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Abstract: A cryptography system was developed previously based on Cipher Polygraphic
Polyfunction transformations, C(t)

i×j ≡ At
i×iPi×j mod N where Ci×j, Pi×j, Ai×i are cipher text, plain

text, and encryption key, respectively. Whereas, (t) is the number of transformations of plain text
to cipher text. In this system, the parameters (Ai×i, (t)) are kept in secret by a sender of messages.
The security of this system, including its combination with the second order linear recurrence Lucas
sequence (LUC) and the Ron Rivest, Adi Shamir and Leonard Adleman (RSA) method, until now is
being upgraded by some researchers. The studies found that there is some type of self-invertible A4×4

should be not chosen before transforming a plain text to cipher text in order to enhance the security
of Cipher Tetragraphic Trifunction. This paper also seeks to obtain some patterns of self-invertible
keys A6×6 and subsequently examine their effect on the system of Cipher Hexagraphic Polyfunction
transformation. For that purpose, we need to find some solutions L3×3 for L2

3×3 ≡ A3×3 mod N
when A3×3 are diagonal and symmetric matrices and subsequently implement the key L3×3 to get
the pattern of A6×6.
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1. Introduction

Cryptography is defined as the science or study of the techniques of secret writing. It is the art
or science encompassing the principles and methods of transforming an intelligible message (plain
text) into one that is unintelligible (cipher text) and then transforming that message back to its original
form [1]. Cryptography is considered to be a branch of both mathematics and computer science. They
are affiliated closely with information theory, computer security, and engineering. The technology for
practicing secret communication, which is widely known as encryption and decryption, was always
done symmetrically until 1970s [2]. In early 1978, the RSA cryptosystem that was introduced by Ron
Rivest, Adi Shamir, and Leonard Adleman became a phenomenon in the world of secrecy of which
was regarded as the first practical realization of the asymmetric cryptosystem as opposed to symmetric
cryptosystem [2,3]. In this paper, we are using the asymmetric cryptosystem which is based on Cipher
Hexagraphic Polyfunction.

Mathematical Background

Several notations (refer to [4–7]) that we will be using while performing encryption process of
Cipher Hexagraphic Polyfunction are shown as follows:
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P is a corresponding number in a plain text. For example, P = 50 if the corresponding number for
the plain text B is 50.

Pi×j = [pxy] is a corresponding numbers sequence with a plain text, that is pxy for every x ≤ i
and y ≤ j that have been arranged based on ith row and jth column of a matrix. For example, the
corresponding numbers sequence of the plain text P L E A S E is 80 76 69 65 83 69 and are arranged by

the 3 rows 2 columns matrix such that P3×2 =

80 65
76 83
69 69

.

C is a corresponding number in a cipher text monofunction. For example, if the corresponding
number of the cipher text AB is 7686 it is produced from monofunction transformation so that C = 7686.

Ci×j = [cxy] is a corresponding numbers sequence with a cipher text cxy for every x ≤ i and y ≤ j
that have been arranged based on ith row and jth column of a matrix produced from monofunction
transformation. For example, the corresponding number sequence with the cipher text A B C D E F
produced from monofunction transformation that is 65 66 67 68 69 70 is written in the matrix 3 rows 2

columns as C3×2 =

65 68
66 69
67 70

.

C(t)
i×j = [c(t)xy ] is a corresponding numbers sequence with a cipher text c(t)xy for every x ≤ i and

y ≤ j that have been arranged based on ith row and jth column of a matrix at the tth transformation for
t = 1, 2, 3, . . .. Let C(1)

i×j = Ci×j when t = 1. For example, the corresponding number of the cipher text
M Z W V A D produced by third transformation is 78 90 87 86 65 68 arranged by the matrix 2 rows 3

columns as C(3)
2×3 =

[
78 87 65
90 86 68

]
.

Encryption key Ai×i = [axz] is an integer sequence axz for every x, z ≤ i arranged based on a
matrix ith row and ith column while A−1

i×i = [bxz] is the inverse matrix for Ai×i such that |Ai×i| 6= 0.
Encryption key Li×i = [mxz] is an integer sequence mxz for every x, z ≤ i arranged based on ith

row and ith column of a matrix such that L2
i×i ≡ Ai×i while L−1

i×i = [nxz] is the inverse matrix for Li×i
such that |Li×i| 6= 0.

Several definitions (refer to [1,4,5,8,9]) that should be understood in this paper are as follows:

Definition 1. Let N be any positive integer. Let us say that the equivalent number of plain text and cipher text
are matrices of rows i and columns j:

Pi×j ≡ [pxy] mod N,

and
C(t)

i×j ≡ c(t)xy mod N

with Pxy < N for every x ≤ i and y ≤ j.
Let the encryption key be an i× i matrix:

A(t)
i×i ≡ [axz] mod N

for every x, z ≤ i.
Encryption algorithm of Pi×j ≡ [pxy] mod N for the first transformation will produce a cipher text

C(1)
i×j ≡ c(1)xy mod N through

C(1)
i×j ≡ A(1)

i×iPi×j mod N

with c(1)xy ≡ ax1 p1y + ax2 p2y mod N which is called Cipher Polygraphic Monofunction Transformation.
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Next, the cipher text C(1)
i×j ≡ [c(1)xy ] mod N was translated into a cipher text C(2)

i×j ≡ c(2)xy mod N at the
second transformation through

C(2)
i×j ≡ A(2)

i×iC
(1)
i×j mod N

with c(2)xy ≡ ax1c(1)1y + ax2c(1)2y mod N which is called Cipher Polygraphic Difunction Transformation.

After that, the cipher text C(2)
i×j ≡ [c(2)xy ] mod N was translated into a cipher text C(3)

i×j ≡ c(3)xy mod N at the
third transformation through

C(3)
i×j ≡ A(3)

i×iC
(2)
i×j mod N

with c(3)xy ≡ ax1c(2)1y + ax2c(2)2y mod N which is called Cipher Polygraphic Trifunction Transformation.
Further, the equation of Cipher Polygraphic Polyfunction Transformation is

C(t)
i×j ≡ A(t)

i×iC
(t−1)
i×j mod N

with c(t)xy ≡ ax1c(t−1)
1y + ax2c(t−1)

2y mod N.

The transformation can be simplified as C(t)
i×j ≡ At

i×iPi×j mod N if all the secret keys A(t)
i×i are similar.

