
Citation: Catuogno, L.; Galdi, C.

Secure Firmware Update: Challenges

and Solutions. Cryptography 2023, 7,

30. https://doi.org/10.3390/

cryptography7020030

Academic Editor: Jim Plusquellic

Received: 24 April 2023

Revised: 23 May 2023

Accepted: 30 May 2023

Published: 1 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cryptography

Review

Secure Firmware Update: Challenges and Solutions
Luigi Catuogno 1,*,† and Clemente Galdi 2,†

1 Department of Economics, Law, Computer Science and Motor Sciences, Università degli Studi di Napoli
“Parthenope”, 80133 Napoli, Italy

2 Informatica Presso il Dipartimento di Studi Politici e Sociali, Università degli Studi di Salerno,
84084 Fisciano, Italy; clgaldi@unisa.it

* Correspondence: luigi.catuogno@uniparthenope.it
† These authors contributed equally to this work.

Abstract: The pervasiveness of IoT and embedded devices allows the deployment of services that
were unthinkable only few years ago. Such devices are typically small, run unattended, possibly on
batteries and need to have a low cost of production. As all software systems, this type of devices need
to be updated for different reasons, e.g., introducing new features, improving/correcting existing
functionalities or fixing security flaws. At the same time, because of their low-complexity, standard
software distribution platforms and techniques cannot be used to update the software. In this
paper we review the current limitations posed to software distribution systems for embedded/IoT
devices, consider challenges that the researchers in this area have been identifying and propose the
corresponding solutions.

Keywords: firmware update; software update; IoT; embedded devices; mobile devices

1. Introduction

The increasing use of Internet connected devices, has improved people’s everyday
life. Such devices can be used as building blocks for structured services that can be easily
deployed. They can be as tiny and simple as smart lamps, or have considerable computing
and storage capacities as home security controllers.

Given the huge number of possible devices that are currently available on the market,
the possibility that each one them runs multiple payloads and the corresponding wide range
of possible compositions of provided services, heterogeneity becomes a crucial property
that characterizes every IoT based system, independently from the specific application it
has been deployed for.

One key element that makes IoT devices widespread is the possibility of creating or
connecting to networks. At the same time, many devices have been designed to operate on
batteries, imposing the strong limitation of reducing as much as possible the power needed
to carry out all operations. Among all components of an IoT device, the one that consumes
more energy is by far the one devoted to the communication. This makes the design of soft-
ware components that have to be deployed on such devices particularly challenging since
the tradeoff between information dissemination, needed to correctly run the prescribed
task, and power consumption, necessary for guaranteeing device survivability, becomes
part of the software lifecycle since its early stages.

On the hardware side, a crucial feature of IoT devices is their cost. Clearly, better
performance/features increase the cost of each device and one important issue is to prop-
erly balance device costs and the desired device functionalities. In general, devices that
provide some type of hardware-supported security primitive have higher cost but, also,
corresponding higher security guarantees.

In order to be competitive, device manufacturers need to continuously release new
products with short time-to-market and lowest possible prices. To this end, in this specific

Cryptography 2023, 7, 30. https://doi.org/10.3390/cryptography7020030 https://www.mdpi.com/journal/cryptography

https://doi.org/10.3390/cryptography7020030
https://doi.org/10.3390/cryptography7020030
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://orcid.org/0000-0002-6315-4221
https://orcid.org/0000-0002-2988-700X
https://doi.org/10.3390/cryptography7020030
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography7020030?type=check_update&version=1

Cryptography 2023, 7, 30 2 of 17

market, it is extremely hard to produce devices with strong security guarantees. Further-
more, since new security threats are continuously discovered, each manufactures needs
to put in place a methodology to identify threats that apply to its products, produce
firmware/software updates that mitigate/solve the threat and securely update all the
devices that are subject to the identified flaw.

Addressing the need of firmware/software update is by itself a very challenging task
in this context for the following reasons:

• The number and features of stakeholders involved in different products deployments
may vary significantly. Each deployment site may have its own update/upgrade poli-
cies that may depend on the context and/or on internal security/operational policies.

• In a typical deployment, multiple devices from multiple manufacturers need to share
the same operational context. In many case, interoperability might be an issue and
the uncoordinated updates of a subset of devices might lead to service unavailability.
Furthermore, devices might even be unattended and prone to faults due to exter-
nal conditions.

