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Abstract: In this paper, we gave an attack on RSA (Rivest-Shamir-Adleman) Cryptosystem
when ¢(N) has small multiplicative inverse modulo e and the prime sum p + g is of the form
p+q = 2"kg + k1, where n is a given positive integer and ko and k; are two suitably small unknown
integers using sublattice reduction techniques and Coppersmith’s methods for finding small roots
of modular polynomial equations. When we compare this method with an approach using lattice
based techniques, this procedure slightly improves the bound and reduces the lattice dimension.
Employing the previous tools, we provide a new attack bound for the deciphering exponent when
the prime sum p + g = 2"kg + k; and performed an analysis with Boneh and Durfee’s deciphering
exponent bound for appropriately small kg and k.

Keywords: RSA; Cryptanalysis; lattices; LLL (Lenstra—Lenstra—Lovész) algorithm; Coppersmith’s
method
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1. Introduction

RSA Cryptosystem [1] is the first public key cryptosystem invented by Ronald Rivest, Adi Shamir
and Leonard Adleman in 1977. The primary parameters in RSA are the modulus N = pg, which is
the product of two large distinct primes, a public exponent e such that ged(e, ¢(N)) = 1 and a private
exponent d, the multiplicative inverse of e modulo ¢(N). In this system the encryption and decryption
are based on the fact that for any message m in Zy, m® = m mod N. The security of this system
depends on the difficulty of finding factors of a composite positive integer, which is a product of two
large primes. In 1990, M. J. Wiener [2] was the first one to describe a cryptanalytic attack on the use of
short RSA deciphering exponent d. This attack is based on continued fraction algorithm which finds the
fraction é, where t = Ed(j in a polynomial time when d is less than N*2° for N = pgand q < p < 2.
Using lattice reduction approach based on the Coppersmith techniques [3] for finding small solutions
of modular bivariate integer polynomial equations, D. Boneh and G. Durfee [4] improved the wiener
result from N2> to N%292 in 2000 and ]. Blomer and A. May [5] has given an RSA attack for d less than
N%2 in 2001, which requires lattices of dimension smaller than the approach by Boneh and Durfee.
In 2006, E. Jochemsz and A. May [6], described a strategy for finding small modular and integer roots

of multivariate polynomial using lattice-based Coppersmith techniques and by implementing this
strategy they gave a new attack on an RSA variant called common prime RSA.

In the paper [7], first we described an attack on RSA when ¢(N) has small multiplicative inverse
k of modulo ¢, the public encryption exponent by using lattice and sublattice based techniques.
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LetN =pg,qg<p<2q,p—qg=NPande=N*>p+gq. As (e, p(N)) = 1, there exist unique 7,s
such that (p —1)r = 1(mod e) and (g — 1)s = 1(mod e). For k = rs(mod e), k¢(N) = 1(mod e) and
define g(x,y) = x(y + B) — 1 where B = N + 1 — [2y/N]. Then the pair (xo,y0) = (k, —((p +q) —
[2V/N1)) is a solution for the modular polynomial equation g(x,y) = 0(mod ¢). Now applying the
lattice based techniques given by Boneh-Durfee in [4] using x, y shifts and using only x shifts to the

above modular polynomial equation, we get the attack bounds for J, |k| < N° are § < P2y POth) W

and J < #, respectively. Also, we improved the bound for é up to « — /& by implementing the
sublattice based techniques given by Boneh and Durfee in [4] under the condition § > a — B(1 + «)

and improved the bound for  up to § < 206pt2y Saz_lxﬁHﬁ ’ by implementing the sublattice based
techniques with lower dimension given by J. Blomer and A. May in [5]; this bound is slightly less
than the above bound but this method requires lattices of smaller dimension than the above method.
All these attack bounds are depending on the prime difference p —q = NF and « — /af is the
maximum upper bound for J.

Later in paper [7], we described that, for 8 ~ 0.5, the maximum bound for § may be improved if
the prime sum p + g is in the form of the composed sum p + g = 2"kg + k1 where n is a given positive
integer and ky and k; are two suitably small unknown integers. Define the polynomial congruence
f(x,y,2z) = 0(mode) for

(N+1)x+xy+ (2")xz — 1if |ko| < |kq]
27 (N 4+ 1) + xy + 2" xz — 2" if |ky| < |ko|

ﬂ%%@z{

where 2" is an inverse of 2" mod e. By using lattice based techniques to the above polynomial

congruence, the attack bound for ¢ is such that § < %oc — %71 + 11—672 - 11—6\/ 48(0 — y1) 72 + 33')/%

where N71, N72 are the upper bounds for max{ |ko|, |k1|}, min{|ko|, |k1|} respectively.

Now, in this paper, we slightly improved the above bound by using the sub-lattice based
techniques given by J. Blomer, A. May in [5] to the above polynomial congruence and this
method requires lattice of smaller dimension than the above method. The new bound on ¢ is

%tx — %71 — %\/ 6(x —y1)72 + 37% and showed that this is a little bit greater than the former bound
graphically. Note that this new attack bound is also an attack bound for the deciphering exponent d.

