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Abstract: The AKS algorithm is an important breakthrough in showing that primality testing of an
integer can be done in polynomial time. In this paper, we study the optimization of its runtime.
Namely, given a finite cardinality set of alphabets of a deterministic polynomial runtime Turing
machine and the number of strings of an arbitrary input integer whose primality is to be tested
as the system parameters, we consider the randomized AKS primality testing function as the
objective function. Under randomization of the system parameters, we have shown that there
are definite signatures of the local and global instabilities in the AKS algorithm. We observe that
instabilities occur at the extreme limits of the parameters. It is worth mentioning that Fermat’s little
theorem and Chinese remaindering help with the determination of the underlying stability domains.
On the other hand, in the realm of the randomization theory, our study offers fluctuation theory
structures of the AKS primality testing of an integer through its maximum number of irreducible
factors. Finally, our optimization theory analysis anticipates a class of real-world applications for
future research and developments, including optimal online security, system optimization and
its performance improvements, (de)randomization techniques, and beyond, e.g., polynomial time
primality testing, identity testing, machine learning, scientific computing, coding theory, and other
stimulating optimization problems in a random environment.

Keywords: primality testing; AKS algorithm; fluctuation theory; system optimization; stability
analysis; P vs. NP problems; Turing machine

1. Introduction

The Agrawal-Kayal-Saxena (AKS) algorithm plays an important role in determining the primality
of an integer [1]. In the realm of modern computer science, it finds significance in cryptography,
viz. the block ciphers, banking system, and associated online security [2,3]. Namely, from the
perspective of the formal theory of computation, an apt design of protocols is achieved via a suitable
algorithm to efficiently perform a given computational task [4,5]. The AKS primality testing finds
further importance, as well. For example, see [6] concerning its elementary description, correctness,
and asymptotic analysis towards the primality testing of an integer. From the inception of the AKS
algorithm, the prime factoring problem, presumed to be an NP-type problem, has become a P-type
problem in the realm of the randomization theory. Here, P stands for the class of algorithms running in
polynomial time and that of NP for nondeterministic polynomial runtime problems [7]. In the light of
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computational complexity [8], it is known that the above NP and P type problems are polynomial time
verifiable and solvable classes, respectively. Before the discovery of the AKS algorithm, there were
numerous questions about testing of an integer on a particular machine that executes the algorithm in
the shortest time.

Time is considered in a discrete dynamical sense, i.e., the number of steps required to achieve
the final state of an algorithm. On the other hand, there have been various attempts to determine
the equivalence between P- and NP-type complexity classes [9]. Indeed, the complexity classification
finds discrete mathematical perspectives in connection with satisfiability problems, Boolean constraint
circuits, and weighed optimization problems [10]. Furthermore, the AKS algorithm finds an important
role in computer science via the randomization hypothesis [11]. There are various consequences of
primality testing in counting problems, complexity theory, and cryptography [12-14]. In the realm of
probabilistic models, the underlying goal of testing the primality of an integer is achieved via Fermat’s
little theorem and the Chinese remainder theorem; see [15] for aspects of the mathematical background
such as the modular equivalence, encryption, decryption, cryptographic protocol, digital signature
and designing of safety measures, and related security issues towards safe multi-party computation.
The AKS algorithm is an important breakthrough in showing that primality testing can be done in
polynomial time. Hence, optimizing runtime for the implementation of this algorithm is an important
problem. As per the above consideration, it is worth mentioning that the mathematics involved appears
to be interesting, see Section 2 for an overview. The respective results are discussed qualitatively and
quantitatively in Sections 3 and 4.

The aim of this paper is to study the case of the corresponding ring of integers when it is prolonged
to the field of real numbers. The AKS algorithm is used for testing the integer primality that follows
via the fundamentals of number theory on the optimization of AKS primality testing in the light of an
absolute deterministic polynomial runtime randomized algorithm that can help with the determination
of the prime factors of an arbitrary integer. Given the algorithm, we optimize the AKS primality testing
of an arbitrary integer by determining its stability structures. In particular, in order to test the optimize
the AKS algorithm, we concentrate on the case when the corresponding ring of integers is prolonged
to the field of real numbers. Under the randomization hypothesis of Agrawal and Biswas [11], it
is worth emphasizing that the aforementioned AKS algorithm [1] brings the primality testing of an
arbitrary integer into the category of P-type problems [8]. The AKS primality testing receives distinct
roles in both (i) pure mathematics, e.g., probabilistic algorithms [11] and (ii) its applications to modern
cryptography—see [15] for an introduction to information security, commitments, and Oblivious
transfer functions. Generically, the role of the AKS algorithm in testing the primality of an integer
follows the fundamentals of number theory [16], which is particularly rooted in the domain of the
algorithmic number theory [17].

We focus on the optimization of AKS primality testing in the light of an absolute deterministic
polynomial runtime randomized algorithm that can help one to know whether a given integer is
prime or not. In other words, we concentrate on the determination of the prime factors of an arbitrary
integer. In particular, for the case of large integers, the realization of such a goal is obtained on
a specific Turing machine, whereby the cardinality of the set of its alphabets plays a vital role in
computing the corresponding primality; see [18] concerning the fundamentals of the computable
functions, (un)decidability, and unsolvable problems. In this case, we concentrate on a given integer
whose primality is to be tested on a definite machine of finite cardinality. In order to optimize the
AKS primality testing, we apply the notion of the fluctuation theory [19] by randomizing the system
parameters, viz. (i) the input integer whose primality is to be tested as a string and (ii) the cardinality
of the set of alphabets of the machine.

We find optimal domains of the AKS primality testing of an arbitrary integer with the inverse of
the number of steps required to execute the algorithm as the order of the uncertainty. As the input
integer tends to a large value, the determination of its primality becomes accurate. Our proposal
generically enables one to address the issue of the stability of the AKS primality testing algorithm.
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This is realized by considering the maximum value of the cardinality of the group of alphabets as the
objective function. Note that such a function arises as a map from the space constituted by the input
integer and the size of the group of residues from the set of all numbers that are introspective [1] to the
polynomials in a set of the field of real numbers. Namely, when both the input integer and machine
parameter are allowed to vary, the fluctuation theory analysis [19] offers an apt platform to optimize
the AKS primality testing function as a real-valued map from the space of algorithm parameters to the
field of real numbers. Following the notion of the intrinsic geometry and embedding theory [20], we
determine the critical points, stability domains, and its correlation with a chosen machine performing
the AKS algorithm. We give its global stability structures in the proximity of the critical points of the
AKS primality testing function. In this setup, we compute fluctuation vectors in order to determine an
intrinsic length of the AKS primality testing of the input integer string and machine parameters.

Following the above notion, we determine the regions where the ASK algorithm remains stable
or unstable. Considering the fact that it is among the best primality testing methods of an arbitrary
integer, we examine how the AKS algorithm behaves under variations of the input integer and the
machine parameters that are used in its primality testing. Next, we tested its stability at the asymptotic
limits. The qualitative discussion also shows that instabilities arise only in extreme regions, namely,
near the initiation or halting stages of the algorithm. This supports the claim of AKS [1] that the AKS
algorithm becomes almost exact for large integers. Indeed, there are various models that could be
interesting to investigate further in the light of primality testing and optimization theory. See Section 2
for an overview.

