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Abstract: In this paper, we gave an attack on RSA (Rivest–Shamir–Adleman) Cryptosystem
when ϕ(N) has small multiplicative inverse modulo e and the prime sum p + q is of the form
p + q = 2nk0 + k1, where n is a given positive integer and k0 and k1 are two suitably small unknown
integers using sublattice reduction techniques and Coppersmith’s methods for finding small roots
of modular polynomial equations. When we compare this method with an approach using lattice
based techniques, this procedure slightly improves the bound and reduces the lattice dimension.
Employing the previous tools, we provide a new attack bound for the deciphering exponent when
the prime sum p + q = 2nk0 + k1 and performed an analysis with Boneh and Durfee’s deciphering
exponent bound for appropriately small k0 and k1.

Keywords: RSA; Cryptanalysis; lattices; LLL (Lenstra–Lenstra–Lovász) algorithm; Coppersmith’s
method

JEL Classification: 11T71; 94A60

1. Introduction

RSA Cryptosystem [1] is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir
and Leonard Adleman in 1977. The primary parameters in RSA are the modulus N = pq, which is
the product of two large distinct primes, a public exponent e such that gcd(e, ϕ(N)) = 1 and a private
exponent d, the multiplicative inverse of e modulo ϕ(N). In this system the encryption and decryption
are based on the fact that for any message m in ZN , med = m mod N. The security of this system
depends on the difficulty of finding factors of a composite positive integer, which is a product of two
large primes. In 1990, M. J. Wiener [2] was the first one to describe a cryptanalytic attack on the use of
short RSA deciphering exponent d. This attack is based on continued fraction algorithm which finds the
fraction t

d , where t = ed−1
ϕ(n) in a polynomial time when d is less than N0.25 for N = pq and q < p < 2q.

Using lattice reduction approach based on the Coppersmith techniques [3] for finding small solutions
of modular bivariate integer polynomial equations, D. Boneh and G. Durfee [4] improved the wiener
result from N0.25 to N0.292 in 2000 and J. Blömer and A. May [5] has given an RSA attack for d less than
N0.29 in 2001, which requires lattices of dimension smaller than the approach by Boneh and Durfee.
In 2006, E. Jochemsz and A. May [6], described a strategy for finding small modular and integer roots
of multivariate polynomial using lattice-based Coppersmith techniques and by implementing this
strategy they gave a new attack on an RSA variant called common prime RSA.

In the paper [7], first we described an attack on RSA when ϕ(N) has small multiplicative inverse
k of modulo e, the public encryption exponent by using lattice and sublattice based techniques.
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Let N = pq, q < p < 2q, p− q = Nβ and e = Nα > p + q. As (e, ϕ(N)) = 1, there exist unique r, s
such that (p− 1)r ≡ 1(mod e) and (q− 1)s ≡ 1(mod e). For k = rs(mod e), kϕ(N) ≡ 1(mod e) and
define g(x, y) = x(y + B)− 1 where B = N + 1−

⌈
2
√

N
⌉
. Then the pair (x0, y0) = (k,−((p + q)−⌈

2
√

N
⌉
)) is a solution for the modular polynomial equation g(x, y) ≡ 0(mod e). Now applying the

lattice based techniques given by Boneh-Durfee in [4] using x, y shifts and using only x shifts to the

above modular polynomial equation, we get the attack bounds for δ, |k| ≤ Nδ are δ <
3α+β−2

√
β(3α+β)

3

and δ < α−β
2 , respectively. Also, we improved the bound for δ up to α−

√
αβ by implementing the

sublattice based techniques given by Boneh and Durfee in [4] under the condition δ > α− β(1 + α)

and improved the bound for δ up to δ <
2α−6β+2

√
α2−αβ+4β2

5 by implementing the sublattice based
techniques with lower dimension given by J. Blömer and A. May in [5]; this bound is slightly less
than the above bound but this method requires lattices of smaller dimension than the above method.
All these attack bounds are depending on the prime difference p − q = Nβ and α −

√
αβ is the

maximum upper bound for δ.
Later in paper [7], we described that, for β ≈ 0.5, the maximum bound for δ may be improved if

the prime sum p + q is in the form of the composed sum p + q = 2nk0 + k1 where n is a given positive
integer and k0 and k1 are two suitably small unknown integers. Define the polynomial congruence
f (x, y, z) ≡ 0(mode) for

f (x, y, z) =

{
(N + 1)x + xy + (2n)xz− 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz− 2n′ if |k1| ≤ |k0|

where 2n′ is an inverse of 2n mod e. By using lattice based techniques to the above polynomial

congruence, the attack bound for δ is such that δ < 1
2 α − 1

2 γ1 +
1

16 γ2 − 1
16

√
48(α− γ1)γ2 + 33γ2

2
where Nγ1 , Nγ2 are the upper bounds for max{|k0|, |k1|}, min{|k0|, |k1|} respectively.

Now, in this paper, we slightly improved the above bound by using the sub-lattice based
techniques given by J. Blömer, A. May in [5] to the above polynomial congruence and this
method requires lattice of smaller dimension than the above method. The new bound on δ is
1
2 α− 1

2 γ1 − 1
6

√
6(α− γ1)γ2 + 3γ2

2 and showed that this is a little bit greater than the former bound
graphically. Note that this new attack bound is also an attack bound for the deciphering exponent d.

2. Preliminaries

In this section we state basic results on lattices, lattice basis reduction, Coppersmith’s method and
Howgrave-Graham theorem that are based on lattice reduction techniques.