In this research, we used i = 6 so that it is called Cipher Hexagraphic Polyfunction. Whereas, all
the secret keys A(t)

6×6 are similar so that the transformation can be simplified as C(t)
6×j ≡ At

6×6P6×j mod N.

Definition 2. A is called a self-invertible matrix if A ≡ A−1 mod N. If A and A−1 are n× n matrices of
integers and if AA−1 ≡ A−1 A ≡ I mod N, where I is an identity matrix of order n, then A−1 is said to be an
inverse of A modulo N.

Definition 3. A diagonal matrix is a square matrix all of whose entries are zero except possibly for those on the
main diagonal.

Definition 4. A matrix is symmetric if it equals its transpose. That is, AT = A.

While, we use the generated self-invertible for n× n matrix where n is even, according to [9]
as follows:

Let A =


a11 a12 · · · · · · a1n
a21 a22 · · · · · · a2n
· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·
an1 an2 · · · · · · ann

 be an n × n self-invertible matrix partitioned to A =

[
A11 A12

A21 A22

]
, where n is even and each of A11, A12, A21, A22 are matrices of order n

2 ×
n
2 . From

AA−1 = I, the system of equations is A12 A21 = I − A2
11, A11 A12 + A12 A22 = 0, A21 A11 + A22 A21 = 0

and A21 A12 = I − A2
22. Hence, the solution for A is[

A11 (I − A11)k
(I + A11)k−1 −A11

]
or

[
A11 (I + A11)k

(I − A11)k−1 −A11

]
(1)

where k ∈ Z. All the matrices in this case are in congruent of modulo N and (k, N) = 1.
In this section, we give some notations, definitions and a method to generate self-invertibles, which

are related to this study. Next, in Section 2, we give previous studies involving Hill Cipher developed
by earlier researchers. In Sections 3.1 and 3.2, we give some solutions for L2

3×3 ≡ A3×3 mod N when
matrix A3×3 is diagonal and symmetric, respectively. Followed by discussion on how to generate
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self-invertible 6× 6 matrices from L3×3 in Section 3.3 and the effect of these generation on Cipher
Hexagraphic Polyfunction in Section 3.4.

2. Literature Review

Hill Ciphers are an application of linear algebra to cryptology (the science of making and breaking
codes and ciphers). It was introduced by Lester S. Hill [10]. The Hill Cipher is a polygraphic
substitution cipher based on linear algebra. The core of Hill cipher is matrix manipulations. For
encryption, algorithm takes m successive plain text letters and instead of that substitutes m cipher
letters. In the Hill cipher, each character is assigned to a numerical value like a = 0, b = 1, . . . , z = 25.
The substitution of cipher text letters in the place of plain text letters leads to m linear equation
and simply can be written as C ≡ KP mod 26, where C and P are column vectors of length m,
representing the plain text and cipher text, respectively, and K is an m × m matrix, which is the
encryption key. The inverse of a matrix K is needed in the process of decryption. It satisfies condition
KK−1 ≡ K−1K ≡ I mod 26, where I is an identity matrix. The encryption process is C = Ek(P) = Kp.
Whereas, the decryption is P = Dk(C) = K−1C = K−1Kp = P.

Many researchers developed different methods to improve the quality of Hill Cipher. Some
applications of Number Theory to Cryptography was investigated by [4]. Based on the modulo
arithmetic concept, she developed a number of encryption methods by employing the Cipher
Digraphic [11], RSA (Ron Rivest, Adi Shamir and Leonard Adleman) [3] and LUC (second order
linear recurrence Lucas sequence) [12] systems. The system called Cipher Digraphic Polyfunction
in the form of C(t)

2×j ≡ At
2×2P2×j mod N with (|A2×2|, N) =1 and |A2×2| 6= 0 and At

2×2 6= I for
t ∈ 1, 2, 3, . . . is developed and its weaknesses are investigated.

The encryption from monofunction transformation is extended to Cipher Digraphic Polyfunction
transformation modulo N with different encryption keys used in every transformation [5]. An
encryption of Cipher Digraphic Polyfunction is defined as C(t)

2×j ≡ ∏t−1
u=0 A(t−u)

2×2 P2×j mod N, |A(t)
2×2| 6= 0

and (|A(t)
2×2|, N) = 1 for every t = 1, 2, 3, . . ., then P2×j has a unique solution and the decryption

algorithm is defined as P2×j ≡ (∏t−1
u=0 A(t−u)

2×2 )−1C(t)
2×j mod N. They also stated condition ∏t−1

u=0 A(t−u)
2×2 6≡

I mod N to be held, so that the cipher text would not be the same as plain text.
According to [9], the decryption process requires using an inverse of matrix but the matrix’s

inverse does not always exist. If the matrix is not invertible, then the encrypted text cannot be
decrypted. They noticed the problem of non-invertible matrix key in Hill Cipher and proposed
methods of generating self-invertible matrices based on modular arithmetic. This is to make sure that
the encrypted text can be decrypted. They are focusing on generating self-invertible 2× 2, 3× 3, 4× 4
and an even self-invertible matrix. This technique can eliminate the computational complexity involved
in finding inverse of the matrix during decryption process. They proposed a method of generating of
self-invertible n× n matrix where n is even as in Equation (1).

An innovation in the age-old conventional cryptography technique of Hill Cipher using the
concept of self-repetitive matrix were suggested by [13]. That is, if the matrix multiplied with itself will
eventually result in an identity matrix after n multiplications, An ≡ I mod N. After n+ 1 multiplication,
the matrix will repeat itself. That is, An A ≡ IA ≡ A mod N. Hence, An+1 ≡ A mod N where the
initial conditions of self-repetitive matrix A should be square and non-singular. They concluded that
this method is easy to implement and difficult to crack as it requires the cracker to find the inverse of
many square matrices which is not computationally easy.

The robust cryptosystem algorithm for non-invertible matrices were suggested by [14]. They
use public key ideas and key generations depending on various options and function without linear
algebra steps to enhance the security of Hill Cipher against known plain text attacks due to all steps in
Hill Cipher depending on linear algebra calculation. Each plain text character is converted into two
cipher text characters and also in decryption, the process involves the conversion of two cipher text
characters into one plain text character. While this algorithm solved the non-invertible matrix key
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problem, there are other problems which caused the unsuitable algorithm to be implemented. One of
the problems is that the idea of generating a new key in each block has no unique inverse to enhance
the security of Hill Cipher as the attacker has no mathematical model to retrieve the key. Besides that,
it also required to determine whether the key matrix’s determinant is zero. However, a matrix with
determinant zero does not have an inverse and the process of checking the determinant will increase
the computational complexity as compared to the self-invertible method. The non-unique inverse may
cause the problem in decryption process to get back the original plain text.