At this juncture, the framework of randomization theory turns outs to be promising because of
its probabilistic nature. We have considered the optimal Cunningham factorization of an arbitrary
integer in the light of randomization theory [21]. To that end, we provide a brief account of previously
known primality testing algorithms such as Fermat’s little theorem, the Miller-Rabin algorithm, the
Solovay-Strassen models, and others in the Appendix A. Following the assessment of the AKS primality
testing and the above models, a natural research direction would be to compare the stability domains
of the AKS testing with the above models. Bearing in mind that the AKS algorithm is the most efficient
primality test of an integer to date, we focus on examining its optimality properties under fluctuations
of the system parameters.

Following the above models and related fundamentals, we summarize the highlights of our
analysis as follows. Our contribution is to classify the parameter space regions of the ASK primality
testing algorithm, where it remains optimal. Namely, we focus on the optimization of the AKS
primality testing of an arbitrary integer. Therefore, we examine the behavior of the peaks concerning
the AKS primality testing on an input integer. This is realized by executing a qualitative analysis of
the fluctuation quantities in the space of parameters in their specified ranges. For this, we use the
asymptotic properties of the AKS algorithm. Interestingly, we observe that the qualitative behavior of
the fluctuations remains the same when the input ranges are increased by 10 times. Following the AKS
scaling structures, we anticipate that the asymptotic behavior of peaks holds with the incorporation of
fluctuations in the model parameters. This offers enlightening insight in the areas of stability analysis,
fluctuation theory, randomization theories, integer primality testing and identity testing.

The rest of the paper is organized as follows. In Section 2, we give a brief evolution of the AKS
algorithm and its relation to Fermat’s little theorem, AKS primality testing, and the randomization
hypothesis in the light of ring theories and their localizations. In Section 3, we examine the stability
structures of the AKS primality testing by randomizing the input integer string and cardinality of
the set of alphabets of the machine executing the algorithm. In Section 4, we provide a qualitative
discussion of the results and their implications towards the optimization of the AKS algorithm. Finally,
in Section 5, we conclude the paper with prospective directions for future research and developments.
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2. Randomized AKS Primality Testing

In this section, we offer a brief review of the AKS algorithm in light of Fermat’s little theorem
and Chinese remainder theorem in the light of randomization theory [21], also see [22] for basics of
the subject matter under the consideration. From the perspective of the P versus NP problem [7],
we illustrate how the AKS primality testing falls in the domain of P-type problems. Concerning
the geometric and algebraic perspectives, see [20] for embedding, submersion and convexity theory,
and [23] for the related commutative algebra background such as modules, fields, and rings.

First of all, in order to determine whether a given input number is prime or not, an efficient
primality testing algorithm requires guaranteeing its polynomial runtime complexity [1]. See the
Appendix A.1 for a brief evolution of primality testing algorithms. In contrast to the probabilistic
primality testing, the AKS primality testing [1] of an integer is based on a cyclotomic generalization of
the Fermat's little theorem over a finite ring. This offers both a deterministic and polynomial time
complexity of a reduced order. In particular, as highlighted in the Appendix A.2, the AKS algorithm
essentially overcomes the exponential runtime complexity of Fermat's little theorem by comparing the
coefficients of a polynomial (x + )" with modular operation in terms of another polynomial of the
form (x" 4+ a). This settles a long-standing problem in primality testing: whether it falls in the domain
of P-type or NP-type problems.

Following the above breakthrough, the deterministic characteristic of the AKS primality testing
algorithm is brought down to the table by the value of 7, which is bounded in polynomial runtime of
its order logn, as in the Algorithm 1 below. The associated details are relegated to the Appendix A.2.
At this point, it is worth mentioning that the AKS primality testing [1] satisfies all four requirements
for an efficient prime testing algorithm in comparison to the previously mentioned algorithms. As a
matter of fact, it possesses a reduced polynomial time complexity compared to the associated primality
testing algorithms as in Appendix A.1. There, whereby we have summarized the associated concepts
such as the computational complexity and its role in the analytic number theory [24] and others such
as the Miller-Rabin test [25] and Solovay-Strassen primality testing [26] of an integer in the light of the
algorithmic number theory.

This accounts for the wide usage of the AKS primality testing algorithm in the realm of applied
cryptography and related subject matters. Indeed, there have been various reductions in the time
complexity of the cyclotomic AKS primality testing of an integer.

In this paper, we offer the undermining experimental, mathematical, and computational
perspectives. Namely, we focus on the optimization of the AKS algorithm in order to determine the
regions of its input parameters that yield the optimal primality testing of an arbitrary integer. In short,
the AKS primality testing [1] of an integer can be summarized as per the below Algorithm 1.

Algorithm 1: The AKS algorithm (the AKS primality testing [1] of an integer)

An integer 1 < 1 € N is said to be a composite number if there exists a pair (a,b) such that n = a’ for

- somea € Nand b > 1.

9 Given a triple (a,b,r) with gcd(a,r) = 1, find the smallest 7 such that a” = 1(mod r) holds. Then, the
order o,(n) of a modulo r must satisfy the inequality o,(1) > log?n.

3- For an integer n with its factor a < r, n is said to be composite if 1 < ged(a,n) < n.

4- The input integer n returns a prime if we haven <.

Fora=1,2,...,], an integer n is said to be composite, if the Equation (A3) as in Appendix A.2 is not
5- satisfied over (mod X" —1, n), where l = \/(jy(_r) logn. Here, ¢(r) denotes the Euler totient function,
which counts the relatively prime numbers less than r.
6- Otherwise the input integer n is a prime.

It is worth mentioning that the AKS algorithm [1] arises via the randomization of Fermat’s little
theorem; see the Appendix A.2 for an overview. From Algorithm 1, we observe that if the input integer
n returns the algorithm in steps 1 and 3, it is a composite number. On the other hand, the input integer
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n turns out to be a prime if the algorithm returns in steps 4 and 6. In determining the primality of an
integer via the AKS algorithm, steps 2 and 5 emerge as the key ingredients. Notice that step 2 plays
an equally important role in testing the primality of an integer n as it determines a suitable r such
that steps 2 and 3 are not satisfied whenever # is a prime. The above primality testing of an integer is
examined locally by introducing the notion of a modular function in a given quotient ring with the
maximum value of a2 as [ as above in step 5. The proof of the AKS algorithm as depicted above in
Algorithm 1 involves the introspective properties of a modular function; see [1] for the concerning
details in the light of the algebraic closure, addition, multiplication, and quotient ring in a given basis
of cyclotomic polynomials over a finite field.