• Each manufacturer needs to provide a scalable software distribution system that is
able to operate with thousands/millions of devices, in an asynchronous manner, while
guaranteeing correct delivery and software integrity even when devices might not be
able to execute complex security protocols.

These challenges have been largely addressed in different contexts, each characterised
by a specific set of requirements. Each solution in the literature has been designed with a
specific set of requirements, making it secure/efficient in the considered domain but, at the
same time, possibly insecure/inefficient in other contexts. In this paper we will present in
details requirements and restrictions that might appear in different operational contexts
and discuss solutions to the firmware distribution problem that have been presented in
the literature.

The rest of the paper is organized as follows. In Section 2, we report the reference
scenarios that are usually found in the literature. In Section 3 we discuss methodologies
and technologies that can be considered as building blocks for secure software update
systems. In Section 4 we describe software distribution models and systems that have been
presented in the literature. Finally, a discussion on open challenges will conclude the paper.

2. Reference Scenario

Managing the deployment of firmware and software updates for devices operating
within a IoT ecosystem is a pretty delicate task as it has a considerable impact on the
reliability and security of single devices as well as the whole infrastructure built upon them.
Furthermore, IoT and embedded devices are, nowadays, the preferred target of plenty of
attack vectors. This is due to several reasons that include:

Devices have, often, limited computational resources/capabilities so that, in some
cases, such constrained devices are not suitable to fully implement security protocols, peers’
authentication, data encryption algorithms and so on. The security of the whole system
may depend on the size of cryptographic keys that, because of such limitations, are forced
to be short. Limited bandwidth and/or high latency may be used to induce inconsistencies
in the different nodes in the network.

Devices might be installed and operate within a logical/physical domain which spans
over a wide area. This makes harder the design and setup of any centralized protection
of the domain boundaries. Furthermore, many devices frequently move across such
boundaries, e.g., all wearable devices follow their owner in her everyday activities. This
creates the need of designing software update systems that are resilient to attacks coming
from a maliciously programmed herd of transient nodes.

Devices operation might be mostly unattended and, thus, time might pass before
any potential intrusion or fault is discovered. In particular, device updates are mostly
accomplished in a fully automated way, hence, update procedures and protocols should

Cryptography 2023, 7, 30 3 of 17

be able to promptly detect any update fault and possibly revert the procedure in order to
bring the device back to a functional state.

IoT infrastructures may contain a noticeable number of (potentially heterogeneous)
devices. Update procedures and protocols should be designed to scale as well. A critical
aspect is that large scale updates take some time to be completed. In the meantime,
devices equipped with different firmware versions might coexist for a while and, moreover,
several faults might occur, making unavailable a certain number of devices. This may
affect the security and the reliability of the whole infrastructure (of some parts of it)
whenever, for example, devices running different firmware versions turn out to be partially
or fully incompatible.

3. Enabling Methodologies and Technologies

In this section we present basic methodologies and technologies that can be used to
build secure software distribution systems.

3.1. Hardware Classification

Embedded systems include a wide variety of equipment and computing devices (both
singles or grouped into cooperating architectures) which range from mobile hand-held
terminals, intended for general purposes, to highly specialized, variously sized and shaped
devices such as controllers, peripherals, RFID Tags, sensors etc. The characteristics of
such devices vary as well in terms of interaction kind and mean, purpose, computational
capabilities and resources.

Major applications of Embedded Systems feature multiple embedded devices, each
running its local software component, accomplishing its tasks and cooperating with the
others. The software every component runs, can be seen as a single distributed architecture
which features front-end applications, intermediate middleware layers and on-board OEM
firmware along with communication links and protocols used for the sake of overall system
coordination, interface and management.

In particular, IoT encompasses those embedded systems whose components commu-
nicate each others through TCP/IP based communication protocols and hence, potentially,
through public segments of the Internet. Very often, IoT architectures entail the massive
deployment of very cheap and constrained devices, with little (or none) interface, except
the network adapter, and limited computing capability.

Ensuring security, integrity and availability of the overall system is a critical aspect
in essentially all real-life applications that use IoT/embedded devices, e.g., [1–4]. Crypto-
graphic algorithms and security protocol are, in general, resource demanding tasks. To
this regard, design choices result in a trade-off between the security goals and the involved
devices capabilities.