The ways using Non-Quadratic residues during the encryption process to improve security on
Hill cipher has been studied by [8]. In Hill Cipher, a plain text is encrypted using a fixed value 26
during the computation. In the encryption algorithm from Reddy, each character is assigned to a
non-quadratic residue value of a prime number P such that C ≡ KP mod N where C and P represent
transferred matrix and the plain text, respectively, whereas, K is a non-singular matrix representing
the encryption key. Operations are performed with respect to mod N. This procedure is more flexible
compared to mod 26 in Hill Cipher as it can consider any large prime greater than or equal to 53.
Hence, the algorithm is less vulnerable from any attack.

The effect of self-invertible matrix on Cipher Tetragraphic Trifunction were presented by [7]. The

authors gave some solutions L2×2 for L3
2×2 ≡ A2×2 mod N. If A2×2 is zero, then L2×2 =

[
0 b
0 0

]
or[

0 0
c 0

]
or

[
1 b
−b−1 −1

]
or

[
−1 b
−b−1 1

]
. If A2×2 is identity, then L2×2 =

[
1 0
0 1

]
or

[
−2−1 −3(4c)−1

c −2−1

]
.

If A2×2 is

[
e f
0 0

]
, then L2×2 =

[
e3−1

f e−2.3−1

0 0

]
or

[
a b

−a2b−1 −a

]
. If A2×2 is

[
e f
0 h

]
, then

L2×2 =

[
e3−1

f (e−2.3−1
+ e3−1

h3−1
+ h2.3−1

)

0 h3−1

]
or

[
a b

−(e2.3−1
+ ae3−1

+ a2)b−1 −(e3−1
+ a)

]
. If A2×2 is[

e f
g h

]
, then L2×2 =

[
e3−1

0
g(3e2.3−1

)−1 −2e3−1

]
. As a result, they choose the L2×2 so that A is not in

the form of A ≡ 0 mod N, A ≡ I mod N, lower and upper triangular matrix A. Furthermore, the use

of a secret key L4×4 ≡
[

L2×2 I − L2×2

I + L2×2 −L2×2

]
mod N should be avoided in order to enhance the

security of Cipher Tetragraphic Trifunction transformations, C(t)
4×4 ≡ Lt

4×4P4×4 mod N where t ∈ 1, 2, 3.

3. Results and Discussion

3.1. Some Solutions L3×3 for a Diagonal Matrix L2
3×3 ≡ A3×3 mod N

We assume the encryption key A3×3 ≡

a11 a12 a13

a21 a22 a23

a31 a32 a33

 mod N and L3×3 ≡

a b c
d e f
g h i

 mod N

with a, b, c, d, e, f , g, h, i and aij for i, j = 1, 2, 3 are integers such that L2
3×3 ≡ A3×3 mod N. To get L3×3,

we need to solve simultaneous equations as shown below.

a2 + bd + cg ≡ a11 mod N, (2)

ab + be + ch ≡ a12 mod N, (3)

ac + b f + ci ≡ a13 mod N, (4)

da + ed + f g ≡ a21 mod N, (5)

db + e2 + f h ≡ a22 mod N, (6)

dc + e f + f i ≡ a23 mod N, (7)
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ga + hd + ig ≡ a31 mod N, (8)

gb + he + hi ≡ a32 mod N, (9)

and
gc + h f + i2 ≡ a33 mod N. (10)

Proposition 1. Let L3×3 ≡

a b c
d e f
g h i

 mod N and b, c, d, f , g, h be relatively prime with N. The solution

to a diagonal matrix L2
3×3 mod N is

L3×3 ≡

a b c
d e f
g bc−1d−1 f g i

 mod N, (11)

where a ≡ 2−1(−b f c−1 + dc f−1 − f gd−1) mod N, e ≡ 2−1(b f c−1 − dc f−1 − f gd−1) mod N and
i ≡ 2−1(−b f c−1 − dc f−1 + f gd−1) mod N.

Proof. Let

a b c
d e f
g h i


2

≡

a2 + bd + cg 0 0
0 db + e2 + f h 0
0 0 gc + h f + i2

 mod N. Substituting a12 =

a13 = a21 = a23 = a31 = a32 = 0 into Equations (2)–(10).
From Equation (3),

− chb−1 ≡ a + e mod N f or (b, N) = 1. (12)

From Equation (4),
− b f c−1 ≡ a + i mod N f or (c, N) = 1. (13)

From Equation (5),
− f gd−1 ≡ a + e mod N f or (d, N) = 1. (14)

From Equation (7),
− dc f−1 ≡ e + i mod N f or ( f , N) = 1. (15)

From Equation (8),
− hdg−1 ≡ a + i mod N f or (g, N) = 1. (16)

From Equation (9),
− gbh−1 ≡ e + i mod N f or (h, N) = 1. (17)

Substituting Equation (12) into Equation (14), we get

chb−1 ≡ f gd−1 mod N. (18)

Substituting Equation (13) into Equation (16), we get

b f c−1 ≡ hdg−1 mod N. (19)

Substituting Equation (15) into Equation (17), we get

dc f−1 ≡ gbh−1 mod N. (20)

Hence, from Equations (18)–(20),

h ≡ bc−1d−1 f g mod N. (21)
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From Equation (12), we have
a ≡ − f gd−1 − e mod N. (22)

From Equation (15), we have
e ≡ −dc f−1 − i mod N. (23)

Substituting Equation (23) into Equation (22), we get

a ≡ − f gd−1 + dc f−1 + i mod N. (24)

Followed by substituting this equation into Equation (13), we have

i ≡ 2−1(−b f c−1 + f gd−1 − dc f−1) mod N. (25)

Now, substituting Equation (25) into Equations (24) and (23), we get the following.

a ≡ 2−1(− f gd−1 + dc f−1 − b f c−1) mod N, (26)

and
e ≡ 2−1(− f gd−1 − d f c−1 + b f c−1) mod N. (27)

Finally, we substitute Equations (21) and (25)–(27) into Equations (2)–(10) to get L3×3 in terms of
b, c, d, f and g.

Next, we give an implementation for Proposition 1.