In general, there are various higher-dimensional extensions of such a ring that consist of finitely
many local rings of the form Z"[x], where n € N. On the other hand, the randomization depicted in
Algorithm 1 designates an extension from the integral valued inputs to their real counterparts [11].
However, the converse problem, termed de-randomization [1], is anticipated to yield the inverse
procedure as a restriction map; see [20] in connection with the embedding and submersion theories
over real and complex spaces. It is worth stressing that such a map carried out in 7 number of steps
accompanies an effective error 1/n. Thus, for a sufficiently large n, it follows that the randomization
error concerning the primality testing of an integer turns out to be negligible or less than the precision
of the machine.

In the light of the P versus NP problem [7], the primality testing of an integer that was believed
to be an NP-type problem for several decades is now reduced to a P-type problem via the AKS
algorithm [1]. Furthermore, in the realm of algorithmic number theory and computer science, Cook [7]
finds that the SAT problem is NP-complete; see also [27] for parameterized and exact computations
in the light of sub-exponential runtime Turing reductions. This leads to a P-type solvable problem,
whenever there exist various algorithms that positively answer the equivalence between the complexity
classes of P- and NP-type problems [7]. In light of the primality testing of an arbitrary integer, we
anticipate that in terms of the computational capacity of an algorithm, whatever is achievable on a
modern computer is equally achievable on a Turing machine; see [18] for an original account of the
computable numbers. In the next section, we offer an intrinsic stability analysis of the AKS algorithm
towards the primality testing of an arbitrary integer on a given Turing machine.

With the aforementioned motivations, in this paper, we study the case of the corresponding
ring of integers when it is prolonged to the field of real numbers. Herewith, the AKS algorithm is
used in testing the integer primality that follows via the fundamentals of number theory. In the light
of an absolute deterministic polynomial runtime randomized algorithm, our analysis relies on the
optimization of AKS primality testing that can help on the determination of the prime factors of an
arbitrary integer. In particular, we have obtained the algorithm that optimizes the AKS primality
testing of an arbitrary integer by determining its stability structures. From the fluctuation theory
perspective, an essential rudiment of related works on prime factoring is addressed in Appendix A.1.
Following the above insightful background, we focus on the AKS algorithm and its applications in the
realm of fluctuation theory. The concerned stability analysis is considered in Section 3.

In Section 4, upon the multivariable analysis that is performed on an arbitrary randomized set of
input parameters, we purpose in this paper to study the signatures of quantities concerning the runtime
stability. This includes the eigenvalues of the fluctuation matrix that have algorithmic significance
towards the global stability of the randomized AKS primality testing of an integer. Namely, Section 4
vividly portrays the same via plotted 3-D graphs of the mathematical findings with reported features.
In this regard, we acknowledge the implication of asymptotic analysis, time complexities and runtime
complications in such cases as interesting research. We suggest considering the former among future
research directions. Pertinently, it is worth mentioning that a study of the randomized AKS algorithm
at higher dimensions may equally be discussed; however, due to limited time constraints, we anticipate
examining such investigations and their feasibility structures in future research and developments.
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3. Fluctuation Theory Perspective

In this section, we explore the stability of the AKS primality testing algorithm for an arbitrary
input integer by a deterministic Turing machine having a finite cardinality set of its alphabets. It is
known that the AKS primality testing arises as an exponential execution of the algorithm [1]. We
consider the maximum number of irreducible factors of an input integer as the objective function.
In the setup of a randomized algorithm, we examine the corresponding local and global stability
structures by determining the signatures of the heat capacities and determinant of the fluctuation
matrix at its critical points. This enables us to classify the domains where we have the optimized AKS
primality testing of an integer.

3.1. Stability Analysis

In the above setup, we concentrate to determine an optimized AKS primality testing algorithm
with the objective function as the number of the prime factors of an arbitrary integer on a given machine.
Namely, by varying the input integer x whose primality is to be tested on a certain Turing machine of
finite cardinality i, we examine the efficiency of the AKS algorithm via the randomization hypothesis
of Agrawal and Biswas (see [11]). In light of the P versus NP problem, the AKS algorithm [1] arises
as the maximum number of possible factors of an arbitrary integer x determined by a deterministic
polynomial runtime Turing machine M having cardinality y of the set of its alphabets. Thus, the AKS
primality testing of an integer x on the Turing machine M can be viewed as a finite integral valued
map from Z? to Z as per the assignment (x,y) — f(x,y).

In the limit of randomized input parameters {x, y}, it follows [1] that the asymptotic AKS primality
testing function is simplified as

flxy) = Ax VY (1)

where A < 1 signifies the efficiency of the algorithm. In a domain of varying (x, y), the qualitative
behavior of the AKS function f(x, y) is shown in Figure 1. In order to optimize the AKS primality testing
algorithm, we consider the randomized setting [11], whereby x and y vary over the set of real numbers
R. We consider the AKS primality testing function as a real valued map f : R? — R that assigns a
given pair of real numbers (x, y) to a real number f(x, y). We perform an optimization analysis of the
randomized AKS primality testing function f(x, y) to determine its stability domains. Namely, in the
setup of fluctuation theory [19-21], we offer a stability analysis of an arbitrary polynomial factoring
towards the primality testing of an integer x by a machine M of the cardinality y of the set of its alphabets.
By differentiating f(x, y) as in Equation (1) with respect to x, we find the following flow component
of

A Vy-1
P ArJyx . (2)

x10'9
10

Y X

Figure 1. The AKS primality testing function as a function of the input integer x and cardinality y of
the set of alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).
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Similarly, under variations of the cardinality y of the set of alphabets of a Turing machine M, the
corresponding rate of the AKS primality testing function of the integer x satisfies

af  Ax VWinx 3)
dy 24y

The critical points of f(x, y) are computed as the zeros of the flow equations g—ﬁ = 0and g—ch =0.In
this case, the limiting critical points of f(x, y) arise as the pairs (1,0) and (0, o). In order to discuss the

nature of the critical points of f(x, y), we need to calculate the heat capacities {a { I ]2( ,d=5 gy{} and the local

correlation factor ¢~ ; The local stability of the AKS primality testing computation is determined by

the signature of one of the capacities {4, d}. Under variations of the input integer x, the heat capacity a
as the pure fluctuation component is given by

a=Ay(Vy-1)x V72 (4)

Similarly, under variations of the cardinality y, the pure fluctuation component d reads as

d= —(\/ylnx—l). (5)

Moreover, it is not difficult to see that the mixed correlation component ¢ simplifies as

Ax V-1
2y

Herewith, at the critical point (1,0), we see that both the pure fluctuation components {4, d} vanish
identically while the correlation factor c diverges. Namely, we have the following limiting behavior
a=0=dand ¢ - oco. On the other hand, at the critical point (0, ), we find that all the pure and
mixed correlation components become ill-defined, i.e., we have an undefined triple {g, c, d}. It is worth
mentioning that the pure correlation components 4 and a signify the heat capacity of the input integer x
whose primality is to be tested on a machine M of the cardinality y of the set of its alphabets. Physically,
{a,d} can be viewed as factors for investigating the overheating of a given computation state of the
machine M while testing the primality of an integer x, whereby we may design an apt cooling system
of a Turing machine.