Such decisional process may benefit from a standard device classification. A good
state-of-the-art can be found in [5] where the authors list a number of features that can
characterize each device. Examples are the size of the bus, that typically corresponds to the
CPU word size, the RAM size, the clock speed, the supported OS, the CPU power usage, the
type of supported communication mean, whether or not the processor supports asymmetric
cryptographic primitives. Given these features the authors identify 5 different classes of
devices, ranging from class 1 devices, corresponding PC-like devices, with MBs/GBs RAMs
and 64-bit processors, with high speed-wireless communication and running commercial
operating systems, to class 5 ones in which the CPU word size can be as low as 4 bits,
the RAM size ranges from few hundreds of byte to few kilobytes, slow processors, no
asymmetric cryptographic support, and so forth.

Looking closer to the IoT world, RFC 7228 [6] defines a classification for constrained
node networks consisting of three classes, where class-0 devices essentially correspond to
sensor-like motes, class-1 includes devices that are able to execute specifically designed low-
demanding protocol stacks and, finally, class-2 devices are capable of executing notebook-
like protocols while still having limited memory and computational capabilities.

Cryptography 2023, 7, 30 4 of 17

3.2. Trusted Execution Environments

Trusted Execution Environments (TEE) [7] consist of a set of hardware and software
components which enable a computing device to set up an architecture which put side-
by-side a Regular Execution Environment (REE) and one or multiple Trusted Execution
Environments. REE runs legacy OSes and applications (Regular Applications or RAs)
which are considered untrusted, while TEEs run a so called Trusted Applications (TA).
TEEs ensure code authenticity, integrity and confidentiality for running TAs along with
confidentiality of data any TA handles. Within a typical TEE-enabled platform, TAs are
intended to act as trusted back-ends for RAs, accomplishing critical tasks such as handling
cryptographic keys and user credentials.

Originally, once installed, TAs were intended to remain immutable. Alternatively,
main tasks of TAs lifecycle used to be carried out within OS or firmware updates which
were generally accomplished having the physical control of the device. Such a model, which
does not take into account the wide variety of actors and roles that could be involved into
TAs development and deployment, has been largely improved with the TEE Management
Framework Specifications (TMF).

The TMF specifies a set of operations for TEEs administration and models the in-
volved actors, their roles, relations and hierarchy through the concept of security domain.
Moreover, TMF specifies a security layer for authentication and secure communication.

TMF’s TA management operations, effectively fulfills the requirements of secure soft-
ware distribution amongst TEE-powered target devices. However, despite GlobalPlatform
compliant TEEs implementations are available for different hardware platforms including
ARM TrustZone [8], Intel SGX [9] and AMD-SEV.

3.3. Remote Attestation

Remote Attestation [10] is a security service [11] through which a verifier is able to
obtain a trustworthy measurement of the internal state of an untrusted device: the prover.
The word “Remote” does mean that the attestation process takes place by means of a
network protocol. Remote Attestation protocols essentially fall in two categories: Software-
and Hardware-based.

In Software-based Remote Attestation, the verifier has an “intimate” and direct knowl-
edge of some immutable characteristics of the prover (the attested device), e.g., the precise
time it needs to carry out a certain operation and how it impacts on its registers as well as
the capability to map its whole memory. So that, with the attestation process, the verifier
first challenges the prover, validates its response and verifies that the response computation
produced the expected side-effects (took the expected time) on the prover’s state.

This technique fits well enough those scenarios in which verifier and prover are
connected with no intermediates, whereas such kind of solutions have proved to be less
effective if applied to networked devices.

In Hardware-based Remote Attestation, the prover leverages a secure hardware com-
ponent to provide the verifier of a cryptographic proof of its state authenticity. The proof
includes a digitally signed measurement of a certain prover system component such as
checksums of in-memory code images or registers state. Cryptographic keys and algo-
rithms used to compute the proof are stored in a tamper-resistant storage and are not under
the control of the legacy software running on the device.

Plenty of solutions for Hardware-based attestation have been proposed. These are
built upon on of the different off-the-shelf secure hardware components such as Trusted
Computing’s TPM [12], ARM TrustZone [8] and Intel SGX [9], that implement strong
cryptographic primitives and protocols.

However, such solutions are not suitable for low-cost and computationally constrained
devices that are poorly (or not at all) equipped with cryptographic hardware and that
constitutes a significant “population” of any embedded/IoT ecosystem.