2. Preliminaries

In this section we state basic results on lattices, lattice basis reduction, Coppersmith’s method and
Howgrave-Graham theorem that are based on lattice reduction techniques.

Definition 1. Let by, by, ...,by, € R™ be a set of linearly independent vectors. The lattice L generated by
by, by, ..., by is the set of linear combinations of by, by, ..., by, with coefficients in Z.

A basis for L is any set of independent vectors that generates L. The dimension of L is the number of vectors
in a basis for L.

Definition 2. Let L be a lattice of dimension n and let by, by, ..., by be a basis for L. The fundamental domain
for L corresponding to this basis is the set [8]

f(bl,bz,...,bn) = {tlbl +tobr+ ... +t,by, 0 < t; < 1}.

Definition 3. Let L be a lattice of dimension n and let F be a fundamental domain for L. Then the n-dimensional
volume of F is called the determinant of L. It is denoted by det(L) [8].

Remark 1. If L is a full rank lattice, which means n = m then the determinant of L is equal to the absolute
value of the determinant of the n x n matrix whose rows are the basis vectors by, by, ..., by,.
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In 1982, A. K. Lenstra, H. W. Lenstra, Jr. and L. Lovasz [9] invented the LLL lattice based reduction
algorithm to reduce a basis and to solve the shortest vector problem. The general result on the size of
individual LLL-reduced basis vectors is given in the following Theorem.

Theorem 1. Let L be a lattice and by, by, ..., by, be an LLL-reduction basis of L. Then

_n(n—1)_ 1
[ by |<]| b2 [|< .. || by [|< 25010 det(L)n1-i
forall 1 <i <mn[10].

An important application of lattice reduction found by Coppersmith in 1996 [3] is finding
small roots of low-degree polynomial equations. This includes modular univariate polynomial
equations and bivariate integer equations. In 1997 Howgrave-Graham [11] reformulated Coppersmith’s
techniques and proposed a result which shows that if the coefficients of h(x,y) are sufficiently
small, then the equality h(xp,10) = 0 holds not only modulo N, but also over integers.
The generalization of Howgrave-Graham result in terms of the Euclidean norm of a polynomial
h(x1, %2, .., %0) = Zail___inxlf...x;" is defined by the Euclidean norm of its coefficient vector i.e.,

[|h(x1, X2, X0) || = ,/Za?lmin given as follows:

Theorem 2. (Howgrave-Graham): Let h(xy,x2,...,Xn) € Z[x1,X2, ..., Xn| be an integer polynomial that
consists of at most w monomials. Suppose that
1. h <x§0),x§0),..., x510>) = 0 mod ™ for some m where |x§0)| < X3, |x§0)| <Xp... |x£lo)| < Xy, and

2. h(x1 Xy, %2 X2, v X0 X)) || < \e/':%

Then h(x1,x, ..., xn) = 0 holds over the integers.

Definition 4. The resultant of two polynomials f(x1,Xa,...,xn) and g(x1,%2, ..., x,) with respect to the
variable x; for some 1 < i < n, is defined as the determinant of Sylvester matrix of f(x1,x2,...,Xn) and
g(x1,x2,...,x,) when considered as polynomials in the single indeterminate x;, for some 1 < i < n.

Remark 2. The resultant of two polynomials is non-zero if and only if the polynomials are
algebraically independent.

Remark 3. If (x§°>,x§°),...,x,§°)) is a common solution of algebraically independent polynomials
fi, f2,- -, fm for m > n, then these polynomials yield g1, 8, ...,gn—1 resultants in n — 1 variables and

continuing so on the resultants yield a polynomial t(x;) in one variable with x; = xi(o) for some i is a solution of
t(x;). Note the polynomials considered to compute resultants are always assumed to be algebraically independent.

3. An Attack Bound Using Sublattice Reduction Techniques

In this section, an attack bound for a small multiplicative inverse k of ¢(N) modulo e when the
prime sum p + q is of the form p + q = 2"kg + k1, where 1 is a given positive integer and k¢ and k; are
two suitably small unknown integers using sublattice reduction techniques is described.

In a previous paper [7], we proposed an attack on RSA when ¢(N) has small multiplicative
inverse modulo e and the prime sum p + g is of the form p + g = 2"kg + k1, where n is a given positive
integer and k¢ and k; are two suitably small unknown integers using lattice reduction techniques.

(N+1)x+xy+ (2")xz — 1if |ko| < |kq|

27" x(N +1) + xy + 2" xz — 2" if |kq| < |kol.
If |ko| < |k1|, then (k, —kq, —kg) is a solution and if |k1| < |ko| then (k, —ko, —k1) is a solution for

the modular polynomial equation f(x,y,z) = 0(mod e).