Definition 1. Let b1, b2, ..., bn ∈ Rm be a set of linearly independent vectors. The lattice L generated by
b1, b2, ..., bn is the set of linear combinations of b1, b2, ..., bn with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension of L is the number of vectors
in a basis for L.

Definition 2. Let L be a lattice of dimension n and let b1, b2, ..., bn be a basis for L. The fundamental domain
for L corresponding to this basis is the set [8]

F (b1, b2, ..., bn) = {t1b1 + t2b2 + ... + tnbn : 0 ≤ ti < 1}.

Definition 3. Let L be a lattice of dimension n and letF be a fundamental domain for L. Then the n-dimensional
volume of F is called the determinant of L. It is denoted by det(L) [8].

Remark 1. If L is a full rank lattice, which means n = m then the determinant of L is equal to the absolute
value of the determinant of the n× n matrix whose rows are the basis vectors b1, b2, ..., bn.



Cryptography 2018, 2, 36 3 of 15

In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [9] invented the LLL lattice based reduction
algorithm to reduce a basis and to solve the shortest vector problem. The general result on the size of
individual LLL-reduced basis vectors is given in the following Theorem.

Theorem 1. Let L be a lattice and b1, b2, ..., bn be an LLL-reduction basis of L. Then

‖ b1 ‖≤‖ b2 ‖≤ ... ‖ bi ‖≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i

for all 1 ≤ i ≤ n [10].

An important application of lattice reduction found by Coppersmith in 1996 [3] is finding
small roots of low-degree polynomial equations. This includes modular univariate polynomial
equations and bivariate integer equations. In 1997 Howgrave-Graham [11] reformulated Coppersmith’s
techniques and proposed a result which shows that if the coefficients of h(x, y) are sufficiently
small, then the equality h(x0, y0) = 0 holds not only modulo N, but also over integers.
The generalization of Howgrave-Graham result in terms of the Euclidean norm of a polynomial
h(x1, x2, ..., xn) = ∑ ai1...in xi1

1 ...xin
n is defined by the Euclidean norm of its coefficient vector i.e.,

||h(x1, x2, ..., xn)|| =
√

∑ a2
i1...in given as follows:

Theorem 2. (Howgrave-Graham): Let h(x1, x2, ..., xn) ∈ Z[x1, x2, ..., xn] be an integer polynomial that
consists of at most ω monomials. Suppose that

1. h
(

x(0)1 , x(0)2 , ..., x(0)n

)
≡ 0 mod em for some m where |x(0)1 | < X1, |x(0)2 | < X2 . . . |x(0)n | < Xn, and

2. ||h(x1X1, x2X2, ..., xnXn)|| < em
√

ω
.

Then h(x1, x2, ..., xn) = 0 holds over the integers.

Definition 4. The resultant of two polynomials f (x1, x2, . . . , xn) and g(x1, x2, . . . , xn) with respect to the
variable xi for some 1 ≤ i ≤ n, is defined as the determinant of Sylvester matrix of f (x1, x2, . . . , xn) and
g(x1, x2, . . . , xn) when considered as polynomials in the single indeterminate xi, for some 1 ≤ i ≤ n.

Remark 2. The resultant of two polynomials is non-zero if and only if the polynomials are
algebraically independent.

Remark 3. If
(

x(0)1 , x(0)2 , . . . , x(0)n

)
is a common solution of algebraically independent polynomials

f1, f2, . . . , fm for m ≥ n, then these polynomials yield g1, g2, . . . , gn−1 resultants in n − 1 variables and
continuing so on the resultants yield a polynomial t(xi) in one variable with xi = x(0)i for some i is a solution of
t(xi). Note the polynomials considered to compute resultants are always assumed to be algebraically independent.

3. An Attack Bound Using Sublattice Reduction Techniques

In this section, an attack bound for a small multiplicative inverse k of ϕ(N) modulo e when the
prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given positive integer and k0 and k1 are
two suitably small unknown integers using sublattice reduction techniques is described.

In a previous paper [7], we proposed an attack on RSA when ϕ(N) has small multiplicative
inverse modulo e and the prime sum p + q is of the form p + q = 2nk0 + k1, where n is a given positive
integer and k0 and k1 are two suitably small unknown integers using lattice reduction techniques.

For 2n′ is an inverse of 2n mod e, define f (x, y, z)=

{
(N + 1)x + xy + (2n)xz− 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz− 2n′ if |k1| ≤ |k0|.

If |k0| ≤ |k1|, then (k,−k1,−k0) is a solution and if |k1| ≤ |k0| then (k,−k0,−k1) is a solution for
the modular polynomial equation f (x, y, z) ≡ 0(mod e).
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Now define the set Mk =
⋃

0≤j≤t
{xi1 yi2 zi3+j|xi1 yi2 zi3 is a monomial of f m and xi1 yi2 zi3

lk is a monomial

of f m−k}, where l is a leading monomial of f and define the shift polynomials as

gk,i1,i2,i3(x, y, z) =
xi1 yi2 zi3

lk ( f ′(x, y, z))kem−k, for k = 0, ..., m, xi1 yi2 zi3 ∈ Mk \Mk+1

and f ′ = a−1
l f mod e for the coefficient al of l. For 0 ≤ k ≤ m, divide the above shift polynomials

according to t = 0 and t ≥ 1. Then for t = 0, the shift polynomials g(x, y, z) are

g(x, y, z) =

{
zi3 ( f (x, y, z))kem−k, for i1 = i2 = k, i3 = 0
xi1−kzi3 ( f (x, y, z))kem−k, for k ≤ m− 1, i1 = k + 1, ..., m, i2 = k, i3 = 0, ..., (i1 − i2).

and for t ≥ 1, the shift polynomials h(x, y, z) are

h(x, y, z) =

{
zi3 ( f (x, y, z))kem−k , for i1 = i2 = k, i3 = 1, ..., t

xi1−kzi3 ( f (x, y, z))kem−k , for k ≤ m− 1, i1 = k + 1, ..., m, i2 = k, i3 = (i1 − i2) + 1, ..., (i1 − i2) + t.