Cryptography 2023, 7, 30 5 of 17

3.4. Lightweight Cryptography

Secure firmware/software distribution systems need to guarantee basic security prop-
erties, namely payload confidentiality, integrity, authenticity and availability. In many cases,
software confidentiality needs to be protected as part of the IPR manufactures policies.
Furthermore, a publicly available firmware/software can be used by an adversary to obtain
information about its vulnerabilities that, in turn, can be used to mount an attack. Clearly
software integrity is a prerequisite to provide a device that will be working properly after
the software has been installed. Software authenticity guarantees the customer that the
software that is going to be installed has been developed by a software manufactures that
has been authorized by the product manufactures. Finally, software availability ensures
that each product owner is able to update the software whenever deemed necessary and, at
the same time, provides software manufactures a reliable way to timely distribute updates,
e.g., whenever a security flaw is identified.

Cryptographic schemes are fundamental building blocks for guaranteeing, in a strong
sense, security properties. Indeed, practically all softwares that use the Internet for imple-
menting their functionalities, implement some kind of cryptographic primitive to enforce
some security property.

The need of cryptographic primitives becomes even more important when considering
IoT/mobile devices. Indeed, in these contexts, by their nature, the devices need to use to
some extent networking in order to implement the intended functionalities.

Depending on the application context, the security of communications has to be
intended properly. For example, in the context of IoT, in many cases the confidentiality of
sensed data may not be an issue, e.g., when measuring the temperature in a given area. On
the other hand, the authenticity and the integrity of such data guarantee that the decision
process that uses them is not subject to any external malicious manipulation. From this point
of view, end-to-end security has to be intended as “application-to-application” security,
as opposed to “device-to-device” security. In many application scenarios, data might be
collected on one (IoT-device-)end and pass through a number of intermediate devices that
may pre-process/aggregate them before reaching the final processing end. Along this path,
some connections might be already protected by some type of cryptographic primitive, e.g.,
data-link encryption in cellphones. Nevertheless, application-to-applicaton cryptography
is desirable in order to ensure security regardless of the underlying communication system.

It is well known that cryptographic primitives implementations are resource demand-
ing. Clearly, their adoption in the IoT/mobile settings has to consider strong constraints of
these types of devices. Specifically, IoT/mobile devices are typically limited with respect to
processing capabilities and power consumption. Nevertheless, lightweight cryptographic
primitives need to guarantee high security standards.

Roughly speaking, cryptographic primitives can be partitioned into symmetric and
asymmetric ones. Symmetric cryptography assumes the existence of a key that is shared be-
tween two parties and that they keep secret. Symmetric schemes are, in general, lightweight
as they are designed to process few tens of bits at the time, the block, and typically, they
can be efficiently implemented in hardware. These primitives can be effectively used when
the set of parties is somehow static, small and known in advance.

Asymmetric cryptographic primitives use a pair of keys, known as the public key and
the secret key, that are mathematically related in a way that, (informally) one key can be
used to invert or verify the operations executed with the corresponding key in the pair.
This class of primitives allow secure interaction when the set of agents is dynamic, e.g.,
when there is the need to communicate with an unknown device. This flexibility comes at
the cost of speed. Asymmetric primitives are thousands of times slower than symmetric
ones, require much more computations since they’re based on mathematical operations
over variables consisting of hundreds or even thousands of bits.

Security of cryptographic primitives depends on a number of factors, one of which is
the key size. For secure primitives, the longer is the key, the more secure is the scheme. It is

Cryptography 2023, 7, 30 6 of 17

important to stress that the security of primitives of different classes or based on different
assumptions are not comparable simply by looking at their key size.

Literature on cryptographic research is vast and in continuous evolution. For the
purpose of this paper we first focus on schemes and solutions that have been subject to a
standardization process.

ISO/IEC 29192 [13] is a family of standards that focuses on lightweight cryptographic
primitives “suitable for lightweight cryptographic applications, including radio-frequency
identification (RFID) tags, smart cards (e.g. contactless applications), secure batteries,
health-care systems (e.g. Body Area Networks), sensor networks, etc.”. It currently consists
of 8 parts each dealing with different types of primitives. Specifically, part 1 presents
terms and definitions. ISO/IEC 29192 part 2 presents three lightweight block ciphers,
PRESENT [14], 64-bit block size, 80 or 128 bit key size, CLEFIA [15] and LEA, both with 128-
bit block size and 128, 192 or 256-bit key size while part 3 is devoted to the stream ciphers
Enocoro [16,17] and Trivium [18]. Part 4 introduces mechanisms based on lightweight
asymmetric cryptography. Specifically, cryptoGPS, an identification scheme, ALIKE, a
mechanism for authentication and key exchange, and an identity based signature scheme.
ISO/IEC 29192 part 5 defines three hash functions, PHOTON [19], SPONGENT [20] and
Lesamnta-LW [21]. ISO/IEC 29192 part 5 defines three Message authentication codes,
namely, LightMAC [22], Chaskey-12 [23] and “Tsudik’s keymode”. Part 7 deals with broad-
cast authentication protocols while, part 8 presents a method for authenticated encryption.