In order to examine the global stability of the AKS algorithm, given the objective function f(x, y)
as in Equation (1), we define its fluctuation matrix H as a 2 X 2 symmetric matrix

(25)

where {a, d} signify the heat capacities of the system as defined in Equations (4) and (5) respectively.
The cross-component ¢ denotes the local correlation of the system, see Equation (6). Substituting the
values of {4, ¢, d} from Equations (4)—(6), we have the following Hessian matrix:

(VY Inx +1). (6)

CcC =

H= ®)

AV(NT- 1) Vi2 A 1(\/_lnx+ 1) ]
Ax Vo1 A f I

5 (\/_lnxqL 1) Zy\/f‘x(lnx\/_ )
In order to achieve a stable domain of the AKS algorithm in testing the primality of a given input

integer x, the randomized f(x, y) as the objective function of the optimization problem must yield a
positive definite Hessian determinant:
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A:=ad—- *>0. 9)

By substituting the values of the heat capacities {4, d} from Equations (4) and (5) and the correlation
factor c from Equation (6), it follows that the above determinant A simplifies as

A= —‘#(\@znz“ (3vy—1)inx+1). (10)

To determine the signature of A(x,y), we need to factorize the quadratic polynomial
S(x, y)A \/ylnzx + (3 VY - 1)lnx + 1 as a function of Inx. It follows that the corresponding quadratic
equation 6(x, y) = 0 leads to the following roots:

3yy-17+F ‘/9y+1—10\/y

N

In Equation (11), let a and f be the respective positive and negative roots in Inx as follows:

B3yT—1+ {9 +1-10y7

= 27 (12)

3Vy—1- 9 +1-10+y

B:= o .

Thus, the overall stability of the AKS algorithm depends on the range of the input integer x and

the cardinality y of the set of alphabets of the machine. In particular, when Inx lies between « and j3,

as above in Equations (12) and (13), there is a globally stable AKS algorithm with a positive Hessian
determinant A(x, y) for y > 0. In the other case, for a negative y corresponding to damped oscillations

Inx =

(11)

(13)

as the algorithm proceeds, it follows that Inx must either be larger than the root 8 as in Equation (12)
above or less than the root a as above in Equation (13), viz. we have the optimal solution whenever x
satisfies the inequality e* < x < ef for y < 0. Therefore, we can achieve an optimal AKS primality
testing algorithm for different values of input parameters (x, y). Namely, our analysis shows that the
AKS algorithm renders the optimal prime testing of an arbitrary integer x on a suitable Turing machine
M of the cardinality y of the set of its alphabets.

3.2. Limiting Stability Analysis

In this subsection, we provide limiting behaviors of the local and global stability components
as the model parameters (x,y) approach the specific critical points (1,0) and (0, 0) of f(x,y). In
doing so, we examine specific values of the local heat capacities {4, d} and correlation c. Furthermore,
we see that the global stability component A(x, y) tends to infinity when the point (x, y) approaches
the root (1,0) of the flow Equations (2) and (3). On the other hand, it follows that A(x, y) becomes
ill-defined when it is evaluated at the critical point (0, o). Thus, for any physical model, we deem
such an outcome algorithmically undesirable as the cardinality of the set of alphabets is assumed to be
a finite positive number.

In order to examine the limiting behavior, we randomize the roots (1,0) and (0, c0) to their
corresponding values (1,¢€) and (¢,N) with € - 0 and N — oo. Physically, N could represent the
possible size of the hard disk of a given machine and € the step size, which could be the least value of
the randomized integer whose primality is to be tested by the AKS algorithm [1]. For the randomized
root (1,€), from Equation (4) we find that the input integer heat capacity a simplifies as

a=Ale- ve). (14)
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From Equation (5), we see that the limiting local capacity d corresponding to the cardinality of the
set of alphabets of the machine vanishes identically, namely, as we approach the critical point (1, €), we
have d — 0. Furthermore, from Equation (6), we find that the cross-correlation c solely depends on the
efficiency A of the chosen machine M executing the algorithm. Namely, the correlation c satisfies

A
= —. 1
c > (15)
On the other hand, at the critical point (1, €), we see that the determinant A of the Hessian matrix

H takes a negative value for all positive € and A # 0. From Equation (10) it follows that we have

A2

A= I (16)
Thus, in the randomized limit, it follows that the system remains stable for a negative value of

e. Furthermore, from Equation (16), we find a definite signature of global instabilities in the limit of
€ — 0. Similarly, in the limit of large N, the stability components corresponding to the randomized
root (¢,N) of the flow Equations (2) and (3) lead to a positive value of the heat capacities {4,d}. In
particular, for a given machine M being used for the primality testing of an integer x, it turns out that

the AKS algorithm yields the following local heat capacities:

a=AVN(VN -1)e -2 17)

Alne
dmmwmg. (18)

For a positive value of the determinant A, the system remains stable as long as either of the heat
capacities {a,d} remains positive, that is, we have either N > 1or N > 1/ In2e. Furthermore, at the limit
of € — 0, we find that the heat capacity a — 0 for N # 4. However, the other heat capacity d becomes
ill-defined by entailing fluctuations of large negative amplitudes. This follows from the fact that the
logarithm of a small number approaching zero is a large negative number. On the other hand, we find
that the corresponding correlation c reads as

c= %(1 - emlne). (19)

In this case, there exists a positive correlation ¢ whenever the randomized root (¢, N) satisfies the
inequality Ine < €~ W From Equation (19), we see that the correlation ¢ largely modulates as per the
first term. This is because the second term e YNIne takes a small negative value in comparison to the
first term whenever € — 0, viz. the sample parameters N and € satisfy the constraint —e Wine < 1.
Therefore, we find that the AKS algorithm becomes highly correlated in the limit of € — 0. Qualitatively,
as a function of €, we observe that the correlation c(€), as in Equation (19), displays identical behavior
under different values of N.

The global stability is determined by the signature of the determinant of the Hessian matrix as in
Equation (10). At the critical point (e, N), the value of the pre-factor A%€? VN-2 /4N of the determinant
A depends on two competing terms A? and €2 VN-2 /4N, Namely, the factor €2 VN-2 /4N takes a small
positive value in the limit of € - 0 and N — co. Furthermore, the factor 6(¢, N) can take both the
positive and negative values depending upon the values of € and N. For example, for N = 100 and
€ = 0.1, it follows that 6(¢, N) takes an approximate value of —12. Thus, from Equation (10), we find a
positive signature of the determinant A. In such cases, the AKS algorithm remains stable while testing
the primality of an integer.



Cryptography 2019, 3, 12 10 of 23

3.3. Eigenvalues and Eigenvectors of H

For a given AKS primality testing function f(x, y) with the fluctuation matrix H as in Equation
(8), the corresponding global (in)stability can be examined via the relative signature of the eigenvalues
of H. Namely, given the heat capacities {4, d} as in Equations (4) and (5) and the system correlation
factor c as in Equation (6), we evaluate the eigenvalues and associated eigenvectors of H as a function
of {a, c, d} for the AKS primality testing function f(x, y) as in Equation (1) of an arbitrary integer x on a
machine M of the cardinality y of the set of its alphabets.