Let L be the lattice spanned by the coefficient vectors g(xX, yY, zZ) and h(xX, yY, zZ) shifts with
dimension ( 1

6 m3 + m2 + 11
6 m + 1) +

(
1
2 (m

2 + m)t + (m + 1)t
)

[7]. Let M be the matrix of L with each
row is the coefficients of the shift polynomial

g− shifts



em, xem, xzem, x2em, x2zem, x2z2em, ..., xmem, xmzem, ..., xmzmem,
f em−1, x f em−1, xz f em−1, ..., xm−1 f em−1, xm−1z f em−1, ..., xm−1zm−1 f em−1,
...
f m−1e, x f m−1e, xz f m−1e,
f m,

h− shifts



zem, ...ztem, xz2em, ..., xz1+tem, ..., xmzm+1em, ..., xmzm+tem,
z f em−1, ...zt f em−1, xz2 f em−1, ..., xz1+t f em−1, ..., xm−1zm f em−1, ..., xm−1z(m−1)+t f em−1,
...
z f m−1e, ..., zt f m−1e, xz2 f m−1e, ..., xz1+t f m−1e,
z f m, ..., zt f m

and each column is the coefficients of each variable (in shift polynomials)

(first(
1
6

m3 + m2 +
11
6

m + 1)columns)



1, x, xz, x2, x2z, x2z2, ..., xm, xmz, ..., xmzm,
xy, x2y, x2yz, x3y, x3yz, x3yz2, ..., xmy, xmyz, ..., xmyzm−1,
...
xm−1ym−1, xmym−1, xmym−1z,
xmym,

(remaining
(

1
2
(m2 + m)t + (m + 1)t

)
columns)



z, ..., zt, xz2, ..., xz1+t, ..., xmzm+1, ..., xmzm+t,
xyz, ..., xyzt, x2yz2, ..., x2yz1+t, ..., xmyzm, ..., xmyz(m−1)+t,
...
xm−1ym−1z, ..., xm−1ym−1zt, xmym−1z2, ..., xmym−1z1+t,
xmymz, ..., xmymzt.
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As xy is the leading monomial in f (x, y, z) with coefficient 1, the diagonal elements in the matrix
M are

g− shifts



em, Xem, XZem, X2em, X2Zem, X2Z2em, ..., Xmem, XmZem, ..., XmZmem,
XYem−1, X2Yem−1, X2YZem−1, ..., XmYem−1, XmYZem−1, ..., XmYZm−1em−1,
...
Xm−1Ym−1e, XmYm−1e, XmYm−1Ze,
XmYm,

h− shifts



Zem, ..., Ztem, XZ2em, ..., XZ1+tem, ..., XmZm+1em, ..., XmZm+tem,
XYZem−1, ..., XYZtem−1, X2YZ2em−1, ..., X2YZ1+tem−1, ..., XmYZmem−1, ..., XmYZ(m−1)+tem−1,
...
Xm−1Ym−1Ze, ..., Xm−1Ym−1Zte, XmYm−1Z2e, ..., XmYm−1Z1+te,
XmYmZ, ..., XmYmZt.

Note that the matrix M is lower triangular matrix. Therefore, the determinant is

det(L) = en(e)Xn(X)Yn(Y)Zn(Z)

where n(e), n(X), n(Y) and n(Z) are the number of e’s, X’s, Y’s and Z’s in all diagonal elements
respectively, and

n(e) = (((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 + m)t + (1/2)(m2 + m)t))

n(X) = (((1/8)m4 + (3/4)m3 + (11/8)m2 + (3/4)m) + ((1/6)(2m3 + 3m2 + m)t + (1/2)(m2 + m)t))

n(Y) = (((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m) + ((1/6)(m3 −m)t + (1/2)(m2 + m)t))

n(Z) = (((1/24)m4 + (1/4)m3 + (11/24)m2 + (1/4)m)+

((1/4)(m2 + m)t2 + (1/2)(m + 1)t2 + (1/12)(2m3 + 9m2 + 7m)t + (1/2)(m + 1)t))

Let Nδ, Nγ1 and Nγ2 be the upper bounds for X, max{k0, k1} and min{k0, k1} respectively,
then the bound for δ in which the generalized Howgrave-Graham result holds given in the
following theorem.

Theorem 3. [7] Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2

and k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p + q is of the form p + q =

2nk0 + k1, for a known positive integer n and for |k| ≤ X, max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one
can factor N in polynomial time if

δ <
1
2

α− 1
2

γ1 +
1
16

γ2 −
1

16

√
48(α− γ1)γ2 + 33γ2

2. (1)

To improve this bound in a lower dimension than the above dimension, first we construct
a sublattice SL of L and after that we apply the sublattice based techniques to the lattice SL given by
J. Blömer, A. May in [5], and are described in the following sections.