For 2" is an inverse of 2" mod e, define f(x,y,z)= {
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Now define the set My = | {x/1y2z53%7|x1y22% is a monomial of f" and xllyl# is a monomial
0<j<t
of f™=k}, where ! is a leading monomial of f and define the shift polynomials as
xil inZiS k K L
Skivinis (09,2) = T (F (2 for k= 0,y m, 37y225 € Mi\ My

and ' = ufl f mod e for the coefficient a; of . For 0 < k < m, divide the above shift polynomials
according to f = 0 and t > 1. Then for t = 0, the shift polynomials g(x,y,z) are

Z8(f(x,y,z))ke" kK, foriy =iy =k, i3 =0
X1k (f(x,y,z)) ke K, fork <m —1,iy =k+1,..,m, iy =k, i3 =0,..., (i — ip).

g(xy,z) = {

and for t > 1, the shift polynomials h(x, y,z) are

2B (f(x,y,2))ke™ K, foriy =iy =k, i3 =1,...,t

xi1—kzis (f(x,y,z))kem’k, fork<m-—1,i1 =k+1,..,m, ip =k, is=(iy—i2) +1,.., (I —i2) + .

h(x,y,2) = {

Let L be the lattice spanned by the coefficient vectors ¢(xX,yY,zZ) and h(xX, yY,zZ) shifts with
dimension ($m® +m? + Lm +1) + (%(mz +m)t+ (m+ 1)t> [7]. Let M be the matrix of L with each
row is the coefficients of the shift polynomial

e xe™ xze™ x2e™ x2ze™ x2z2eM ... xMeM xMzeM . xMzMem
fe =1 xfem 1, xzfem 1, ., M fer 1 ymlpfem—l | xm—lzm—l fem—1
g — shifts

fm—le, xfm—le, xzfm—le,
I

ze™, ..zte™ xzZe™ .. xzlTtem . xMmpmtlem  ymymttem

zfe 1, gt ferl xZ2 fem1, | xztt fem= | xmlgm fem=1 | ym—ly(m—1)+t gpm—1

h — shifts ¢ :
zfm e, ..., 2 fle, xz2 frile, ..., xz T e,

zf™, ..,z fm

and each column is the coefficients of each variable (in shift polynomials)

1,x,xz,x2, x22, x222, .., x™, x™Mz, ..., x"z™,

xy, ¥y, x*yz, 3y, ¥3yz, Byz?, .., XMy, XMyz, ., x My L,
1 11
(ﬁrst(gm?’ +m? + <mt 1)columns)
xm—lym—ll xmym—l, xmym—lzl

., m
XUy,

2,2, x22, . xZ VL x

m+1’ . xmzm+t’
xyz, .., xyzt, ¥2yz?, .., X2y L g, L ayz (D)
- 1
(remaining (E (m? 4+ m)t + (m + 1)t ) columns)
xmflymflzl . xmflymflzt, xmymflzzl - xmym7121+t,

x’"y’"z, " xmymzt‘
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As xy is the leading monomial in f(x, y,z) with coefficient 1, the diagonal elements in the matrix
M are

e, Xe™, XZe™, X2e™, X2 ZeM X272eM ... XMeM XM ZeM .. XMZMem
XYe" =1 X2yem—1 X2y zem—1  Xmyem—1 xmygzem—1 _ xmyzm—1l,m—1
g — shifts

melymfle memfle memflze
Xmym
Ze™, ..., Ztem XZ2%e™, .. XZ1Ttem . Xmzmilem xmgmttom
XYZe" 1. XYZtem 1 X2Y72em-1, | X2yZlttem=1  xmygzmem—1 _ xmyz(m=1)+tom-1
h — shifts :
Xm—lym—lze, . Xm—lym—lzte, mem—lzze’ - anym—lzl+te’
xXmymz, .., Xmymzt,

Note that the matrix M is lower triangular matrix. Therefore, the determinant is
det(L) = ") x"X)yn(Y) zn(Z)

where n(e), n(X), n(Y) and n(Z) are the number of e’s, X’s, Y’s and Z’s in all diagonal elements
respectively, and

n(e) = (((1/8)m* + (3/4)m® + (11/8)m? + (3/4)m) + ((1/6)(2m> + 3m* + m)t + (1/2)(m? + m)t))
n(X) = (((1/8)m* —|—(3/4)m3 + (11/8)m* + (3/4)m) + ((1/6 )(2m3+3m2+m)t+(1/2)(m2+m)t))
n(Y) = (((1/24)m* + (1/4)m> + (11/24)m* + (1/4)m) + ((1/6)(m® — m)t + (1/2)(m> + m)t))
n(Z) = (((1/24)m* + (1/4)m>® + (11/24)m> + (1/4)m)+

(1/4)(m? + m)E + (1/2) (m + 1) + (1/12) (2m® + 9m® + 7m)t + (1/2) (m + 1)t))

Let N, N”1 and N2 be the upper bounds for X, max{ko, k1 } and min{ko, k1 } respectively,
then the bound for § in which the generalized Howgrave-Graham result holds given in the
following theorem.