ISO/IEC 29167 [24] is a family of standards that presents solutions to secure RFID
communications. These mechanisms can be used only with RFIDs air interfaces that have
security mechanisms onboard. ISO/IEC 29167:1 presents a general framework for the
development of security mechanisms. The other parts of the standard ISO/IEC 29167,
presents security services based on block ciphers AES-128 (part 10), PRESENT-80 [14]
(part 11), AES OFB (part 14), RAMON [25] (part 19), SIMON [26] (part 21) and SPECK [26]
(part 22), ECC-DH key agreement (part 12), on the stream cipher Grain-128A (part 13),
XOR (part 15), on Elliptic Curve cryptographic primitives ECDSA-ECDH (part 16), on the
cryptoGPS identification scheme (part 17).

Elliptic Curve Cryptography has, in general, a fundamental role in the design of secure
mechanisms and, in particular, when such mechanisms have to be executed on constrained
devices. This is essentially due to the possibility of having short keys and efficient al-
gorithms that can be implemented and executed on IoT/mobile devices, while keeping
high security levels. Such importance is testified by a large number of standards that deal
with this type of cryptosystems. ISO/IEC 15946 [27] family describes the mathematical
background and the curve generation algorithms that are at the basis of primitives like
ciphers ISO/IEC 18033-2 [28], digital signatures ISO/IEC 9796-3 [29], ISO/IEC 14888-3 [30]
key management ISO/IEC 11770-3 [31] and others.

The new standard for lightweight cryptography selected by NIST at the end of the
NIST Lightweight Cryptography competition (2019–2023) [32] is a family of authenticated
encryption and hashing algorithms called Ascon [33]. Such family of primitives had already
been selected as winner of the Ceaser competition (2014–2019) [34].

In recent years, the advances in the design and prototyping of quantum technologies,
on one side, and on quantum computing, on the other side, have made clear the need
of developing cryptographic primitives that were able to resist to threats posed by ad-
versaries able to effectively use quantum computing technologies. In this direction, the
NIST launched the Post-Quantum Cryptography Standardization [35], a project for the
selection, evaluation and standardization of quantum-resistant public-key cryptographic
algorithms. At the time of this writing, the process has reached its fourth round and
the algorithms that are currently under evaluation are a public-key encryption and key-
establishment algorithm named Crystals-Kyber, and three digital signature algorithms,
namely, Crystals-Dilithium, Falcon and Sphincs+.

To this end, the field of secure software updates is not an exception. As observed by the
IETF Software Updates for Internet of Things (SUIT) group in [36], since the lifespan of IoT

Cryptography 2023, 7, 30 7 of 17

devices may last decades, manufacturers should start considering the use of post-quantum
cryptographic primitives. There are few studies, e.g., [37,38] that analyze the feasibility and
performance of quantum-resistant cryptographic primitives on IoT-class devices.

What we’ve discussed so far are cryptographic primitives that have been developed
for IoT devices and that have undergone a standardization process. There are, of course,
many other secure cryptographic primitives that can be deployed on IoT devices but that
have not been standardized, yet. In general, ECC-based cryptographic primitives can be
used to design Identity-based cryptographic schemes [39] in which the public key of an
entity can be derived from its publicly available identity, e.g., a unique arbitrary identifier,
an email address, etc. The use of ID-based cryptographic primitives reduces the need of a
secure infrastructure that keeps the association between identities and their corresponding
public keys. Whenever a public key for a specific identity is needed, everyone can compute
it starting from the identity and the scheme public parameters. A generalization of ID-
based schemes are the Attribute-Based Encryption (ABE) primitives [40], in which the
the secret key of the entity is related to some attributes the entity may possess, e.g., a
specific processor type or a specific amount of memory, etc. In the case of encryption, the
ciphertext is dependent on a set of attributes and the decryption is possible only if the
attributes of the decrypting entity match the decryption policy. There are essentially two
families of ABE schemes. In Key policy ABE, (KP-ABE) [41], the ciphertext is associated
with a set of attribute labels and the decryption policy is embedded in the key sent to the
user. In this case, the key generator is able to dynamically redefine the access policy. In
contrast, in Ciphertext-policy Scheme, (CP-ABE) [42], the decryption policy is embedded
in the ciphertext and, thus, the encrypting entity (statically) defines the decryption policy
associated to a specific message. Attribute-based cryptographic primitives constitute
flexible tools for enforcing access control on encrypted data.