3.1. Construction of a Sublattice SSSL of L

The construction of a sublattice SL of L in order to improve the bound for δ is given in
the following.

• First remove following rows in M corresponding to g-shifts
em, xem, xzem, ..., xm−1em, ..., xm−1zm−1em,
f em−1, x f em−1, xz f em−1, ..., xm−2 f em−1, ..., xm−2zm−2 f em−1,
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...
f m−2e2, x f m−2e2, xz f m−2e2,
f m−1e.

Therefore the remaining rows in M corresponding to g-shifts are
xmem, xmzem, ..., xmzmem,
xm−1 f em−1, ..., xm−1zm−1 f em−1,
...
x f m−1e, xz f m−1e,
f m,
and its corresponding g-shifts can be written as

gs(x, y, z) = xl1 zl2( f (x, y, z))kem−k for k = 0, ..., m, l1 = m− k, l2 = 0, ..., l1.

• Now remove some rows in M corresponding to h-shifts are
zem, ..., ztem, ..., xm−1zmem, ..., xm−1z(m−1)+tem,
z f em−1, ..., zt f em−1, ..., xm−2zm−1 f em−1, ..., xm−2z(m−2)+t f em−1,
...
z f m−2e2, ..., zt f m−2e2, xz2 f m−2e2, ..., xz1+t f m−2e2,
z f m−1e, ..., zt f m−1e.
Therefore the remaining rows in M corresponding to h-shifts are
xmzm+1em, ..., xmzm+tem,
xm−1zm f em−1, ..., xm−1z(m−1)+t f em−1,
...
xz2 f m−1e, ..., xzt+1 f m−1e,
z f m, ..., zt f m, and its corresponding h-shifts can be written as

hs(x, y, z) = xl1 zl2( f (x, y, z))kem−k for k = 0, ..., m, l1 = m− k, l2 = l1 + 1, ..., l1 + t.

Now, let SL be the sub-lattice of L spanned by the coefficients of the vectors gs(xX, yY, zZ) and
hs(xX, yY, zZ) shifts and Ms be the matrix of the lattice SL.

Note that the matrix Ms is not square. So apply the sublattice based techniques to the basis of SL
or the rows of Ms to get a square matrix. Using that square matrix, the attack bound can be found and
is given in the following section.

3.2. Applying Sub-Lattice Based Techniques to Get an Attack Bound

In [5], J. Blomer, A. May proposed a method to find an attack bound for low deciphering exponent
in a smaller dimension than the approach by Boneh and Durfee’s attack in [4]. Apply their method
based on sublattice reduction techniques to our lattice SL to get an attack bound and is described in
the following.

In order to apply the Howgrave-Graham’s theorem [11] by using Theorem 1, we need three short
vectors in SL as our polynomial consists of three variables. However, note that Ms is not a square
matrix. So, first construct a square matrix Msl by removing some columns in Ms, which are small linear
combination of non-removing columns in Ms. Then the short vector in Msl lead to short reconstruction
vector in SL.

Construction of a square sub-matrix Msl of Ms.
Columns in M and Ms are same and each column in M is nothing but the coefficients of a variable,

which is a leading monomial of the polynomial g or h-shifts. The first ( 1
6 m3 + m2 + 11

6 m + 1) and
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remaining
(

1
2 (m

2 + m)t + (m + 1)t
)

columns are corresponding to the leading monomial of the
polynomials g and h-shifts respectively. Therefore,

1. the first ( 1
6 m3 + m2 + 11

6 m + 1) columns are the coefficients of the each variable xi1 yi2 zi3

for i1 = i2 = k, i3 = 0 and i1 = k + 1, ..., m, i2 = k, i3 = 0, ..., (i1 − i2) and remaining(
1
2 (m

2 + m)t + (m + 1)t
)

columns are the coefficients of the each variable xi1 yi2 zi3 for i1 = i2 =

k, i3 = 1, ..., t and i1 = k + 1, ..., m, i2 = k, i3 = (i1− i2) + 1, ..., (i1− i2) + t. So the variable xi1 yi2 zi3

corresponds a column in first ( 1
6 m3 + m2 + 11

6 m + 1) columns if i1 ≥ i2 + i3 and corresponds

a column in remaining
(

1
2 (m

2 + m)t + (m + 1)t
)

columns if i1 < i2 + i3.

2. As 1, x, xy, xz are the monomials of f , the set of all monomials of f m for m ≥ 0 is {xi1 yi2 zi3 ; i1 =

0, ..., m, i2 = 0, ..., i1, i3 = 0, ..., i1 − i2}. Therefore, the coefficient of the variable xi1 yi2 zi3 in f m is
non-zero if and only if i3 ≤ i1 − i2, i.e., i1 ≥ i2 + i3.

Remove columns in Ms corresponding to the coefficients of the variable xaybzc for all 0 ≤ a ≤
m− 1 and note that every such column is

(
m−(a−b)
(m−a)!b!

)
· 1

Xm−aYm−a multiple of a non-removed column,

corresponding to the coefficients of xmym−(a−b)zc and is proved in the following theorem.

Theorem 4. Each column in Ms corresponding to the coefficients of the variable xaybzc, a leading monomial
of the polynomial g or h-shifts, for all 0 ≤ a ≤ m− 1 is

(
m−(a−b)
(m−a)!b!