3.3.1. Evaluation of Eigenvalues

As per the aforementioned representation of the Hessian matrix H as in Equation (7), there exists
an eigenvalue A if we have a non-null vector v € R? satisfying the following eigenvalue equation:

Hv = Av. (20)

Algebraically, for a given triple {H, A, v}, the characteristic equation arises as a condition of the
vanishing determinant of the matrix (H — AI) for all nonzero v € R2. In other words, we have

‘ =0. (21)

It follows that the eigenvalue A of H satisfies the quadratic equation
AN —(a+d)A+ad— 2 =0. (22)

From Equation (22), we find the following eigenvalues:

(a+d)+ \/(a+d)2—4(ud—c2)

> (23)

AMp =

To study the linear transformation properties of the fluctuation vector v € R? for a given eigenvalue
A as above in Equation (23), we consider two invariants of H as the trace tr(H) = a + d and determinant
A = ad — c%. In this setup, it follows that the eigenvalues 1; » can be expressed as

tr(H) + /tr2(H) — 4A

2

Ap = (24)

We find a unique real eigenvalue A of H whenever the above linear class operators {tr(H), A}
satisfy the equality #2(H) = 4A. The qualitative description of the global stability component and
eigenvalues A  is relegated to the next section.

3.3.2. Evaluation of Eigenvectors

Next we compute the corresponding fluctuation vectors underlying the AKS primality testing
function f(x, y) as in Equation (1). Namely, the fluctuation vectors are defined as the eigenvectors of
the fluctuation matrix H as in Equation (20). In this case, there are two eigenvalues, whereby we have
two corresponding eigenvectors. For a given pair of eigenvalues {11, A5}, the eigenvectors {vq, v} are
evaluated by the eigenvalue equation, viz. Equation (20). For A = A, the eigenvector v; is obtained as
the following two-dimensional vector:

o = ( 1 ) (25)

At

For the fluctuation matrix H as in Equation (7), the corresponding eigenvalue equation reads as
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a ¢ X1 X1
=A . 26
(C d)(yl) 1(%) 2
In other words, we have the following pair of simultaneous linear equations:

(A —a)x1 =cy 27)

(A —d)y1 = cxq. (28)

In order to solve the above pair of linear equations as in Equations (27) and (28), we may choose
y1 = k € R. Thus, from Equation (28), it follows that we have

X = M. (29)

With these values of x1 and vy, the eigenvector v; corresponding to the eigenvalue A; is given by

k(A1—d)
U = ( ]C( ] (30)

Therefore, the corresponding norm ||v|| of the fluctuation vector v; is given by

2
loxll = \/(M) R @

In this case, the normalized eigenvector 9; = v; /v; associated to A = A1 reads as

(A=d)
! e ] (32)

T

where A; is given as above in Equation (23) with the choice of the positive signature. By following the
aforementioned methodology, the fluctuation vector v, corresponding to the eigenvalue A, of H can be
obtained in a similar manner. Namely, by defining the eigenvector

X2
vy = 33
=) @)
with the choice of y» = k € R, we obtain the first component of v; as

ke

RY) Ta=a) (34)
For A = A, with the above {xy, y»}, the eigenvector v, has the following norm:
2
kc
= k2. 35
ol ((Az_a)) + (35)

Finally, it follows that the normalized eigenvector 9, = vy /||v;|| reduces as

By = ;2 ( (Azl—ﬂ) ]/ (36)
( ) +1

(Az—a)
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where A, reads as above in Equation (23) with the choice of the negative signature. The above pair of
normalized eigenvectors {91, 92} as depicted in Equations (32) and (36) gives the direction of fluctuations
under the randomized AKS primality testing of an arbitrary integer x on a particular machine M of
the cardinality y of the set of its alphabets. The corresponding norms {||v1]], [[v2]]}, as in Equations (31)
and (34), respectively, signify the intrinsic errors in determining the primality of the integer x on the
machine M. In this concern, the total error ¢ is defined as the maximum of the norms of eigenvectors
{v1,v2} of the fluctuation matrix H, viz. we have e = max{||v1]], [[v2]l} as the effective uncertainty in
testing the primality of an arbitrary integer string x on M.

4. Discussion of the Results

In this section, we provide the qualitative description of the results concerning the optimized
primality testing of an arbitrary integer via the AKS algorithm [1]. For an illustration, we take an
efficient AKS algorithm with a varying input integer x whose primality is to be tested on a machine M
of the cardinality y of the set of its alphabets. Henceforth, without loss of generality, we may choose a
randomized AKS algorithm with its pre-factor A = 1. For the purpose of qualitative discussion, we set
the parameters x, y € (0,100) as below.

We depict the qualitative behavior of the randomized AKS primality testing function f(x,y),
associated flow components, heat capacities {4, d}, local correlation c, and the determinant A of its
fluctuation matrix H under fluctuations of the system parameters {x, y}. The positivity of {a,d} and
A determines the underlying stability domains of the AKS primality testing of an integer x with the
maximum number of its prime factors obtained by a given machine M of the cardinality y of the set of
its alphabets as the objective function.

For a given AKS primality testing function f(x, y), as in Equation (1) as the objective function, we
perform our analysis by increasing the input integer x whose primality is to be tested on a machine of
the cardinality y of the set of its alphabets. Namely, from Figure 1, we see that the objective function
f(x,y) has an amplitude of the order 10%°. In due course of execution of the algorithm, we observe that
f(x, y) behaves smoothly for all values of the system parameters x, y € (1, 100), except at their extreme
values, where it blows up. Furthermore, we find that there are no fluctuations in f(x, y) for small
values of {x, y}. In this case, it follows that f(x, y) increases as we augment the algorithm parameters
{x, y} of the AKS primality testing of an integer.

We assess the qualitative behavior of the input integer rate fy(x, y) of the AKS primality testing
function f(x, y) under variations in the input parameters {x, y}. From Figure 2, we find that the rate
fx(x, y) concerning the input integer x takes an amplitude on the order of 10% as x and y vary. Moreover,
for a large input x, we see that fy(x, y) forms an increasing arc with respect to the cardinality y of the
set of alphabets of the machine executing the AKS algorithm.

Y X

Figure 2. The input integer rate fy(x, y) as a function of the input integer x and cardinality y of the set
of alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).
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We assess the qualitative behavior of the AKS primality testing rate f,(x, y) with respect to the
cardinality y of the set of alphabets of the machine as in Figure 3. This is realized by varying the first
partial derivative f,(x, y) of the AKS function f(x, y) with respect to the input parameters {x, y}, as
represented in Equation (3). In this case, we find that there is an increasing arc with respect to the input
integer x in the limit of a large cardinality y of the set of alphabets of the machine. In particular, from
Figure 3, we notice that the appearance of arc shifts along the x-axis for the rate f,(x,y) in contrast to
the input integer rate fy(x, y) when they vary with respect to the parameters {x, y} of the algorithm.