Example 1. We let (b, c, d, f , g) ≡ (1, 2, 3, 4, 5) mod 13. Then, by using Equations (25)–(27), we have

L3×3 ≡

4 1 2
3 11 4
5 12 7

 mod 13. Then, L2
3×3 ≡

29 39 26
65 172 78
91 221 107

 ≡ 3I mod 13.

3.2. Some Solutions L3×3 for a Symmetric Matrix L2
3×3 ≡ A3×3 mod N

We investigate the key’s feature L3×3 such that L2
3×3 ≡ A3×3 mod N where A3×3 is a symmetric

matrix to secure our Cipher Hexagraphic Polyfunction system.

Proposition 2. Let L3×3 ≡

a b c
d e f
g h i

 mod N and (2, N) = (b− d, N) = (c− g, N) = ( f − h, N) = 1.

Then L3×3 with a ≡ 2−1(( f g− ch)(b− d)−1 − (gb− dc)( f − h)−1 + (hd− b f )(c− g)−1) mod N,
e ≡ 2−1((gb− dc)( f − h)−1 − (hd− b f )(c− g)−1 + ( f g− ch)(b− d)−1) mod N and
i ≡ 2−1((hd − b f )(c − g)−1 − ( f g − ch)(b − d)−1 + (gb − dc)( f − h)−1) mod N are solutions to a
symmetric matrix L2

3×3 mod N.

Proof. Let

a b c
d e f
g h i


2

≡

a2 + bd + cg x y
x db + e2 + f h z
y z gc + h f + i2

 mod N. Substitute a12 =

a21 = x, a13 = a31 = y and a23 = a32 = z into Equations (2)–(10). Substituting Equation (3) into
Equation (5), we get (a + e)(b− d) ≡ f g− ch mod N.

Hence,
a ≡ ( f g− ch)(b− d)−1 − e mod N f or (b− d, N) = 1. (28)
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Substituting Equation (4) into Equation (8), we have (a + i)(c− g) ≡ hd− b f mod N. Hence,

i ≡ (hd− b f )(c− g)−1 − a mod N f or (c− g, N) = 1. (29)

Substituting Equation (7) into Equation (9), we have (e + i)( f − h) ≡ gb− dc mod N. Hence,

e ≡ (gb− dc)( f − h)−1 − i mod N f or ( f − h, N) = 1. (30)

From Equations (28)–(30), we get the following

a ≡ 2−1(( f g− ch)(b− d)−1 − (gb− dc)( f − h)−1 + (hd− b f )(c− g)−1) mod N, (31)

e ≡ 2−1((gb− dc)( f − h)−1 − (hd− b f )(c− g)−1 + ( f g− ch)(b− d)−1) mod N, (32)

and
i ≡ 2−1((hd− b f )(c− g)−1 − ( f g− ch)(b− d)−1 + (gb− dc)( f − h)−1) mod N. (33)

Finally, we substitute Equations (31)–(33) into Equations (2)–(10) to get L3×3 in terms of b, c, d, f , g
and h.

Next, we give an implementation of Proposition 2 as follows.

Example 2. We let (b, c, d, f , g, h) ≡ (1, 2, 3, 4, 5, 6) mod 13. Then, by using Equations (31)–(33) we have

L3×3 ≡

3 1 2
3 6 4
5 6 1

 mod 13. Then, L2
3×3 ≡

 9 8 12
8 11 8

12 8 9

 mod 13.

Now, from Proposition 2, we consider four cases when L2
3×3 are symmetric as follows.

Case 1
From Equations (31)–(33), we let b− d = 1, f − h = 1 and c− g = 1. Thus, we get b = 1 + d,

f = 1 + h and c = 1 + g, respectively. For this case, we get the following result.

Corollary 1. Let (2, N) = (4, N) = 1. If L3×3 ≡

−h− 2−1 1 + d 1 + g
d g + 2−1 1 + h
g h −d− 2−1

 mod N, then

L2
3×3 ≡

 a11 a12 −a12

a12 a11 a12

−a12 a12 a11

 mod N is symmetric where a11 ≡ 4−1 + d + h + g + g2 + h2 + d2 mod N

and a12 ≡ g + gh + gd− hd mod N.

Proof.

Let L3×3 ≡

−h− 2−1 1 + d 1 + g
d g + 2−1 1 + h
g h −d− 2−1

 mod N and L2
3×3 ≡

a11 a12 a13

a21 a22 a23

a31 a32 a33

 mod N.
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Now,

a11 ≡ (−h− 2−1)2 + d(1 + d) + g(1 + g) ≡ 4−1 + d + g + h + d2 + g2 + h2 mod N,

a12 ≡ −(h + 2−1)(1 + d) + (1 + d)(g + 2−1) + (1 + g)h ≡ g + gh + gd− hd mod N,

a13 ≡ −(h + 2−1)(1 + g) + (1 + d)(1 + h)− (1 + g)(d + 2−1) ≡ hd− g− gh− gd ≡ −a12 mod N,

a21 ≡ −d(h + 2−1) + d(g + 2−1) + (1 + h)g ≡ g + gh + gd− hd ≡ a12 mod N,

a22 ≡ (1 + d)d + (2−1 + g)2 + (1 + h)h ≡ 4−1 + d + h + g + g2 + h2 + d2 ≡ a11 mod N,

a23 ≡ d(1 + g) + (2−1 + g)(1 + h)− (1 + h)(d + 2−1) ≡ g + gh + gd− hd ≡ a12 mod N,

a31 ≡ −g(2−1 + h) + hd− (2−1 + d)g ≡ hd− g− gh− gd ≡ −a12 mod N,

a32 ≡ g(1 + d) + h(2−1 + g)− (d + 2−1)h ≡ g + gh + gd− hd ≡ a12 mod N and

a33 ≡ (1 + g)g + (1 + h)h + (2−1 + d)2 ≡ 4−1 + d + h + g + g2 + h2 + d2 ≡ a11 mod N.

Therefore, L2
3×3 ≡

 a11 a12 −a12

a12 a11 a12

−a12 a12 a11

 mod N is symmetric.

Next, we give an implementation for Corollary 1.

Example 3. We let (d, g, h) ≡ (1, 2, 3) mod 13. Then, we have L3×3 ≡

3 2 3
1 9 4
2 3 5

 mod 13. Followed

by L2
3×3 ≡

4 7 6
7 4 7
6 7 4

 mod 13.