)
· 1

Xm−aYm−a multiple of a non-removed

column, represents the coefficients of the variable xmym−(a−b)zc.

Proof. First assume that |k0| ≤ |k1|, then f (x, y, z) = (N + 1)x + xy + 2nxz− 1.
For n = 0, ..., m, k1 = m− n, k2 = 0, ..., k1 , the gs-shifts xk1 zk2 f nek1 corresponds first ( 1

6 m3 + m2 +
11
6 m + 1) rows in Ms and for n = 0, ..., m, k1 = m− n, k2 = k1 + 1, ..., k1 + t, the hs-shifts xk1 zk2 f nek1

corresponds remaining rows in Ms. We prove this theorem in two cases.
Case(i): Any column in first ( 1

6 m3 + m2 + 11
6 m + 1) columns of Ms. i.e., a column corresponding

coefficients of a variable xaybzc with a ≥ b + c, from the above analysis in (1).
Given that 0 ≤ a ≤ m− 1. From the above analysis in (1) and (2), the coefficient of xaybzc is

non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2 and a− k1 ≥ b + (c− k2).
As k1 ≥ k2, k2 ≥ 0 and a− k1 ≥ b + (c− k2), max{0, k1 − (a− (b + c))} ≤ k2 ≤ min{k1, c} and also
as a− k1 < b + (c− k2) for k1 > a− b, k1 is such that 0 ≤ k1 ≤ a− b.

Therefore, the coefficient of xaybzc is non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1,
b ≤ m− k1, c ≥ k2 and k1 = 0, ..., a− b, k2 = max{0, k1 − (a− (b + c))}, ..., min{k1, c}.

Similarly we can prove that, the coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and
only if a ≥ k1, b ≤ m− k1, c ≥ k2 and k1 = 0, ..., c, k2 = k1 + 1, ..., min{c, k1 + t} using the inequalities
k1 + 1 ≤ k2 ≤ k1 + t, a ≥ b + c and analysis in (1) and (2), and say min{c, k1 + t} = lt

The formula for finding a coefficient of a variable xl1 yl2 zl3 = (1)n−l1 xl1−(l2+l3)(xz)l3(xy)l2 for
l1 ≤ n− 1 in f n is

n!
(n− l1)!(l1 − (l2 + l3))!l2!l3!)

(−1)n−l1(N + 1)l1−(l2+l3)(2n)l3

and coefficient of xaybzc in xk1 yk2 f nek1 is nothing but a coefficient of xa−k1 ybzc−k2 in f n.
Note that a column corresponding to a variable xmym−azc is in the non-removing columns in

Ms and coefficient of xmym−azc is zero for k1 > a− b in gs-shifts , k1 > c in hs-shifts. The columns
corresponding to a variable xaybzc and a variable xmym−azc only with non-zero terms is depicted
in Table 1.

Therefore, from Table 1 the result holds in this case.
Case(ii): Any column in remaining

(
1
2 (m

2 + m)t + (m + 1)t
)

columns of Ms, i.e., a column

corresponding coefficients of a variable xaybzc with a < b + c, from the above analysis in (1).
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The coefficient of xaybzc is non-zero in gs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2,
a − k1 ≥ b + (c − k2) and note for a < b + c, a − k1 < b + (c − k2) as k1 ≥ k2 in gs-shifts. So the
coefficient of xaybzc is zero in all rows corresponding to gs-shifts.

The coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and only if a ≥ k1, b ≤ m− k1, c ≥ k2

and a− k1 ≥ b + (c− k2). For k1 > a− b, a− k1 < b + (c− k2) and from the inequalities k1 + 1 ≤ k2 ≤
k1 + t, a− k1 ≥ b + (c− k2), we have the coefficient of xaybzc is non-zero in hs-shifts xk1 zk2 f nek1 if and
only if a ≥ k1, b ≤ m− k1, c ≥ k2 and k1 = 0, ..., a− b, k2 = max{k1 + 1, k1 + (b+ c)− a}, ..., min{c, k1 +

t}. Take lt = min{c, k1 + t}.
Note that coefficient of xmym−azc is zero in all gs-shifts as a > c and for k1 > a− b in hs-shifts.

The columns corresponding to a variable xaybzc and a variable xmym−azc only with non-zero terms is
depicted in Table 2. Therefore, from Table 2 the result holds in this case.

Now apply the above analysis to the polynomial f (x, y, z) = 2n′x(N + 1) + xy + 2n′xz− 2n′ for
|k1| ≤ |k0|, then this result is obtained.

From the above theorem, all columns corresponding to a variable xaybzc for all 0 ≤ a ≤ m− 1 are
depending on a non-removed column, corresponding to a variable xmym−(a−b)zc in Ms. Let Msl be
a matrix formed by removing all above columns from the matrix Ms and Sl be a lattice spanned by
rows of Msl . Then the short vector in Sl lead to short reconstruction vector in SL, i.e., if u = ∑

b∈B
cbb is

a short vector in Sl then this lead to a short vector ū = ∑
b∈B̄

cbb (same coefficients cb) in SL where B and

B̄ are the basis for Sl and SL respectively.
As we removed all depending columns in Ms to form a matrix Msl , apply the lattice based

techniques to Sl instead of SL to get an attack bound and this lattice reduction techniques gives
a required short vectors in SL for a given bound. The matrix Msl is lower triangular with rows same as
in Ms and each column corresponding to coefficients of one of the variables ( leading monomials of gs

and hs-shifts)

gs − shift



xm, xmz, ..., xmzm,
xmy, ..., xmyzm−1,
...
xmym−1, xmym−1z,
xmym,

hs − shift



xmzm+1, ..., xmzm+t,
xmyzm, ..., xmyz(m−1)+t,
...
xmym−1z2, ..., xmym−1z1+t,
xmymz, .., xmymzt.
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Table 1. A column in first ( 1
6 m3 + m2 + 11

6 m + 1) columns of Ms and a column corresponding to coefficients of a variable xmym−azc only with non-zero terms.

