimal column rank Moore decomposition for S−1Cirk(u)T=MMoore+W, where W is a non-Moore component which has the lowest possible column rank s. Note that, in our case, t=n, thus we have dRmin(Gabn,k(g))=n−k+1<s+n+2. As it requires dRmin(Gabn,k(g))>s+t+2 to apply Corollary 3.12 in [18], this condition is not satisfied in our case, thus Theorem 4.1 in [18] could not be used to recover the encrypted message.




6.3. Proposed Parameters


We propose some parameters for our encryption scheme. We consider m>n and r1=r2=⌊r2⌋. Denote the post-quantum complexity for combinatorial and algebraic attacks as “Comb” and “Alg”, respectively. We use the complexities in Section 2.4 as the lower bound of the complexity by replacing r=r1=r2 in the calculation. Following Loidreau’s application [21] of Grover’s algorithm, the exponential term in the decoding complexity should be square rooted [28]. The public key size is knm+nm8log2(q) bytes. Table 3 is the parameters for 2128 and 2256 bits post-quantum security.



Comparison with LOI17 Encryption for similar post-quantum decoding complexity (at 2140) [21]. We include the formula m3212r−1kmin{m,n}n in the lower bounds as it was used in [21] to evaluate the complexities of the attack on RSD. Table 4 is the comparison for our encryption PCir and LOI17 encryption.



Our encryption has the following strengths:

	i.

	
Our encryption has larger rank of error r1 and r2.




	ii.

	
At similar security, our key size (15.06 KB) is smaller than the key size of LOI17 Encryption (21.50 KB). Our encryption scheme can provide better post quantum security with smaller key size.











7. Conclusions


This paper has proposed a new rank metric encryption based on the difficulty of the Rank Syndrome Decoding problem. We modify the original GPT cryptosystem with different considerations for the public matrix. The public matrix is distorted by adding Cirk(u)T of column rank n. Our encryption scheme has IND-CPA security under the DRSDCirk(u) and DRSDGpub assumptions. Our proposal allows the choice for rank of errors to be r1=r2=⌊r2⌋. Moreover, for similar post-quantum security level of 2140 bits, our encryption using Gabidulin codes has smaller public key size (15.1 KB) than the key size suggested by LOI17 Encryption (21.5 KB). Our encryption provides better security with smaller key size.
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Table 1. Best combinatorial attacks on RSD with their conditions and complexities.






Table 1. Best combinatorial attacks on RSD with their conditions and complexities.





	Conditions
	Best Combinatorial Attacks





	m<n, m>k+1+r
	Omin(n−k)3m3qr(k+1)mn−m,r3m3q(r−1)(k+1) [19,23]



	m<n, m≤k+1+r
	Omin(n−k)3m3qr(k+1)mn−m,(k+r)3r3q(m−r)(r−1) [19,23]



	m≥n, s≠0
	Omin(n−k)3m3qminr(k+1)mn−m,rk,(r−1)(k+1),r3m3q(r−1)(k+1) [17,19,23]



	m≥n, s=0
	Omin(n−k)3m3qminr(k+1)mn−m,(r−1)k,r3m3q(r−1)(k+1) [17,19,23]
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Table 2. Best Algebraic Attacks on RSD with their conditions and complexities.






Table 2. Best Algebraic Attacks on RSD with their conditions and complexities.










	Attacks
	Conditions
	Complexity





	CG-Kernel [24]
	
	Ok3m3qrkmn



	GRS-Basic Approach [17]
	n≥(r+1)(k+1)−1
	O((r+1)(k+1)−1)3



	GRS-Hybrid Approach [17]
	(r+1)(k+1)−(n+1)r≤k
	Or3k3qr(r+1)(k+1)−(n+1)r
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Table 3. Parameters of our cryptosystem for 2128 and 2256 bits post-quantum security.
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	q
	m
	n
	k
	r1
	r2
	r
	Public Key Size
	Post-Quantum Security





	PC-I
	2
	71
	67
	22
	11
	11
	22
	13.68 KB
	133



	PC-II
	2
	85
	83
	16
	16
	16
	33
	14.99 KB
	134



	PC-III
	2
	103
	101
	29
	18
	18
	36
	39.01 KB
	262



	PC-IV
	2
	113
	107
	26
	20
	20
	40
	40.81 KB
	268
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Table 4. Comparison of parameters between our cryptosystem and LOI17 Encryption.






Table 4. Comparison of parameters between our cryptosystem and LOI17 Encryption.





	Encryption
	q
	m
	n
	k
	r1
	r2
	r
	Public Key Size
	Post-Quantum Security





	PC-V
	2
	75
	73
	21
	13
	13
	26
	15.06KB
	141



	PC-VI
	2
	85
	83
	18
	16
	16
	32
	16.76KB
	144



	LOI17-I
	2
	128
	90
	24
	-
	-
	11
	21.50 KB
	140



	LOI17-II
	2
	128
	120
	80
	-
	-
	4
	51.00 KB
	141
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