Case 2
From Equations (31)–(33), we let b− d = 1, f − h = −1 and c− g = −1. Thus, we get b = 1 + d,

f = −1 + h and c = −1 + g, respectively. Followed by the following result.

Corollary 2. Let (4, N) = 1. If L3×3 ≡

h− 2−1 1 + d −1 + g
d −g + 2−1 −1 + h
g h −d− 2−1

 mod N, then

L2
3×3 ≡

a11 a12 a12

a12 a11 −a12

a12 −a12 a11

 mod N, where a11 ≡ 4−1 + d − h − g + g2 + h2 + d2 mod N and

a12 ≡ −g + gh− gd + hd mod N.

Proof. The proving method is similar to Corollary 1.

Example 4. We let (d, g, h) ≡ (1, 2, 3) mod 13. Then, we have L3×3 ≡

9 2 1
1 5 2
2 3 5

 mod 13. Followed by

L2
3×3 ≡

7 5 5
5 7 8
5 8 7

 mod 13.
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Case 3
From Equations (31)–(33),we let b− d = −1, f − h = −1 and c− g = 1. Thus, we get b = −1 + d,

f = −1 + h and c = 1 + g, respectively. Followed by the following result.

Corollary 3. Let (2, N) = (4, N) = 1. If L3×3 ≡

h− 2−1 −1 + d 1 + g
d g + 2−1 −1 + h
g h d− 2−1

 mod N, then

L2
3×3 ≡

a11 a12 a12

a12 a11 a12

a12 a12 a11

 mod N, where a11 ≡ 4−1 − d − h + g + g2 + h2 + d2 mod N and a12 ≡

−g + gh + gd + hd mod N.

Proof. The proving method is similar to Corollary 1.

Example 5. We let (d, g, h) ≡ (1, 2, 3) mod 13. Then, we have L3×3 ≡

9 0 3
1 9 2
2 3 7

 mod 13.

Followed by L2
3×3 ≡

9 9 9
9 9 9
9 9 9

 mod 13.

Case 4
From Equations (31)–(33), we let b− d = −1, f − h = 1 and c− g = −1. Thus, we get b = −1 + d,

f = 1 + h and c = −1 + g, respectively. Followed by the following result.

Corollary 4. Let (2, N) = (4, N). If L3×3 ≡

−h− 2−1 −1 + d −1 + g
d −g + 2−1 1 + h
g h d− 2−1

 mod N, then

L2
3×3 ≡

 a11 a12 −a12

a12 a11 −a12

−a12 −a12 a11

 mod N, where a11 ≡ 4−1 − d + h − g + g2 + h2 + d2 mod N and

a12 ≡ g + gh− gd− hd mod N.

Proof. The proving method is similar to Corollary 1.

Example 6. We let (d, g, h) ≡ (1, 2, 3) mod 13. Then, we have L3×3 ≡

3 0 1
1 5 4
2 3 7

 mod 13. Followed by

L2
3×3 ≡

11 3 10
3 11 10

10 10 11

 mod 13.

Now, we investigate the key’s feature L3×3 such that L2
3×3 ≡ A3×3 mod N where A3×3 is a

symmetric matrix by subtituting c = f = 0 into Equations (31)–(33). We get the following result.

Corollary 5. Let (2, N) = (4, N) = (h, N) = (g, N) = 1. If

L3×3 ≡

2−1(gbh−1 − hdg−1) b 0
d −2−1(gbh−1 − hdg−1) 0
g h 2−1(−hdg−1 − gbh−1)

 mod N

then, L2
3×3 ≡ (4−1(g2b2h−2 + h2d2g−2) + 2−1bd)I mod N.
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Proof.

Let L3×3 ≡

2−1(gbh−1 − hdg−1) b 0
d −2−1(gbh−1 − hdg−1) 0
g h 2−1(−hdg−1 − gbh−1)

 mod N.

Then, L2
3×3 ≡

a11 a12 a13

a21 a22 a23

a31 a32 a33

 mod N

where

a11 ≡ 4−1(gbh−1 − hdg−1)2 + bd mod N ≡ 4−1(g2b2h−2 + h2d2g−2) + 2−1bd mod N,

a12 ≡ 2−1b(gbh−1 − hdg−1) + 2−1b(hdg−1 − gbh−1) ≡ 0 mod N,

a13 ≡ 0 mod N,

a21 ≡ 2−1d(gbh−1 − hdg−1) + 2−1(hdg−1 − gbh−1)d ≡ 0 mod N,

a22 ≡ 4−1(hdg−1 − gbh−1)2 + bd ≡ a11 mod N,

a23 ≡ 0 mod N,

a31 ≡ 2−1g(gbh−1 − hdg−1) + hd + 2−1(−hdg−1 − gbh−1)g ≡ 0 mod N,

a32 ≡ gb + 2−1h(hdg−1 − gbh−1) + 2−1(−hdg−1 − gbh−1)h ≡ 0 mod N and

a33 ≡ 4−1(−hdg−1 − gbh−1)2 mod N

≡ 4−1(g2b2h−2 + 2bd + h2d2g−2) mod N ≡ 4−1(g2b2h−2 + h2d2g−2) + 2−1bd ≡ a11 mod N.

We can clearly see that L2
3×3 ≡ (4−1(g2b2h−2 + h2d2g−2) + 2−1bd)I mod N.

Next, we give an implementation for Corollary 5.

Example 7. We let (b, d, g, h) ≡ (1, 2, 3, 4) mod 13. Then, we have L3×3 ≡

−21 1 0
2 21 0
3 4 −51

 ≡
5 1 0

2 8 0
3 4 1

 mod 13. Followed by L2
3×3 ≡

27 13 0
26 66 0
29 39 1

 ≡
1 0 0

0 1 0
0 0 1

 mod 13.

Futhermore, we investigate the key’s feature of L3×3 such that L2
3×3 ≡ A3×3 mod N where A3×3 is

a symmetric matrix by subtituting b = c = f = 0 into Equations (31)–(33). We get the following result.

Corollary 6. If L3×3 ≡

−2−1hdg−1 0 0
d 2−1hdg−1 0
g h −2−1hdg−1

 mod N, where (g, N) = (2, N) = 1,

then L2
3×3 ≡ 4−1h2d2g−2 I mod N.

Proof. The proving method is similar to Corollary 5.