Rows Corresponding to g and h Shifts Column Corresponding to xaybzc Column Corresponding to xmym−azc

xa−bzc f m−(a−b)ea−b (m−(a−b))!
(m−a)!b! (−1)m−aXaYbZcea−b XmYm−(a−b)Zcea−b

xa−b−1zc−1 f m−(a−b−1)ea−b−1 (m−(a−b)+1)!
(m−a)!b! (−1)m−a2nXaYbZcea−b−1 (m−(a−b)+1)!

(m−(a−b))! 2nXmYm−(a−b)Zcea−b−1

xa−b−1zc f m−(a−b−1)ea−b−1 (m−(a−b)+1)!
(m−a)!b! (−1)m−a(N + 1)XaYbZcea−b−1 (m−(a−b)+1)!

(m−(a−b))! (N + 1)XmYm−(a−b)Zcea−b−1

...
...

...

xa−b−(c−1)z f m−((a−b)−(c−1))ea−b−(c−1) (m−(a−b)+(c−1))!
(m−a)!b!(c−1)! (−1)m−a(2n)c−1XaYbZcea−b−(c−1) (m−(a−b)+(c−1))!

(m−(a−b))!(c−1)! (2
n)c−1XmYm−(a−b)Zcea−b−(c−1)

...
...

...

xa−b−(c−1)zc f m−((a−b)−(c−1))ea−b−(c−1) (m−(a−b)+(c−1))!
(m−a)!b!(c−1)! (−1)m−a(N + 1)c−1XaYbZcea−b−(c−1) (m−(a−b)+(c−1))!

(m−(a−b))!(c−1)! (N + 1)c−1XmYm−(a−b)Zcea−b−(c−1)

xa−b−c f m−(a−b)+cea−(b+c) (m−(a−b)+c)!
(m−a)!b!c! (−1)m−a(2n)cXaYbZcea−b−c (m−(a−b)+c)!

(m−(a−b))!c! (2
n)cXmYm−(a−b)Zcea−b−c

...
...

...

xa−b−czc f m−(a−b)+cea−(b+c) (m−(a−b)+c)!
(m−a)!b!c! (−1)m−a(N + 1)cXaYbZcea−b−c (m−(a−b)+c)!

(m−(a−b))!c! (N + 1)cXmYm−(a−b)Zcea−b−c

...
...

...

f m m!
(m−a)!b!c!(a−(b+c))! (−1)m−a(N + 1)(a−(b+c))(2n)cXaYbZc m!

(m−(a−b))!c!(a−(b+c))! (N + 1)a−(b+c)(2n)cXmYm−(a−b)Zc

xc−1zc f m−(c−1)ec−1 (m−(c−1))!
(m−a)!b!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1XaYbZcec−1 (m−(c−1))!

(m−(a−b))!(a−(b+c)+1)! (N + 1)a−(b+c)+1XmYm−(a−b)Zcec−1

...
...

...

xz2 f m−1e (m−1)!
(m−a)!b!(c−2)!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1(2n)c−2XaYbZce (m−1)!

(m−(a−b))!(c−2)!(a−(b+c)+1)! (N + 1)a−(b+c)+1(2n)c−2XmYm−(a−b)Zce

...
...

...

xzlt f m−1e (m−1)!
(m−a)!b!(c−lt)!(a−(b+c)+lt−1)! (−1)m−a(N + 1)a−(b+c)+lt−1(2n)c−lt XaYbZce (m−1)!

(m−(a−b)!(c−lt)!(a−(b+c)+lt−1)! (N + 1)a−(b+c)+lt−1(2n)c−lt XmYm−(a−b)Zce

z f m m!
(m−a)!b!(c−1)!(a−(b+c)+1)! (−1)m−a(N + 1)a−(b+c)+1(2n)c−1XaYbZc m!

(m−(a−b))!(c−1)!(a−(b+c)+1)! (N + 1)a−(b+c)+1(2n)c−1XmYm−(a−b)Zc

...
...

...

zlt f m m!
(m−a)!b!(c−lt)!(a−(b+c)+lt)!

(−1)m−a(N + 1)a−(b+c)+lt (2n)c−lt XaYbZc m!
(m−(a−b))!(c−lt)!(a−(b+c)+lt)!

(−1)m−a(N + 1)a−(b+c)+lt (2n)c−lt XmYm−(a−b)Zc
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Table 2. A column in the last
(

1
2 (m

2 + m)t + (m + 1)t
)

columns of Ms and a column corresponding to coefficients of a variable xmym−azc only with non-zero terms.

Rows Corresponding to g and h Shifts Column Corresponding to xaybzc Column Corresponding to xmym−azc

xa−bzc f m−(a−b)ea−b (m−(a−b))!
(m−a)!b! (−1)m−aXaYbZcea−b XmYm−(a−b)Zcea−b

...
...

...

x2z(b+c)−a+2 f m−2e2 (m−2)!
(m−a)!b!((a−b)−2)! (−1)m−a(2n)(a−b)−2XaYbZce2 (m−2)!