3.5. Intelligent Networking

A central role in IoT/mobile devices lifecycle is clearly played by the networks on
which such devices are deployed and through which the firmware is delivered. By the
end of 1990s, the increasing amount of data available on the Internet and complexity of
applications made clear the need of an evolution in the support for the development,
deployment and operation of Internet services. The introduction of IoT devices, with
the increased amount of data that needed to be collected and processed, boosted this
process. Grid, cloud, fog and, lately, edge computing constitute the path of “computing”
paradigms of this evolution process. These technologies progressively moved the (part of)
data processing load from a centralized system to a fully distributed one that is “closer”
(and may consist of part of) the IoT devices. In parallel, there have been a number of
proposals for intelligent networking, whose aims spans from reducing the burden of
network management like in Software defined networks (SDN) [43], e.g., by separating
the “control” layer from the application one, to ease the access content like in Content
Centric Networking (CCN) [44], e.g., by defining protocols to that allow naming of objects
on the network as in Named Networks (DND) [45], by abstracting the concept of “address”
associated to each object.

While modern distributed computing paradigm constitute enabling technologies for
the development of services that were impossible before, from the point of view of software
distribution, a key role is played by future internet technologies. In this respect, such
technologies allow to base the availability and scalability of the software distribution
system, on availability and scalability properties guaranteed by the underlying intelligent
networking system. Furthermore, in some case, the primitives providing by the networking
system, impact on the ease of design and implementation on the update service.

3.6. Blockchains and DLTs

Since their introduction in 2008, blockchains have been used in different contexts
to fulfil different objectives. Briefly speaking, a blockchain is a sequence of blocks, each

Cryptography 2023, 7, 30 8 of 17

containing multiple transactions, that are linked together in a linear and immutable way.
Immutability has to be intended in the sense that, once a transaction is registered in the
blockchain, it cannot be removed or its “position” in the chain cannot be altered. It is
always possible to add new blocks to the blockchain by collecting a set of transactions
and binding all of them to previous blocks in the chain by means of cryptographic hash
functions. All transactions stored in the blockchain are publicly accessible and verifiable.
Stated in this way, blockchain appears to be a special kind of distributed database. For
example, a node might compare the checksum of the software it’s going to install with the
corresponding one stored in the blockchain. The interest in blockchains is due to the fact
that they are implemented by means of distributed ledger technologies (DLTs), that is a set
of technologies that allow the implementation of a geographically distributed blockchain,
with the guarantee that replicated data are consistent. Security of such technologies comes
from the security of the cryptographic primitives used to construct the blockchain and by
the fact that corrupting a sufficient number of nodes while they’re reaching the consensus
on the next node to add to the chain, is considered impossible.

Modern blockchains offer the possibility of interacting with external applications by
means of smart contracts, that are procedures that are stored on the blockchain, executed
by the blockchain using inputs coming from external applications and data stored on the
blockchain. The authenticity and integrity of such procedures is inherently guaranteed by
immutability of information stored on the blockchain. For example, it might be possible to
write smart contracts that verify complex dependency properties during the installation
of multiple (authentic) software packages. This interaction distributes the load of soft-
ware verification among the nodes on the blockchain, while guaranteeing the security of
the results.

4. Software Distribution Systems

One of the problems related to firmware update is the setup of an infrastructure that
allows secure and reliable software distribution. The need of this infrastructure arose
as soon as the software industry started using the Internet to distribute software and
its updates. With this regards, major software distribution infrastructures use classical
cryptographic tools, namely, hash functions and public key cryptography, to guarantee
software security.

However, as stated in the previous sections, such solutions are not applicable to
software/firmware updates for IoT/embedded systems, essentially for two reasons. The
first one is the limited resources, both in terms of bandwidth and computational capabilities,
of devices that may not be able to execute costly cryptographic primitives. The second one
is the number of devices that should be updatable at the same time.