Lastly, we investigate the key’s feature L3×3 such that L2
3×3 ≡ A3×3 mod N where A3×3 is a

symmetric matrix by substituting d = g = h = 0 into Equations (31)–(33). We get the following result.

Corollary 7. If L3×3 ≡

−2−1b f c−1 b c
0 2−1b f c−1 f
0 0 −2−1b f c−1

 mod N, where (c, m) = (2, N) = 1,

then L2
3×3 ≡ 4−1b2 f 2c−2 I mod N.
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Proof. The proving method is similar to Corollary 5.

3.3. Generation of Self-Invertible Matrix

In this section, we apply in the following example, the method of generating of self-invertible
n× n matrices that was mentioned earlier. In this paper, we choose n = 6.

Example 8. Consider L3×3 and L6×6 as two secret keys. Let L3×3 ≡a b c
d −a− f gd−1 f
g bc−1d−1 f g −a− b f c−1

 mod N with a = 2−1(− f gd−1 + dc f−1 − b f c−1), where b, c, d, f , g, h

are relatively prime with N. This is the solution to a diagonal matrix L2
3×3 mod N using Proposition 1.

Now, let A11 = L3×3 and A22 ≡ −A11 ≡ −L3×3 ≡

−a −b −c
−d a + f gd−1 − f
−g −bc−1d−1 f g a + b f c−1

 mod N.

We choose k = 1, therefore A12 ≡ k(I − A11) ≡

1− a −b −c
−d 1 + a + f gd−1 − f
−g −bc−1d−1 f g 1 + a + b f c−1

 mod N.

and A21 ≡ I + A11 ≡ k−1(I + L3×3) ≡

1 + a b c
d 1− a− f gd−1 f
g bc−1d−1 f g 1− a− b f c−1

 mod N. Since

L6×6 ≡
[

A11 A12

A21 A22

]
mod N, then

L6×6 ≡



a b c 1− a −b −c
d −a− f gd−1 f −d 1 + a + f gd−1 − f
g bc−1d−1 f g −a− b f c−1 −g −bc−1d−1 f g 1 + a + b f c−1

1 + a b c −a −b −c
d 1− a− f gd−1 f −d a + f gd−1 − f
g bc−1d−1 f g 1− a− b f c−1 −g −bc−1d−1 f g a + b f c−1


mod N.

Suppose k = 1, using similar procedure as in Example 8, we can get all the following self-invertible
matrices produced by L3×3 from Proposition 2 and Corrolaries 1–7.

From Propositions 2, we get L6×6 ≡



a b c 1− a −b −c
d e f −d 1− e − f
g h i −g −h 1− i

1 + a b c −a −b −c
d 1 + e f −d −e − f
g h 1 + i −g −h −i


mod N where

a = 2−1(( f g− ch)(b− d)−1 − (gb− dc)( f − h)−1 + (hd− b f )(c− g)−1),
e = a + (gb− dc)( f − h)−1 − (hd− b f )(c− g)−1,
i = −a + (hd− b f )(c− g)−1 and
(b− d, N) = ( f − h, N) = (c− g, N) = (2, N) = 1.
From Corrolary 1, we get

L6×6 ≡



−h− 2−1 1 + d 1 + g 1 + h + 2−1 −1− d −1− g
d g + 2−1 1 + h −d 1− g− 2−1 −1− h
g h −d− 2−1 −g −h 1 + d + 2−1

1− h− 2−1 1 + d 1 + g h + 2−1 −1− d −1− g
d 1 + g + 2−1 1 + h −d −g− 2−1 −1− h
g h 1− d− 2−1 −g −h d + 2−1


mod N.
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From Corrolary 2, we get

L6×6 ≡



h− 2−1 1 + d −1 + g 1− h + 2−1 −1− d 1− g
d −g + 2−1 −1 + h −d 1− g + 2−1 1− h
g h −d− 2−1 −g −h 1 + d + 2−1

1 + h− 2−1 1 + d −1 + g −h + 2−1 −1− d 1− g
d 1− g + 2−1 −1 + h −d g− 2−1 1− h
g h 1− d− 2−1 −g −h d + 2−1


mod N.

From Corrolary 3, we get

L6×6 ≡



h− 2−1 −1 + d 1 + g 1− h + 2−1 1− d −1− g
d g + 2−1 −1 + h −d 1− g− 2−1 1− h
g h d− 2−1 −g −h 1− d + 2−1

1 + h− 2−1 −1 + d 1 + g −h + 2−1 1− d −1− g
d 1 + g + 2−1 −1 + h −d −g− 2−1 1− h
g h 1 + d− 2−1 −g −h −d + 2−1


mod N.

From Corrolary 4, we get

L6×6 ≡



−h− 2−1 −1 + d −1 + g 1 + h + 2−1 1− d 1− g
d g + 2−1 1 + h −d 1 + g− 2−1 −1− h
g h d− 2−1 −g −h 1− d + 2−1

1− h− 2−1 −1 + d −1 + g h + 2−1 1− d 1− g
d 1− g + 2−1 1 + h −d g− 2−1 −1− h
g h 1 + d− 2−1 −g −h −d + 2−1


mod N.

From Corrolary 5, we get

L6×6 ≡



a b 0 a + 2hdg−1 −b 0
d −a 0 −d 3a + 2hdg−1 0
g h −a− hdg−1 −g −h 3(a + hdg−1)

3a + 2hdg−1 b 0 −a −b 0
d a + 2hdg−1 0 −d a 0
g h a + hdg−1 −g −h a + hdg−1


mod N

where a = 2−1(gbh−1 − hdg−1).
From Corrolary 6, we get

L6×6 ≡



−2−1hdg−1 0 0 3(2−1hdg−1) 0 0
d 2−1hdg−1 0 −d 2−1hdg−1 0
g h 2−1hdg−1 −g −h 3(2−1hdg−1)

2−1hdg−1 0 0 2−1hdg−1 0 0
d 3(2−1hdg−1) 0 −d −2−1hdg−1 0
g h 2−1hdg−1 −g −h 2−1hdg−1


mod N.

From Corrolary 7, we get

L6×6 ≡



−2−1b f c−1 b c 3(2−1b f c−1) −b −c
0 2−1b f c−1 f 0 2−1b f c−1 − f
0 0 −2−1b f c−1 0 0 3(2−1b f c−1)

2−1b f c−1 b c 2−1b f c−1 −b −c
0 3(2−1b f c−1) f 0 −2−1b f c−1 − f
0 0 2−1b f c−1 0 0 2−1b f c−1


mod N.
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3.4. Effect of Self-Invertible Key on Cipher Hexagraphic Polyfunction

Cipher Hexagraphic Polyfunction Transformation is constructed based on the following theorem.