(m−(a−b))!((a−b)−2)! (2
n)(a−b)−2XmYm−(a−b)Zce2

...
...

...

x2zlt f m−2e2 (m−2)!
(m−a)!b!(c−lt)!(lt−((b+c)−a+2))! (−1)m−a(N + 1)lt−((b+c)−a+2)(2n)c−lt XaYbZce2 (m−2)!

(m−(a−b))!(c−lt)!(lt−((b+c)−a+2))! (N + 1)lt−((b+c)−a+2)(2n)c−lt XmYm−(a−b)Zce2

xzb+c−a+1 f m−1e (m−1)!
(m−a)!b!((a−b)−1)! (−1)m−a(2n)(a−b)−1XaYbZce (m−1)!

(m−(a−b))!((a−b)−1)! (2
n)(a−b)−1XmYm−(a−b)Zce

...
...

...

xzlt f m−1e (m−1)!
(m−a)!b!(c−lt)!((lt−(b+c−a+1))! (−1)m−a(N + 1)(lt−(b+c−a+1)(2n)c−lt XaYbZce (m−1)!

(m−(a−b))!(c−lt)!((lt−(b+c−a+1))! (N + 1)(lt−(b+c−a+1)(2n)c−lt XmYm−(a−b)Zce

zb+c−a f m m!
(m−a)!b!(a−b)! (−1)m−a(2n)a−bXaYbZc m!

(m−(a−b))!(a−b)! (2
n)a−bXmYm−(a−b)Zc

...
...

...

zlt f m m!
(m−a)!b!(c−lt)!(lt−((b+c)−a))! (−1)m−a(N + 1)lt−((b+c)−a)(2n)c−lt XaYbZc m!

(m−(a−b))!(c−lt)!(lt−((b+c)−a))! (−1)m−a(N + 1)lt−((b+c)−a)(2n)c−lt XmYm−(a−b)Zc
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Therefore Sl is a lattice spanned by coefficient vectors of the shift polynomials gsl(xX, yY, zZ) and
hsl(xX, yY, zZ) where

gsl(x, y, z) = xl1 zl2( f (x, y, z)− constant term of f )nel1 for n = 0, ..., m, l1 = m− n, l2 = 0, ..., l1 and

hsl(x, y, z) = xl1 zl2( f (x, y, z)− constant term of f )nel1 for n = 0, ..., m, l1 = m− n, l2 = l1 + 1, ..., l1 + t.

Since Sl is full-rank lattice, det Sl = det Msl = en(e)Xn(X)Yn(Y)Zn(Z) where n(e), n(X), n(Y), n(Z)
are denotes the number of e′s, X′s, Y′s, Z′s in all the diagonal elements of Msl respectively. As xnyn is
a leading monomial of f n with coefficient 1, we have

n(e) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

l1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

l1

= (1/3)m3 + m2 + (1/2)(m2 + m)t + (2/3)m,

n(X) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

n + l1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

n + l1

= (1/2)m3 + (3/2)m2 + (m2 + m)t + m,

n(Y) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

n +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

n

= (1/6)m3 + (1/2)m2 + (1/2)(m2 + m)t + (1/3)m,

n(Z) =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

l2 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

l2

= (1/6)m3 + (1/2)(m + 1)t2 + (1/2)m2 + (1/2)(m2 + 2m + 1)t + (1/3)m

and dim(Sl) = ω =
m

∑
n=0

∑
l1=m−n

l1

∑
l2=0

1 +
m

∑
n=0

∑
l1=m−n

l1+t

∑
l2=l1+1

1

= (1/2)m2 + (m + 1)t + (3/2)m + 1.

Take t = τm, then for sufficiently large m, the exponents n(e), n(X), n(Y), n(Z) and the dimension
ω reduce to

ω =

(
1
2
+ τ

)
m2 + o(m2),

n(e) =
(

1
3
+

1
2

τ

)
m3 + o(m3),

n(X) =

(
1
2
+ τ

)
m3 + o(m3),

n(Y) =
(

1
6
+

1
2

τ

)
m3 + (m3),

n(Z) =
(

1
6
+

1
2

τ +
1
2

τ2
)

m3 + o(m3).

Applying the LLL algorithm to the basis vectors of the lattice Sl , i.e., coefficient vectors of the shift
polynomials, we get a LLL-reduced basis say {v1, v2, ..., vω} and from the Theorem 1 we have

||v1|| ≤ ||v2|| ≤ ||v3|| ≤ 2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 .
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In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the
following inequality

2
ω(ω−1)
4(ω−2) det(Sl)

1
ω−2 <

em
√

ω
.

from this, we deduce

det(Sl) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 em(ω−2) <
1(

2
ω(ω−1)
4(ω−2)

√
ω

)ω−2 emω.

As the dimension ω is not depending on the public encryption exponent e, 1(
2

ω(ω−1)
4(ω−2) √ω

)ω−2 is

a fixed constant, so we need the inequality det(Sl) < emω, i.e., en(e)Xn(X)Yn(Y)Zn(Z) < emω.
Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying

by m3 we get
(−1− 3τ)α + (3 + 6τ)δ + (1 + 3τ)γ1 + (1 + 3τ + 3τ2)γ2 < 0.

The left hand side inequality is minimized at τ = α−(2δ+γ1+γ2)
2γ2

and putting this value in the above
inequality we get

δ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2.