Theorem 3. [7] Let N = pq be an RSA modulus withq < p < 2q. Lete = N*,X = N°,Y = N",Z = N2
and k be the multiplicative inverse of ¢(N) modulo e. Suppose the prime sum p + q is of the form p + q =
2"kg + k1, for a known positive integer n and for |k| < X, max{|ko|, |k1|} <Y and min{|ko|, |k1|} < Z one
can factor N in polynomial time if

1 1 1 1 ’
o< Evc—571+E72—E\/48(04—71)72+3372. )

To improve this bound in a lower dimension than the above dimension, first we construct
a sublattice Sy, of L and after that we apply the sublattice based techniques to the lattice S;, given by
J. Blomer, A. May in [5], and are described in the following sections.

3.1. Construction of a Sublattice Sy of L

The construction of a sublattice S; of L in order to improve the bound for ¢ is given in
the following.

e  First remove following rows in M corresponding to g-shifts
em, xe™, xze™, ..., xM oM . ym—1lzm—lem
fe =1, xfem 1 xzfem=1, . xM2 fem 1, xMm2zm=2 fom =1
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fm—262’ xfm—ZeZI xzfm—ZeZ,

fmfle.

Therefore the remaining rows in M corresponding to g-shifts are
xMe xMze . xMzMem,
xmflfemfll . xmflszlfemfll

xfmle, xzfm e,
/"

and its corresponding g-shifts can be written as

gs(v,y,2z) = xllzl2(f(x,y,z))kem_k fork=0,..,mli=m—kl,=0,..1.

e Now remove some rows in M corresponding to h-shifts are
t -1 —1,(m—1)+t
zeM .., zte™, .. xM—1gmem  ym—ly(m=1)+tom
zfem 1, 2t fem 1, L a2 fem=l | ym=25(m=2)+t fom—1

me—262, - thm—26,2’ szfm—ZeZI - le+tfm—2€2,

zfmle, ..zt fr-le.

Therefore the remaining rows in M corresponding to h-shifts are
xMzMHlem, |, xmzmttem

xm—lszem—1’ . xm—lz(m—1)+tfem—1,

xz2fmle, ..., xzt Tl fm—le,

zf™, ...,z f, and its corresponding h-shifts can be written as

hs(x,y,z) = ¥zl (f(x,y,z))kem*k fork=0,...mli=m—kly=1+1,..,1; +t

Now, let Sy be the sub-lattice of L spanned by the coefficients of the vectors gs(xX,yY,zZ) and
hs(xX,yY,zZ) shifts and M be the matrix of the lattice S;.

Note that the matrix M; is not square. So apply the sublattice based techniques to the basis of Sy
or the rows of M; to get a square matrix. Using that square matrix, the attack bound can be found and
is given in the following section.

3.2. Applying Sub-Lattice Based Techniques to Get an Attack Bound

In [5], ]. Blomer, A. May proposed a method to find an attack bound for low deciphering exponent
in a smaller dimension than the approach by Boneh and Durfee’s attack in [4]. Apply their method
based on sublattice reduction techniques to our lattice Sy, to get an attack bound and is described in
the following.

In order to apply the Howgrave-Graham’s theorem [11] by using Theorem 1, we need three short
vectors in Sy as our polynomial consists of three variables. However, note that M; is not a square
matrix. So, first construct a square matrix Mg; by removing some columns in M, which are small linear
combination of non-removing columns in M;. Then the short vector in M;; lead to short reconstruction
vector in S;.

Construction of a square sub-matrix M,; of M;.
Columns in M and M; are same and each column in M is nothing but the coefficients of a variable,
which is a leading monomial of the polynomial g or h-shifts. The first (%m3 +m? + %m +1) and
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remaining (%(m2 +m)t+ (m+ l)t) columns are corresponding to the leading monomial of the
polynomials g and h-shifts respectively. Therefore,

1.  the first (%m?’ +m? + %m + 1) columns are the coefficients of the each variable x'1y?2z/
foriy, = ip = kjiz = 0Oand iy = k+1,..,miy = ki3 = 0,.., (i1 —iz) and remaining
( L(m? +m)t + (m+ 1)t) columns are the coefficients of the each variable x'1y2z% for iy = iy =
kjiz=1,.,tand iy = k+1,..,m,iy = k,iz = (iy —ip) +1,..., (if — ip) + t. So the variable x1y2z
corresponds a column in first (%m3 +m? + %m + 1) columns if i1 > i + i3 and corresponds
a column in remaining (%(m2 +m)t+ (m+ 1)t) columns if i1 < ip + i3.

2. As1,x,xy, xz are the monomials of f, the set of all monomials of ™ for m > 0 is {xilyi22i3 Jip =
0,..,m,ip =0,..14,i3 =0,..,iy — ip}. Therefore, the coefficient of the variable xilyi22i3 in f™is
non-zero if and only if i3 < i} — iy, i.e., 11 > iy +i3.