Theorem 1. Let Cipher Hexagraphic Polyfunction Transformation be defined as Definition 1. Say that the
determinant for A6×6 is not a zero and (|A6×6|, N) = 1, so P6×j have unique solutions and the decryption
algorithms are as follows:

C(t−1)
6×j ≡ A−1

6×6C(t)
6×j mod N,

C(t−2)
6×j ≡ A−1

6×6C(t−1)
6×j mod N,

. . .

C(2)
6×j ≡ A−1

6×6C(3)
6×j mod N,

C(1)
6×j ≡ A−1

6×6C(2)
6×j mod N,

P6×j ≡ A−1
6×6C(1)

6×j mod N

where A−1
6×6 is the inverse matrix for A6×6 which acts as the decryption key.

Proof. Let Cipher Hexagraphic Polyfunction transformations be as follows.

C(1)
6×j ≡ A6×6P6×j mod N,

C(2)
6×j ≡ A6×6C(1)

6×j mod N,

C(3)
6×j ≡ A6×6C(2)

6×j mod N,

. . .

C(t−1)
6×j ≡ A6×6C(t−2)

6×j mod N,

C(t)
6×j ≡ A6×6C(t−1)

6×j mod N.

There exist the inverse of A6×6 such that A6×6 A−1
6×6 ≡ I mod N when |A6×6| 6= 0. So

A−1
6×6C(t)

6×j ≡ A−1
6×6 A6×6C(t−1)

6×j ≡ C(t−1)
6×j mod N, (34)

A−1
6×6C(t−1)

6×j ≡ A−1
6×6 A6×6C(t−2)

6×j ≡ C(t−2)
6×j mod N, (35)

. . .

A−1
6×6C(3)

6×j ≡ A−1
6×6 A6×6C(2)

6×j ≡ C(2)
6×j mod N, (36)

A−1
6×6C(2)

6×j ≡ A−1
6×6 A6×6C(1)

6×j ≡ C(1)
6×j mod N, (37)

A−1
6×6C(1)

6×j ≡ A−1
6×6 A6×6P6×j ≡ P6×j mod N, (38)

and

(adjA6×6)C
(t)
6×j ≡ |A6×6|C

(t−1)
6×j mod N, (39)

(adjA6×6)C
(t−1)
6×j ≡ |A6×6|C

(t−2)
6×j mod N, (40)

. . .
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(adjA6×6)C
(3)
6×j ≡ |A6×6|C

(2)
6×j mod N, (41)

(adjA6×6)C
(2)
6×j ≡ |A6×6|C

(1)
6×j mod N, (42)

(adjA6×6)C
(1)
6×j ≡ |A6×6|P6×j mod N. (43)

From Equations (34)–(38), we get the decryption algorithm as follows:

C(t−1)
6×j ≡ A−1

6×6C(t)
6×j mod N,

C(t−2)
6×j ≡ A−1

6×6C(t−1)
6×j mod N,

. . .

C(2)
6×j ≡ A−1

6×6C(3)
6×j mod N,

C(1)
6×j ≡ A−1

6×6C(2)
6×j mod N,

P6×j ≡ A−1
6×6C(1)

6×j mod N.

From Equations (39)–(43), if (|A6×6|, N) = 1 so P6×j have unique solutions.

In Theorem 1, the repeated process occured (that is C(t)
6×j ≡ P6×j mod N) when At

6×6 ≡ I mod N.
The sender can encryp the plain text until the (t − 1)th transformation to make sure that the
message is kept in secret. It is different with the effect of such a system when we consider

A6×6 =

[
L3×3 (I − L3×3)k

(I + L3×3)k−1 −L3×3

]
. The following is an example of using this key. Of course the

use of long transformation from plain text to cipher text is more suitable for cryptographic proposals.
We begin with examining the patterns of cipher text when using the small number of transformations.

Suppose the plain text numbers are arranged into P6×j. We choose any generated self-invertible
matrix L6×6. Before we proceed to do the encryption process, we need to make sure that the secret
key that we have chosen fulfils the conditions as stated in Theorem 1; that is, |L6×6| ≡ 1 mod N. Thus,
(|L6×6|, N) = 1. Now, the encryption process is as follows:

C(1)
6×j ≡ L6×6P6×j mod N,

C(2)
6×j ≡ L6×6C(1)

6×j ≡ P6×j mod N,

C(3)
6×j ≡ L6×6C(2)

6×j ≡ C(1)
6×j mod N,

C(4)
6×j ≡ L6×6C(3)

6×j ≡ P6×j mod N,

.....

The above process is continued such that C(2g)
6×j ≡ P6×j mod N and C(2g−1)

6×j ≡ P6×j mod N for
g ∈ Z+.

This is because of L2
6×6 ≡ I mod N. Thus, the transforming process after C(1)

6×j is not necessary.
Now, we scrutinize the condition for A6×6 in Theorem 1. If we want to convert a plain text to its cipher
text via the third transformation, it is necessary to consider condition A6×6 A−1

6×6 6≡ I mod N. Therefore,
all nine patterns of self-invertible matrices (L6×6) in Section 3.3 should be avoided from the system
of Cipher Hexagraphic Polyfunction before implementing L3×3. This can enhance the security of the
cipher message.

Next, we give an implementation for the self-invertible matrix L6×6 from Example 8.
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Example 9. We let (a, b, c, d, f , g) ≡ (109, 35, 77, 91, 13, 1) mod 256. Since 77−1 = 133 and 91−1 = 211,
then we have

L6×6 ≡



109 35 77 148 221 179
91 220 13 165 137 243
1 153 48 255 3 209

110 35 77 147 221 179
91 221 13 165 36 243
1 153 49 255 3 208


mod 256. We have to make sure that the secret key follows

the conditions |L6×6| 6= 0 before proceeding to the encryption process. In this case, |L6×6| ≡ 171 mod 256.
Since L6×6 satisfies (|L6×6|, 256) = 1, then P6×6 has a unique solution and the decryption for C(1)

6×6 uses

P6×6 ≡ L−1
6×6C(1)

6×6 mod 256. Let us say we use the phrase ‘IHaveOneSister,TwoBrothersAndANiece’ as the

plain text and C(t)
6×6 ≡ Lt

6×6P6×6 mod 256, f or t = 1, 2, 3 will be used. This message then be translated into
the corresponding numbers based on ASCII (refer https://www.ascii-code.com) and [15] as follows:
73 72 97 118 101 79 110 101 83 105 115 116 101 114 44 84 119 111 66 114 111 116 104 101 114 115 65 110
100 65 78 105 101 99 101 46

The numbers are arranged into matrix of 6 rows and 6 columns as follows:

P6×6 ≡



73 110 101 66 114 78
72 101 114 114 115 105
97 83 44 111 65 101

118 105 84 116 110 99
101 115 119 104 100 101
79 116 111 101 65 46


mod 256.