From the first three short vectors v1, v2 and v3 in LLL reduced basis of a basis B in Sl we consider
three polynomials g1(x, y, z), g2(x, y, z) and g3(x, y, z) over Z such that g1(x0, y0, z0) = g2(x0, y0, z0) =

g3(x0, y0, z0) = 0. These short vectors v1, v2 and v3 lead to a short vector v̄1, v̄2 and v̄3 respectively
and ḡ1(x, y, z), ḡ2(x, y, z) and ḡ3(x, y, z) its corresponding polynomials. Apply the same analysis in
paper [7] to the above polynomials to get the factors p and q of RSA modulus N.

Theorem 5. Let N = pq be an RSA modulus with q < p < 2q. Let e = Nα, X = Nδ, Y = Nγ1 , Z = Nγ2 and
k be the multiplicative inverse of ϕ(N) modulo e. Suppose the prime sum p+ q is of the form p+ q = 2nk0 + k1,
for a known positive integer n and for |k| ≤ X, max{|k0|, |k1|} ≤ Y and min{|k0|, |k1|} ≤ Z one can factor
N in polynomial time if

δ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2. (2)

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in
polynomial time [9].

Note that for any given primes p and q with q < p < 2q, we can always find a positive integer
n such that p + q = 2nk0 + k1 where 0 ≤ |k0|, |k1| ≤≈ 0.25. A typical example is 2n ≈ 3√

2
N0.25 as

p + q < 3√
2

N0.5 [12]. So take γ1 and γ2 in the range (0, 0.25).
Let δL and δsl be the bounds for δ in inequalities (1) and (2) respectively. Then note that δsl is

slightly larger than δL and is depicted in Figure 1 for α = 0.51, 0.55, 0.750 and 1.
In the Figure 1, x, y, z-axis represents γ1, γ2, bound for δ respectively and yellow, red regions

represents δsl , δL receptively. From this figure, it is noted that the yellow region is slightly above the red
region, i.e., δsl is slightly grater than δL and this improvement increases when the values of α increases.
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(a) (b)

(c) (d)

Figure 1. The region of δsl and δL for α = 0.501, 0.55, 0.75, 1; (a) α = 0.501; (b) α = 0.55; (c) α = 0.75;
(d) α = 0.1.

As the dimension of L is (1/6)m3 + (1/2)m2(t + 2) + (1/6)m(9t + 11) + (t + 1) for t =(
α−(2δ+γ1+γ2)

3γ2

)
m [7] and Sl is (1/2)m2 + (m + 1)t + (3/2)m + 1 for t =

(
α−(2δ+γ1+γ2)

2γ2

)
m, note the

dimension of Sl is (1/6)m3 + (1/3)t(m2 − 1) + (1/2)m2 + (1/3)m, for t =
(

α−(2δ+γ1+γ2)
2γ2

)
smaller

than the dimension of L.

3.3. A New Attack Bound for Deciphering Exponent d with a Composed Prime Sum

In this section, we apply the same analysis for getting bound for d which we have earlier obtained
resultant bound for k.

From the relation ed ≡ 1(mod ϕ(N)), we get

t(N + 1− (2nk0 + k1)) + 1 ≡ 0(mod e) (3)

for t = ed−1
ϕ(N)

and the prime sum p + q = 2nk0 + k1.
Now define

f ′(x, y, z) =

{
(N + 1)x + xy + (2n)xz + 1 if |k0| ≤ |k1|
2n′x(N + 1) + xy + 2n′xz + 2n′ if |k1| ≤ |k0|.

From Equation (3), note that if |k0| ≤ |k1| then (t,−k1,−k0) is a solution and if |k1| ≤ |k0| then
(t,−k0,−k1) is a solution for the modular polynomial equation f ′(x, y, z) ≡ 0(mod e).
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As the polynomials f (x, y, z), f ′(x, y, z) differ by signs only, we can implement the above argument
for f (x, y, z) to f ′(x, y, z) and obtained new bound on d for t < d = Nδ′ , max |k0|, |k1| ≤ Nγ1 ,
min |k0|, |k1| ≤ Nγ2 and for e = Nα is

δ′ <
1
2

α− 1
2

γ1 −
1
6

√
6(α− γ1)γ2 + 3γ2

2. (4)

For α = 1, the Boneh and Durfee’s bound for d = Nδ is N0.292. The new bound on d may overcome
this bound for α = 1 and for some values of γ1 and γ2 and that values are depicted in Table 3.

Table 3. For α = 1, the values of bound on δ′ in terms of γ1 and γ2.

γ1 γ2 δ′ New Bound

0.40 0.005–0 0.2929–0.3
0.35 0.0094–0 0.2929–0.325
0.25 0.052–0 0.2929–0.375
0.15 0.1152–0 0.2929–0.425
0.01 0.009–0 0.4563–0.495

4. Conclusions

In this paper, another attack bound for k, a small multiplicative inverse of ϕ(N) modulo e is
given when the prime sum p + q is of the form p + q = 2nk0 + k1 where n is a given positive integer
and k0 and k1 are two suitably small unknown integers using sublattice reduction techniques and
Coppersmith’s methods for finding small roots of modular polynomial equations. This attack bound is
slightly larger than the bound, in the approach using lattice based techniques and requires lattice of
smaller dimension than the approach given by using lattice based techniques. Also, we gave a new
attack bound for the deciphering exponent d with above composed prime sum and compare it to
Boneh and Durfee’s bound.
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