From Figure 4, we find that the local input integer capacity fi.(x, y) takes the amplitude of the
order 10% as {x, y} vary in the interval (1, 100). For a given input integer x, from Figure 4, we see
that the input string capacity fix(x, y) increases in an arc with respect to the cardinality y of the set of
alphabets of the machine executing the AKS primality testing algorithm. Furthermore, as x increases,
we observe that fy, remains constant up to a certain value of x; however, it starts showing a sharply
increasing amplitude of the order of 102! at an extreme value of x. This implies that the primality
testing of an arbitrary integer x in its randomized limit possesses a nonzero input string heat capacity
frx for all values of the cardinality y of the machine executing the algorithm.

«10%

x10%!

100

Y b4

Figure 3. The rate f,(x, y) as a function of the input integer x and cardinality y of the set of alphabets
of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).

x10%

%102

Y X

Figure 4. The input integer capacity fix(x, y) as a function of the input integer x and cardinality y of
the set of alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).
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From Figure 5, we see that the runtime heat capacity f,,(x, y) has a large amplitude of fluctuations
on the order of 10?* at an initial stage of the execution. However, as the algorithm proceeds, we find
a vanishingly small value of the machine heat capacity f,,(x, y), that is, the primality testing of an
integer x is approximately granted for all values of y > 80 as in Figure 5. Subsequently, for an arbitrary
input integer x, we observe that f,,(x, y) is a well-behaved function of (x, y), with an amplitude on the
order of 10? in the limit of small y.

In Figure 6, we show the qualitative behavior of the local correlation fy, (x, y) underlying the AKS
primality testing function f(x, y) under variations of the input integer x and cardinality y of the set of
alphabets of the machine. In this case, apart from the amplitude of fluctuations, we see that fy,(x, y)
possesses an identical character to the execution rate f,(x, y) as far as variations in the input integer x
and execution of the algorithm are concerned. In the limit of a large y, we find that fy,(x, y) modulates
with the amplitude on the order of 10? in an increasing arc upon an increase of the input integer x whose
primality is to be tested. In the course of executing the AKS primality testing algorithm, the above arc
shifts along the x-axis in contrast to the rate fy under variations of the system parameters {x, y}.

@

=]

.

[+

Figure 5. The local runtime capacity fy,(x, y) as a function of the input integer x and cardinality y of
the set of alphabets of the machine executing the AKS algorithm plotted in the interval x, y € (1, 100).

108

Y X

Figure 6. The correlation fy, (x,y) as a function of the input integer x and the cardinality y of the set of
alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).

In Figure 7, we provide a qualitative depiction of the global stabilities underlying the AKS
primality testing algorithm of an arbitrary integer x on a Turing machine M of the cardinality y of its
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set of alphabets as the positivity of the determinant A(x, y) as in Equation (7) for x, y € (1, 100). For a
given input integer x € (1, 100), we see that A(x, y) takes a large negative value with its amplitude
of the order 10*® in the limit of large cardinality y. On the other hand, for relatively smaller values
of the system parameters {x, y}, we find that A(x, y) has vanishingly small fluctuations. This implies
that the AKS primality testing could be globally unstable under certain values of {x, y}. In addition,
we find that the above qualitative behavior of A(x, y) remains the same for large values of {x, y}, e.g.,
x,y — 1000. In this case, the corresponding fluctuations in A(x, y) however grows to a large amplitude
of the order 104,

" }04&
0
<1048 02
0 04
0.6
0.5
0.8
= i
2 ‘
- 1.2
-1.5 4 14
16
) 100
80 18
100
80 60
60 0 40 2
20 20
y X

Figure 7. The determinant A(x, y) of the Hessian matrix H as a function of the input integer x and
cardinality y of the set of alphabets of the machine executing the AKS algorithm plotted in the interval
x, ¥ € (1, 100).

Figure 8 displays the corresponding qualitative behavior of the discriminant defining the
eigenvalues {1y, Jo} as in Equation (23) of the fluctuation matrix H of the AKS primality testing
function f(x, y). For all values of the system parameters {x, y}, we see that the discriminant always
remains positive with the amplitude of the order 10*®. Furthermore, in an intermediate range of y,
we find that it has a vanishingly small value. This implies that both the eigenvalues J; and I, of the
Hessian matrix of f(x, y) take an approximately identical value.

" }04&

Y X

Figure 8. The discriminant as a function of the input integer x and cardinality y of the set of alphabets
of the machine executing the AKS algorithm plotted in the interval x, y € (1, 100).
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From Figure 9, we see that the eigenvalue Jj, as a global stability component, always remains
positive for various values of system parameters {x, y}. It is observed that J; grows to large amplitudes
of the order 10%* at an initial execution of the algorithm. Furthermore, in the limit of small y, it follows
that the amplitude of fluctuations in J; takes a relatively higher numerical value than its corresponding
value at a large y. A smaller value of J; shows that the AKS primality testing algorithm of an integer
gets stabilized upon its execution with increasing values of .

%102

%102

Figure 9. The eigenvalue J; of the Hessian matrix H as a function of the input integer x and cardinality
y of the set of alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).

In Figure 10, we display the qualitative behavior of the eigenvalue J, as the other global stability
component under variations of the system parameters {x, y}. In this case, we find that I, always takes
a large negative value of the amplitude of the order 10%*. Namely, in the limit of large x and small y,
we find the signature of possible instabilities in execution of the AKS primality testing algorithm of
an integer on a given Turing machine. On the other hand, it is noted that stability rises in the limit
of increasing values of y. However, towards its extreme values, we see that the stability of the AKS
primality testing algorithm increases for an arbitrary input integer x and y — 100.

%1024
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Figure 10. The eigenvalue I, of the Hessian matrix H as a function of the input integer x and cardinality

y of the set of alphabets of the machine executing the AKS algorithm plotted in the range x, y € (1, 100).

In Figure 11, we offer a qualitative description of the trace tr(H) of the fluctuation matrix H as in
Equation (7) under variations of the system parameters {x, y}. In this case, it follows that 7(H) has a
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nonzero value of the amplitude of the order 10> at an initial execution of the algorithm. However, as

the algorithm runs, we find that it attains a vanishingly small value in the limit of large y. The AKS
primality testing of an integer x is approximately granted, viz. we can determine whether it is prime or
not. Furthermore, for a given input integer x, it is observed that tr(H) is a well-behaved decreasing
function of y. It is worth mentioning that tr(H) equally has large amplitude of the order of 10?® in the
limit of a large v.
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Figure 11. The trace tr(H) of the Hessian matrix H as a function of the input integer x and cardinality y

of the set of alphabets of the machine executing the AKS algorithm plotted in the interval x, y € (1, 100).