Now, the encryption process of this massage is as follows:

C(1)
6×6 ≡ L6×6P6×6 ≡



192 179 187 138 47 137
100 133 207 188 180 41
45 235 243 13 60 205
147 184 204 88 51 116
71 119 202 198 195 45
63 202 176 23 60 4


mod 256,

C(2)
6×6 ≡ L6×6C(1)

6×6 ≡



73 110 101 66 114 78
72 101 114 114 115 105
97 83 44 111 65 101
118 105 84 116 110 99
101 115 119 104 100 101
79 116 111 101 65 46


mod 256,

C(3)
6×6 ≡ L6×6C(2)

6×6 ≡



192 179 187 138 47 137
100 133 207 188 180 41
45 235 243 13 60 205
147 184 204 88 51 116
71 119 202 198 195 45
63 202 176 23 60 4


mod 256.

Therefore, the corresponding numbers of the cipher text from the first and third transformation is as follows:
À d - “ G ? 3 . . . ë ¸ w Ê » Ï ó Ì Ê o Š 1/4 CR X Æ ETB / ′ < 3 Ã < 0/00 ) Í t - EOT
Now, maybe the third parties can analyze this message using the nine patterns of self-invertible matrices
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mentioned in Section 3.3 even though they do not know the decryption keys. By using P6×6 ≡ L6×6C6×6

mod 256, they can expect that the entries’ element in the first row of P6×6 are

p11 = 45a + 29b + 238c + 147, p12 = 251a + 14b + 33c + 184, p13 = 239a + 5b + 67c + 204,

p14 = 50a + 246b + 246c + 88, p15 = 252a + 241b + 51, p16 = 21a + 252b + 201c + 116,

the entries’ element in the second row of P6×6 are

p21 = 45d + 227a + 227 f gd−1 + 238 f + 71, p22 = 251d + 242a + 242 f gd−1 + 33 f + 119,

p23 = 239d + 251a + 251 f gd−1 + 67 f + 202, p24 = 50d + 10a + 10 f gd−1 + 246 f + 198,

p25 = 252d + 15a + 15 f gd−1 + 195, p26 = 21d + 4a + 4 f gd−1 + 201 f + 45,

the entries’ element in the third row of P6×6 are

p31 = 45g + 29b f gc−1d−1 + 18a + 18b f c−1 + 63, p32 = 251g + 14b f gc−1d−1 + 223a + 223b f c−1 + 202,

p33 = 239g + 5b f gc−1d−1 + 189a + 189b f c−1 + 176, p34 = 50g + 246b f gc−1d−1 + 10a + 10b f c−1 + 23,

p35 = 252g + 241b f gc−1d−1 + 60, p36 = 21g + 252b f gc−1d−1 + 55a + 55b f c−1 + 4,

the entries’ element in the fourth row of P6×6 are

p41 = 192 + 45a + 29b + 238c, p42 = 179 + 251a + 14b + 33c, p43 = 187 + 239a + 5b + 67c,

p44 = 138 + 50a + 246b + 246c, p45 = 47 + 252a + 241b, p46 = 137 + 21a + 252b + 201c,

the entries’ element in the fifth row of P6×6 are

p51 = 45d + 100 + 227a + 227 f gd−1 + 238 f , p52 = 251d + 133 + 242a + 242 f gd−1 + 33 f ,

p53 = 239d + 207 + 251a + 251 f gd−1 + 67 f , p54 = 50d + 188 + 10a + 10 f gd−1 + 246 f ,

p55 = 252d + 180 + 15a + 15 f gd−1, p56 = 21d + 41 + 4a + 4 f gd−1 + 201 f ,

and the entries’ element in the sixth row of P6×6 are

p61 = 45g + 29b f gc−1d−1 + 45 + 18a + 18b f c−1, p62 = 251g + 14b f gc−1d−1 + 235 + 223a + 223b f c−1,

p63 = 239g + 5b f gc−1d−1 + 243 + 189a + 189b f c−1, p64 = 50g + 246b f gc−1d−1 + 13 + 10a + 10b f c−1,

p65 = 252g + 241b f gc−1d−1 + 60, p66 = 21g + 252b f gc−1d−1 + 205 + 55a + 55b f c−1.

Using the self-invertible such as in Example 8, there are 2563 combinations of a, b and c from the first
and fourth rows, 2564 combinations of a, d, f and g from the second and fifth rows and 2566 combinations of
a, b, c, d, f and g from the last row that need to be tested before deriving the actual value of the plain text. The
same method is repeated by using another eight types of self-invertible keys until the actual message is found. It
is not impossible to get it so fast with the appropriate algorithm and high performance computer.

Previously, the study of self-invertible effects A4×4 on the system of Cipher Polygraphic
Polyfunction was pioneered by [7]. In this paper, we have the effect of using nine types of self-invertible
keys A6×6 on the same system. Perhaps in the future, we can expect the self-invertible pattern for Ai×i
for any even number i. This scenario is aimed to strengthening the prerequisites for a secret key before
sending the message.



Cryptography 2019, 3, 15 18 of 18

4. Conclusions

In conclusion, we obtained nine solutions L3×3 from L2
3×3 ≡ A3×3 mod N where A3×3 is a

diagonal and symmetric matricex. As a result, we produced nine patterns of self-invertible keys[
L3×3 I − L3×3

I + L3×3 −L3×3

]
such as in Section 3.3. We found that the plain texts are easily obtained by third

parties when these keys are used in Cipher Hexagraphic Polyfunction transformations. This is because
the self-invertible encryption key causes the repeating process in the system. With this approach, we
have updated the prerequisite for the secret key for the Cipher Polygraphic Polyfunction system for
A6×6 before sending the secret message.
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