Remove columns in M; corresponding to the coefficients of the variable x*y’z for all 0 < a <
m—(a—Db) 1
(m—u)!b!) " Xm—ayni—a

—(2-b)2¢ and is proved in the following theorem.

m — 1 and note that every such column is ( multiple of a non-removed column,

corresponding to the coefficients of x™y"

Theorem 4. Each column in M; corresponding to the coefficients of the variable x*yz, a leading monomial

of the polynomial g or h-shifts, forall 0 < a < m —11is (THL(Z;Z,)) s

column, represents the coefficients of the variable x™y™—(@=b) ¢,

multiple of a non-removed

Proof. First assume that |kg| < |ki|, then f(x,y,z) = (N+1)x + xy +2"xz — 1.

Forn=0,..,m ki =m—n,ky =0,..,ky, the gs-shifts xklszf”ekl corresponds first (%m3 +m?+
%m +1) rowsin M and forn = 0,...,m, k; = m —n,ky = ki + 1, ..., ky + ¢, the hs-shifts xklzk2f”ek1
corresponds remaining rows in M;. We prove this theorem in two cases.

Case(i): Any column in first (%m3 +m? + %m + 1) columns of M;. i.e., a column corresponding
coefficients of a variable x*y?z¢ with a > b + ¢, from the above analysis in (1).

Given that 0 < a < m — 1. From the above analysis in (1) and (2), the coefficient of x”yb z€ is
non-zero in gs-shifts xki zsz’“ek1 ifand only ifa > ky,b < m—ky,c > kyanda—k; > b+ (c —kp).
Asky > kp, ko >0anda—ky > b+ (c —kp), max{0,k; — (a — (b+¢))} < ko < min{ky,c} and also
asa—k; <b+ (c—kp)forky >a—b,kyissuchthat0 <k <a—b.

Therefore, the coefficient of x”yhzc is non-zero in gs-shifts xkizk2 f"ekl if and only if a > ky,
b<m—ky,c>kyandk; =0,..,a —b,ky = max{0,k; — (a — (b+¢))},..., min{ky,c}.

Similarly we can prove that, the coefficient of x"yz¢ is non-zero in hs-shifts x*1z¥2 f¢f1 if and
onlyifa >ky,b <m—ky,c>kyandk; =0,...,c, ko = ky +1,..., min{c, k; + t} using the inequalities
ki +1<ky <kj+t,a>0b+cand analysisin (1) and (2), and say min{c, k; + ¢} = I

The formula for finding a coefficient of a variable x1y2z53 = (1)"~hxh—(2+h) (xz)5 (xy)2 for
I <n—1in f*is

(1’1 — ll)!(ll - (12 + 13))!12!13!)

(_1)1’1711 (N 4 1)117(lz+l3) (271)13

and coefficient of x*y?z¢ in xF1y*2 fef1 is nothing but a coefficient of x*~*1yz¢=k2 in 7.

Note that a column corresponding to a variable x™y"~%z¢ is in the non-removing columns in
M; and coefficient of x™y"%z¢ is zero for ky > a — b in gs-shifts , k; > ¢ in hs-shifts. The columns
corresponding to a variable x"y’z¢ and a variable x"'y"~?z¢ only with non-zero terms is depicted
in Table 1.

Therefore, from Table 1 the result holds in this case.

Case(ii): Any column in remaining (%(m2 +m)t+ (m+ 1)t) columns of M;, ie., a column

corresponding coefficients of a variable x"y’z¢ with a < b + ¢, from the above analysis in (1).
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The coefficient of x”yb z¢ is non-zero in gs-shifts xkizk2 f ¢k ifand onlyifa > ki, b <m—ky,c >k,
a—k > b+ (c—ky) andnote fora < b+c,a—k; < b+ (c—kp) as k; > kp in gs-shifts. So the
coefficient of x*y?z¢ is zero in all rows corresponding to gs-shifts.

The coefficient of x“ybzc is non-zero in hs-shifts xk1zk2 f”ekl ifandonlyifa > ki, b <m—ky,c >k
anda—ky > b+ (c—ky). Fork; >a—b,a—k; <b+ (c— k) and from the inequalities k1 + 1 < ky <
ki+t,a—k; > b+ (c —ky), we have the coefficient of x"yz¢ is non-zero in hs-shifts x*1z%2 f"ef1 if and
onlyifa > ki, b <m—ky,c>kyandky =0,...,a—b, kp = max{ky +1,k; + (b+c) —a}, .., min{c, k; +
t}. Take I} = min{c, ki + t}.

Note that coefficient of x™y"~%z¢ is zero in all gs-shifts as a > ¢ and for ky > a — b in hs-shifts.
The columns corresponding to a variable x?y’z¢ and a variable x4 ~%z¢ only with non-zero terms is
depicted in Table 2. Therefore, from Table 2 the result holds in this case.