From Figure 12, we see the qualitative behavior of the norm [v4] of the fluctuation vector vy
corresponding to the eigenvalue J; of H under variations of the input integer x and cardinality y of
the set of alphabets of the machine. In this case, in the limit of small values of the system parameters
{x, v}, we find that there exists a large peak of the order of 10>!. Furthermore, we notice that the AKS
primality testing exists smoothly, without variations in the norm |v;| of the fluctuation vector v; for
various values of system parameters {x, y} governing the algorithm.

%107
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Figure 12. The norm [v;] corresponding to the eigenvalue J; of the Hessian matrix H as a function of

w

%]

the input integer x and cardinality y of the set of alphabets of the machine executing the AKS algorithm
plotted in the interval x, y € (1, 100).
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Under variations of the input integer x and cardinality y of the set of alphabets of a Turing machine,
in Figure 13, we offer the corresponding qualitative behavior of the norm |v;| of the fluctuation vector v
concerning execution of the AKS algorithm. Note that our calculation is performed in their randomized
limits. Given a Turing machine M with the set of its alphabets of a large cardinality y, we find that
the norm |v,| increases on an arc for increasing values of the input integer x. On the other hand, for
y < 100, we observe that the norm |v,| takes a unit value for all input integers x whose primality is to
be tested by the machine with its set of alphabets of the cardinality y. Furthermore, we note that the
appearance of an arc in [0o| shifts along the x-axis when the input integer x is varied with respect to a
given machine with the set of its alphabets of the cardinality y executing the algorithm.

1.009

1 1.008

1.008 N 1007

1,006 4 1.006
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1.004

1.002
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Figure 13. The norm [v;| corresponding to the eigenvalue J; of the Hessian matrix H as a function of
the input integer x and cardinality y of the set of alphabets of the machine executing the AKS algorithm
plotted in the interval x, y € (1, 100).

5. Summary and Conclusions

In this paper, we study the AKS primality testing of an integer from the perspective of optimization
theory. Namely, by concentrating on the randomization hypothesis, we optimize the AKS algorithm
under fluctuations of the input integer and cardinality of the set of alphabets of the machine. We
examine the (in)stability domains of the AKS algorithm under variations of input integers in testing
their primality. This yields a deterministic finite time polynomial type optimized solution for testing
the primality of an arbitrary integer. From the viewpoint of the randomization theory [11], our analysis
leads to an optimal system with a pair of system parameters as the input integer and cardinality of
the set of alphabets of the machine executing the algorithm. In order to do so, we choose the input
integer in a given representation, e.g., a definite sequence of {0, 1} in the binary representation, whereby
allowing the positions of the numbers 0 and 1 to vary. As far as the AKS primality testing of an integer
is concerned [1], there have been various research articles, books, and monographs in computer science,
number theory, complexity theories, and others; see [27] for the complexity and satisfiability theories.
Fermat'’s little and Chinese remainder theorems play an important role in extending the primality
testing of integers from their modular representations to real counterparts.

In particular, we optimize the AKS primality testing algorithm of an arbitrary integer on a Turing
machine by determining its stability structures. By invoking the rule of multivariable analysis, we
offer the corresponding quantitative and qualitative depictions. Considering the maximum number
of irreducible factors of a given integer, as determined by the deterministic polynomial time Turing
machine as the AKS objective function, our investigation is realized by randomizing the cardinality
of the set of alphabets of the machine and the input integer whose primality is to be tested. As the
input integer becomes large, the number of its prime factors also probabilistically grows, whereby
we offer an asymptotic stability analysis of the randomized AKS primality testing of an arbitrary
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integer. Furthermore, this is realized via multidimensional illustrations of the fluctuation components
concerning the local and global execution stability of the AKS algorithm. Here, the local heat capacities
with respect to the system parameters are defined as the pure second-order derivatives of the AKS
primality testing function, whereas the associated correlation between them is taken as its mixed
derivative. At the critical point corresponding to a unit input integer, we find that both the heat
capacities vanish identically; however, the correlation turns out to be ill-defined. Moreover, we
observe that both the heat capacities and the local correlation become ill-defined at the critical point
corresponding to the set of alphabets of a large cardinality of the machine, performing a computation
of the primality testing of an integer.

On the other hand, given the AKS primality testing function of an integer, the global stability
regions are determined by the positivity of the determinant of its fluctuation matrix with a positive
fluctuation capacity. We find both stable and unstable regions depending on the value of the input
integer and the cardinality of the set of alphabets of the machine. Furthermore, we provide a limiting
analysis of the stability components at the roots of the flow components. Indeed, our consideration
follows from the randomization hypothesis [11] of an algorithm as well. Our analysis does not
stop here, but continues further in the realm of local linear algebra. We investigate the behavior of
randomized fluctuation vectors as the basis vectors of the fluctuation matrix. The corresponding
fluctuations in their norms provide execution stability characteristics of the AKS primality testing
algorithm. In addition, we offer the qualitative behavior of the AKS primality testing function as the
objective function, with its flow rates, correlation, and the local and global stability regions revealed
through the positivity of the heat capacities and that of the determinant of the fluctuation matrix,
respectively. Our analysis confirms that the AKS primality testing falls in the realm of P-type problems.
By taking up the randomization theory of Agrawal and Biswas [11], this paper gives the parameter
space optimization of the AKS algorithm. Namely, we offer the optimization theory perspective of the
AKS algorithm under variations of its parameters, viz. the number of alphabets of the input string
and the cardinality of the set of alphabets of a machine performing the primality testing. Following
this optimization theory initiative of the AKS algorithm, the associated execution time analysis and
issues pertaining to the asymptote time complexity, potential extensions towards higher dimensions
and comparisons with other primality testing and identity testing models are relegated to separate
research publications.

From the perspective of stability theories, it is worth emphasizing that the optimization
characteristics of the AKS primality testing are well determined for an arbitrary integer. This
enables us to classify the local and global (in)stability domains of the AKS primality testing. Following
the above classification, our proposal shows that the determinant has a large amplitude of fluctuations
around one of its critical points (see Figure 7). Depending on the signature of the Hessian determinant
of the AKS primality testing function as the objective function, we see that there are both concave and
convex type domains of the AKS algorithm. Indeed, apart from the field of real numbers, an extension
of our analysis is anticipated to be realized by localizing a finite ring of integers to different algebraic
sets, e.g., the field of complex numbers, hyper-complex numbers, quaternions, octonions, and higher
spin representations in the light of Clifford algebra and octonions [28]. Interesting perspectives are
expected to arise via an extension of the input parameters to the set of rational numbers, algebraic
sets, and varieties [20-23]. Industrial applications are sought via complexity classifications of the
classical P, NP, coNP, PSPACE, NC, #P type classes and some modern ones such as PO and NPO,
arising from the approximations of certain optimization problems [10,29,30] towards the complexity
classifications of algorithms and their generalizations. Finally, we anticipate that the corresponding
(de)randomization maps [1,11,20-22] could play an equally important role in understanding the notion
of parametric fluctuations of the AKS algorithm in testing the primality of an arbitrary integer. We
leave such investigations open for future research and developments.
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Appendix A.