Now apply the above analysis to the polynomial f(x,,z) = 2" x(N + 1) 4 xy + 2" xz — 2" for
k1| < |ko|, then this result is obtained. [J

From the above theorem, all columns corresponding to a variable xy’z¢ for all 0 < a < m — 1 are
depending on a non-removed column, corresponding to a variable x"y"~(@=b)2¢ in M. Let M,; be
a matrix formed by removing all above columns from the matrix M; and S; be a lattice spanned by

rows of M,;. Then the short vector in S; lead to short reconstruction vector in Sy, i.e., ifu = Y ¢ybis
beB
a short vector in S; then this lead to a short vector 7 = Y ¢;,b (same coefficients ¢;) in S; where B and
beB
B are the basis for S; and Sy, respectively.

As we removed all depending columns in M; to form a matrix Mg, apply the lattice based
techniques to S; instead of Sy to get an attack bound and this lattice reduction techniques gives
a required short vectors in Sy, for a given bound. The matrix My is lower triangular with rows same as
in M; and each column corresponding to coefficients of one of the variables ( leading monomials of g
and h;-shifts)

x™ xMz, ..., xMz"M,
My, ..., x’”yzm’l,

gs — shift
xmymfl’ xmymflz’
xmym,
xmszrl’ . xmszrtl

xmyzm, - xmyz(m—l)-i-tl

hs — shift

xmymflzZ, . xmymflzlﬂ‘,
xMymz, ., xMymzt
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Table 1. A column in first (%m3 +m?+ %m + 1) columns of Ms and a column corresponding to coefficients of a variable x™y™~“?z¢ only with non-zero terms.

Rows Corresponding to g and h Shifts

Column Corresponding to x*y?z¢ Column Corresponding to x"y"™~%z¢

xa—bZCfm—(ufb)eu—b
xll—b—lzc—lfm—(a—h—l)eu—b—l

xa—b—lszm—(a—b—l)ea—b—l
xa—b—(cfl)zfm—((ufb)—(c—l))ea—bf(cfl)

xa—bf(cfl)ZCfm—((afb)—(c—l))ea—bf(cfl)

xa—bfcfmf(afb)JrcEa—(bJrc)
xa—b—cZCfm—(afb)Jrceaf(bJrc)

le

xc—lchm—(c—l)ec—l
xz2fm—1e

letfm—le

zf™

Zl,fm

m(_l)m—a(l\]_,r1)(a—(b+c))(2n)cxaybzc

%(_thaxuybzceafb
%(71)m—a2nxuybzceu—b—l %WZ”X"ZYW_@_Z’)Z%”_b_l
%(71)m—a(l\] + 1)Xayhzcea—b—1 %(N + l)X”’lﬂ”_(”_b)Zce’l_b_1

xmym—(a=b) zc.a—b

o e DLy (gn)e=1 xay b zeen—b=(e-) e )Xy zegr -1

%(_Dm—a(l\] + 1)5—1Xaybzcea—b—(c—1)

ol (a2 X b zeer b

% (N + 1)cflxmym7(1«—b)Zceufb—(cfl)
(m—(a—b)+c)!

o RS (2" )meym—(a—b)zceafbfc

(et o ez (e 1)y

1!

iy (VDI @nexmym - z¢

R o iz S gy
(m—u)!h!(cEr;)—!(la)!—(b+c)+1)! (—=1)"=9(N + 1)u—(b+c)+1 (Zn)c—zxuybzce (mf(afb))!((crz;)ll)(la—(b+C)+1)! (N+ 1)ﬂ—(b+c)+1 (zn)c—ZXmme(a—b)Zce
(mfa)!b!(c—l(,r)r'!(izljl(b+c)+lt—l)! (—1)m=9(N + 1)a—(b+c)+lt—1(Zn)c—hxuybzce <m7(afb)!(c—(lr:')!i(}z)—!(bﬂ)ﬂﬁl)! (N + 1)a—(b+c)+lt—1(Zn)c—ltxmym—(a—b)zce

(m—a)!b!(c—lr)nll(a—(b-*—C)-%—l)! (=" (N + 1)u7(h+c)+1(2n)C71XﬂYbZC s

DT (N + 1)a-(bre)Hl (n et xmym—(a=b) z¢

m!

e gy (D" (N 1)t Pk amyerh xaybze 7

e (D" N + 1)t Gk gmyeth xmym={a=b) z¢
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Table 2. A column in the last (% (m? +m)t + (m + 1)t) columns of M, and a column corresponding to coefficients of a variable x™y" =%z only with non-zero terms.

Rows Corresponding to g and h Shifts Column Corresponding to x*y?z¢ Column Corresponding to x™y"~%z¢
xa—bZCfm—(a—b)ea—b (’?r;(—ﬂag!bl)!)! (71)m—axaybzcea—b xmym—(a=b) zcpa—b
— — =2)! — —b)— =2)! —b)— —(a—
$25(b+¢) a+2fm 2,2 (m—n)!(l:'!l((n)—b)—Z)! (=1)™ u(zn)(u b)—=2xaybzcy2 (m—(a—(br;)!((zz—b)—z)! (2")(" b)=2 ymym—(a—b) 7,2

xZZI[fm—ZeZ (m=2)!

(e oo et (=1)"=1(N + 1)1,—((b+c)—a+2) (211)C—I[Xaybzce2 (m—2)! oL (N + 1)1,—((b+c)—a+2) (zn)c—lfxmym—(a—b)zcez

(m—(a—b))!(c—11)!(Ii—((b+c)—a+2

xzh+cfa+1fm—le (m—a)!(l:’lq(_(z})—!b)—l)! (=1)m=a (zn)(u—b)—lxuybzce (mfll!, — (zn)(a—b)—lmem—(a—b)zce

xzh fri=1e (m—u)!b!(c—lf()”!l(zl]l(b+c—a+1))! (—1)" (N + 1)(1;*(b+c—a+1) (2m)e=lixaybzee (mi(aib))!(07(;:7)!*(1(;:7(174&7%1))! (N + 1)(Zf*(b+c—a+1) (zn)cfl,memf(afb)Zce

Zb+c—afm (m—n)?;i(n—b)! (_1)nr—a(2n)a—bxaybzc (m—(a—rl:l)!)!(afh)! (Zn)u—bxmym—(afb)zc

Zh B = (GTe) =),

(_Dm—u(N + 1)11*((b+c)—a) (2;1)6—11 xaybzce (m—(a—b))!(c—ltr)li(lf—((b-#c)—a))! (—1)"=(N + 1)117((b+c)—11) (zn)c—ll xmym—(a=b) zc
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Therefore S is a lattice spanned by coefficient vectors of the shift polynomials g (xX,yY,zZ) and
hg(xX,yY,zZ) where

Q(x,y,z) = xlz2 (f(x,y,z) — constant term off)”el1 forn=0,..mli=m-—n,l,=0,..1; and

hg(x,y,z) = xhzh (f(x,y,z) — constant term off)”el1 forn=0,...m=m-—nlp=11+1,..1] +t

Since S is full-rank lattice, det §; = det My = ¢"(¢) X"(X)yn(Y) z1(Z) where n(e), n(X),n(Y), n(Z)
are denotes the number of ¢’s, X's, Y's, Z's in all the diagonal elements of M, respectively. As x"y" is
a leading monomial of f" with coefficient 1, we have

I+t

-y ¥ le+22 )

n= Ol] m— 1’112 n= 011 m— 7’112 l]+l
= (1/3)m® —|—m2 + (1/2)(m? + m)t + (2/3)m
I+t

X):i Yy in+ll+i Yo Y n+h

n=0 ll =m—-n 12:0 n=0 11:M7Tl lzill+l

= (1/2)m> + (3/2)m2 + (m? +m)t +m,
m l]-’rt

n=x Z Zn+2 Y, Yom
n=0L=m—nl= n=01l=m—nl=+1

=(1/ )m +(1/2)m + (1/2)(m* +m)t + (1/3)m
m ll+t

"2)=Y L le+2 Y X b

n=0L=m—nlbh= n=0hL=m—nly=l+1

= (1/6)m® +(1/2)(m+1)t2 +(1/2)m* + (1/2) (m? 4+ 2m + 1)t + (1/3)m
I+t

and dim(S,):wzi Z Z —O—i Y Y 1
—m— n=0l=m—nly=l+1
4 (m+ 1)+ (3/2)m + 1.

Take t = Tm, then for sufficiently large m, the exponents n(e), n(X),n(Y), n(Z) and the dimension
w reduce to

w = <; +T> m? 4 o(m?),
n(e) = (; + ;r> 3+ o(m?),
n(X) = (; + r) m® +o(m®),
n(Y) = (2 + ;) 4 (m),
n(Z) = (é ot ;#) w4 o(m?).

Applying the LLL algorithm to the basis vectors of the lattice Sy, i.e., coefficient vectors of the shift
polynomials, we get a LLL-reduced basis say {v1, vy, ..., v, } and from the Theorem 1 we have

w(w-1) 1
[[o1]] < f[o2]| < [[os]| <25« det(S;) @2



Cryptography 2018, 2, 36 12 0f 15

In order to apply the generalization of Howgrave-Graham result in Theorem 2, we need the
following inequality

256 det(s))72 <
w— w=2 < ——,
€ ( l) \/a
from this, we deduce
1 1
det(S;) < emw=2) < eme.

w(w=1) w—2 w(w=1) w—2
(2 4(w-2) /(U> (2 4(w-2) /(U>

As the dimension w is not depending on the public encryption exponent e, 1

w(w=1) w=2 is
<2 4(w=2) \/Z))
a fixed constant, so we need the inequality det(S;) < "¢, i.e., e(e) xn(X)yn(Y) zn(Z)  pmw
Substitute all values and taking logarithms, neglecting the lower order terms and after simplifying

by m® we get

(=1 =37)a+ (34+67)6 + (1+37)y1 + (1+37+37%)7, < 0.

The left hand side inequality is minimized at T =
inequality we get

w and putting this value in the above

T2

6 < %rx - %71 - %\/6(06 —71)72 +373.