Below, we briefly depict the evolution of the AKS algorithm and its relationships to Fermat’s
little theorem and Chinese remaindering. In doing so, we provide a brief account of the evolution of
the AKS algorithm of an arbitrary integer. In particular, we give an explicit presentation of the AKS
primality testing algorithm and its relation to the randomization hypothesis in light of the ring theories
and their localizations as the following.

Appendix A.1. A Brief Account of the Evolution of Primality Testing

Below, among the known facts for primality testing, we review essentials from the theory of
numbers, viz. Fermat little theorem, Chinese remainder theorem, Sieve of Eratosthenes, Miller-Rabin
test, etc. Scientifically, this provides essential rudiment of related works and insightful background that
makes repeated references in the known literature on prime factoring as developed in Section 3. First
of all, recall that in order to determine whether the given input number is a prime or not, an efficient
primality testing algorithm requires having a polynomial runtime [1]. In general, this is required to
possess the unconditional and deterministic properties of the algorithm. It is worth remembering that
the Sieve of Eratosthenes [21,22] was the first prime testing algorithm, which may be referred to as an
antiquity test of the primality of an integer. Despite it being able to categorize a given input as prime
or not, it fell short of having an exponential runtime with its complexity Q( \/ﬁ) for an input string of
size 1; see [24] for an overview of the computational complexity and associated concepts in the realm
of the analytic number theory.

Fermat'’s little theorem [21,22] was an immediate precursor of the former test. The Fermat test
played a significant role in the prime determination of a given integral valued input. Despite the fact
that it correctly determined the nature of a given input (whether it was a prime or not), it presented
some technical difficulties. Namely, it occasionally classified some composite numbers as the primes,
as well. Such integers include numbers such as the pseudo-primes, Carmichael primes, Mersenne’s
primes, and Cunningham numbers; see [21,22] for details. Thus, Fermat'’s test is extended towards the
probabilistic primality testing algorithms.

With the above motivations, the Miller-Rabin test [25], which is founded on the principle of
Fermat'’s little theorem, unconditionally and probabilistically certifies the prime characterization of
a given input, that is, it enables us to know whether a given integer is prime or not. In terms of the
runtime complexity, its overall time complexity is of a polynomial type of the order O(k x k logan) for a
given input of size n. Here, the factor k quantifies the number of bases a that are used in the algorithm;
see [25] for the randomized Miller-Rabin test and related notions.

In the course of improving the prime testing algorithms, the Solovay-Strassen primality [26]
encompasses an exciting working principle. This was jointly built as a consequence of Euler’s Criterion
and Fermat's little theorem [21,22]. However, this test presents the probability of failure as 1/2%, where
k is the total number of different bases a that are used in the primality testing algorithm. Furthermore,
the probability of failure makes the overall accuracy of the algorithm similar to that of Fermat testing.
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In addition, it is worth mentioning that the concerned accuracy in the prime characterization is less
than that of the Miller-Rabin test [25,26]. The time complexity is of the order of O(lo g3n), which is
closer to that of the Miller-Rabin test. It is important to note that both the above tests are probabilistic in
nature as they rely on the choice of a random base g; see [25,26] for an introduction to the Miller-Rabin
and Solovay-Strassen primality testing of an integer.

Appendix A.2. The AKS Algorithm: An Overview

The deterministic characteristics of AKS primality testing are bounded as a polynomial runtime
algorithm. Namely, in order to define the AKS primality testing of an integer [1], we begin by recalling
Fermat's little theorem [21,22], which may be viewed as the modular equivalence:

a* = a(mod n), wherea,n € Nand n {a. (A1)

It is worth mentioning that the AKS algorithm locally extends as a primality testing of a given
polynomial, whether it vanishes identically or not in a ring of local polynomials [1]. In this setup, the
AKS algorithm [1] results as the following (generalized Fermat'’s little theorem):

(x=1)" =x" —1mod(x" -1, n). (A2)

It is worth mentioning that the above modular congruence as in Equation (A2) can be verified
as a P-type problem, whenever r is polynomial to the digits of the given input integer n. The above
localization statement [11] of Fermat little’s theorem emerges from the identity

(a+2z)" =a+ 2"(modn). (A3)

Thus, the primality testing of an integer # can be realized as a modular identity by choosing an
integer a such that Equation (A3) holds. This follows via the binomial expansion of (a 4 z)" over mod n.

Namely, the coefficients ( Tll ) in the binomial expansion of the polynomial

pn(z) = (a+2)" - (a+2") (A4)

vanish identically overmod nforalli =1, 2, ... ,n. Notice further that the above congruence, as depicted
in Equation (A2), can be viewed as a particular equality in the polynomial ring Z,[x]. By evaluating a
quotient ring of Zj|x], one finds an upper bound to the degree of the polynomials p;,(x). Thus, the
AKS primality testing algorithm evaluates the vanishing of p,(x) in the quotient ring Z,[x]/ (x, — 1).
This results in an explicit dependence of the computational complexity of the algorithm on the size of
r. Namely, for a given pair of polynomials {f, g}, the modular equivalence in Equation (A2) can be
expressed as the validation of the identity p,(x) = (x" —1)g + nf. Consequently, by setting ¢ = 0 and
x = z, it follows that all the primes obeying the congruence relation (a +z)" — (a +z") = (z' = 1)g +nf
satisfy the aforementioned equivalence (A3), whenever 7 is a prime.

By localizing z € Z[x| as in Equation (A3), for a given integer n € N, we may concentrate on
modular valued polynomials p,(z); see [1,11] for associated details. In light of the standard modular
equivalence [21,22], the above statement concerning the vanishing of p,(x) does not hold globally
as in the case of the standard Fermat’s little theorem, as depicted above in Equation (Al). This is
because n lies in the ring Z,, which is strictly allowed to fluctuate over N. With a suitable extension as
N> n+— z € R, the localized version of Fermat's little theorem arises as per the modular equivalence

pn(z) = 0(mod n). (A5)

This justifies the AKS primality testing algorithm of an integer, as stated above in Equation (A2).
From the above-localized version of Fermat's little theorem, we observe that the primality testing of an
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integer reduces as a convenient way of obtaining the roots of the modular polynomial p;,(z). Whenever
Equation (A5) holds, the input integer n results as a prime. Hereby, we can obtain a definite value of r
and a set of the values of a with the properties mentioned in Algorithm 1 in Section 2, such thatnis a
prime whenever the congruence (A2) holds.

Finally, it is worth mentioning that, unlike in the case of the standard Fermat's little theorem in
Equation (A1), when n varies over the set of integers, i.e., we have n — 1 elements forming the ring Z,,
we may concentrate on a randomized version of the AKS identity as in Equation (A2) for the primality
testing of an arbitrary integer n. This can be performed via an extension of the Chinese remaindering
in a local ring Z[x] consisting of a set of finite degree polynomials p,(z); see [1,11] for an extended
introduction of the primality and identity testing algorithms.
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