From the first three short vectors v1, v, and v3 in LLL reduced basis of a basis B in S; we consider
three polynomials g1(x,y,z), $2(x,y,z) and g3(x, y, z) over Z such that g1 (xo, vo,20) = g2(X0,Y0,20) =
23(x0,0,20) = 0. These short vectors v1,v; and v3 lead to a short vector 7,7, and 3 respectively
and §1(x,y,z), $2(x,y,2) and §3(x,y, z) its corresponding polynomials. Apply the same analysis in
paper [7] to the above polynomials to get the factors p and q of RSA modulus N.

Theorem 5. Let N = pq be an RSA modulus withq < p < 2q. Lete = N*, X = N°,Y = N",Z = N2 and
k be the multiplicative inverse of ¢ (N) modulo e. Suppose the prime sum p + q is of the form p + q = 2"ko + k1,
for a known positive integer n and for |k| < X, max{|ko|, |k1|} <Y and min{|ko|, |k1|} < Z one can factor
N in polynomial time if

11 1
0 < S0—7571~ 6\/6(a —71)72+373. @

Proof. Follows from the above argument and the LLL lattice basis reduction algorithm operates in
polynomial time [9]. O

Note that for any given primes p and g with ¢ < p < 24, we can always find a positive integer
n such that p + g = 2"ko + k; where 0 < |ko|, [k1| <~ 0.25. A typical example is 2" ~ %NO'% as
p+q< %NOE [12]. So take 1 and 7 in the range (0, 0.25).

Let J;, and 6, be the bounds for J in inequalities (1) and (2) respectively. Then note that g is
slightly larger than J; and is depicted in Figure 1 for « = 0.51,0.55,0.750 and 1.

In the Figure 1, x, y, z-axis represents 1, y2, bound for ¢ respectively and yellow, red regions
represents Jg;, 01, receptively. From this figure, it is noted that the yellow region is slightly above the red
region, i.e., dq is slightly grater than J; and this improvement increases when the values of « increases.
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0.25
013
Z |
0.00
0.00 0.25
0.12 012
X y
025 000 | y
025 0.00
(a (b)

(c) (d)

Figure 1. The region of d,; and J; for « = 0.501,0.55,0.75,1; (a) « = 0.501; (b) @ = 0.55; (c) « = 0.75;
(d) « = 0.1.

As the dimension of L is (1/6)m3 + (1/2)m?(t + 2) + (1/6)m(9t + 11) + (t + 1) for t =

(=2pn2) ) (7] and Sy is (1/2)m? + (m + 1)t + (3/2)m + 1 for t = (2205120 ) , note the

dimension of S; is (1/6)m® + (1/3)t(m? — 1) + (1/2)m? + (1/3)m, for t = (H%;—M) smaller
than the dimension of L.

3.3. A New Attack Bound for Deciphering Exponent d with a Composed Prime Sum

In this section, we apply the same analysis for getting bound for d which we have earlier obtained
resultant bound for k.
From the relation ed = 1(mod ¢(N)), we get

t(N+1—(2"ko + k1)) +1 = 0(mod e) (3)
fort = ;d(gjl) and the prime sum p + g = 2"kg + ky.
Now define

(N+1)x+xy+ (2")xz + 1if |ko| < |kq]

o < {5
2"x(N +1) +xy + 2" xz 42" if |kq| < |kol.

From Equation (3), note that if |kg| < |ki| then (¢, —kq, —ko) is a solution and if |k1| < |ko| then
(t, —ko, —kq) is a solution for the modular polynomial equation f'(x,y,z) = 0(mod e).
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As the polynomials f(x,y,z), f'(x,y, z) differ by signs only, we can implement the above argument
for f(x,v,z) to f/(x,v,z) and obtained new bound on d for t < d = NY, max|ko|, |ki| < N™M,
min |ko|, |k1| < N72 and for e = N* is

1 1 1
i <sa—sm- g\/6(0c —7)72 4373 @)

For & = 1, the Boneh and Durfee’s bound for d = N? is N%22, The new bound on d may overcome
this bound for « = 1 and for some values of ; and 7, and that values are depicted in Table 3.

Table 3. For a = 1, the values of bound on ¢’ in terms of 1 and 75.

7 72 &’ New Bound

0.40  0.005-0 0.2929-0.3

0.35 0.0094-0 0.2929-0.325
0.25  0.052-0 0.2929-0.375
0.15 0.1152-0 0.2929-0.425
0.01  0.009-0 0.4563-0.495

4. Conclusions

In this paper, another attack bound for k, a small multiplicative inverse of ¢(N) modulo e is
given when the prime sum p + g is of the form p + g = 2"k + k; where n is a given positive integer
and kg and k; are two suitably small unknown integers using sublattice reduction techniques and
Coppersmith’s methods for finding small roots of modular polynomial equations. This attack bound is
slightly larger than the bound, in the approach using lattice based techniques and requires lattice of
smaller dimension than the approach given by using lattice based techniques. Also, we gave a new
attack bound for the deciphering exponent d with above composed prime sum and compare it to
Boneh and Durfee’s bound.
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