4.1. Secure Software Distribution Models

Given the widespread of IoT devices, there have been different attempts towards a
standardization of the firmware update process. The IETF Software Updates for Internet of
Things (SUIT) group released the RFC [36] in which basic requirements for the distribution
infrastructure are presented.

One interesting issue pointed out in [36] is the definition of a standard software
manifest, a document that describes the software along with its required dependencies.
However, from a technical point of view, this RFC does not discuss installation robustness,
timeliness of delivery, energy-efficiency of update procedures.

The SUIT group identified six stakeholders that are involved in the firmware update.

• The device. The key element in this model is the device on which the firmware has to
be installed/updated.

• The firmware Author, who creates the image to be installed;
• Device Operator runs the day-by-day operations of the fleet of IoTs;
• Network Operator is responsible for the operations of the network to which IoT

devices are connected;

Cryptography 2023, 7, 30 9 of 17

• Trusted Provisioning Authority (TPA), the entity who is responsible for defining trust
anchors and update policies for the update process;

• User who actually uses the IoT fleet via web or other devices.

This is the minimal set of stakeholders that can be found in an IoT deployment.
However, there are cases in which some of these stakeholders may collapse to a single
entity, e.g., network and device operators might be the same entity. Similarly, there are
actual deployment in which the same stakeholder may appear in multiple instances, each
with different privileges, e.g., multiple users in the same network or multiple networks
managing the same fleet of devices.

The RFC also provides a minimal set of functionalities that need to be provided in
order to guarantee the security of firmware update. These functionalities are:

• The status tracker, consisting of a server component and a client component, that is re-
sponsible for identifying the availability/triggering the update process and convoying
information about the hardware and the available firmware.

• The firmware consumer, that receives the firmware and the manifest, interacts with
the status tracker and executes the firmware update.

• The firmware server that distributes the firmware images and their corresponding manifests.
• The bootloader that is executed when the devices starts up and, if deemed appropriate,

executes the newly installed firmware or rolls back to the previously installed one.

Most of modern IoT devices can execute the firmware update autonomously, without
the need of being cable-connected to an external driver. This means that, besides having
the capability of using the network to connect to the firmware server, they need to have
onboard elements like the manifest parser, the capability of writing to a persistent storage,
the ability to post-process the received image, e.g., decrypting/decompressing the image
or verifying its integrity/authenticity.

Firmware updates may be either client-initiated, via regular polling executed by
status tracker onboard the IoT device, or server-initiated, through in a push-like procedure
where the (server) status tracker selectively informs the IoT of the need/existence of a new
available firmware release.

The RFC discusses multiple possibilities that allow to transfer the firmware from the
author to the device. Furthermore, different possibilities are available for installing the
new firmware. Every possible decision on the specific selection of the transfer and installa-
tion procedures strongly depend on the actual application scenarios and it requirements.
Clearly, firmware installation is security sensitive procedure that, in most cases, requires
the interaction of the firmware consumer with the bootloader that restarts the device and
executes the last steps of the installation procedure.

4.2. Threat Model

The threat model defines the capabilities an adversary may put in place when attacking
the system, indented as the set of operations the adversary may execute along with the
type of information that are available for the attack. Clearly, systems that may be secure
in one model may become unrecoverably insecure in a different one. It is thus crucial to
precisely define the threat model at the very beginning of the system design.

When dealing with software/firmware updates in IoT settings, there might be different
features that may influence the threat model, e.g., attended vs unattended devices, high
speed vs low speed connections, existence of cryptographic hardware etc. However, the
following basic features have to be defined in every system:

• Passive vs. active adversaries. An adversary is passive if he can only eavesdrop part
or all the communications among parties. An active adversary, instead, may try to
interfere with the correct execution, e.g., by injecting messages.

• External adversary. This type of adversary does not have access to any device on the
network. Nevertheless, it tries to attack the system by mounting attacks tries to induce

Cryptography 2023, 7, 30 10 of 17

the installation of non-legit software images, impose the external code-injection/denial
or service/rollback attack.

• Internal adversary-malicious/fraudulent consumer. The adversary owns/has access
to one or multiple devices involved in the software upload process. Under this
hypothesis, the adversary may try to obtain/induce the installation of some software
his device(s) is not entitled to, e.g., in case of license infringement, installation of
non-paid features or maliciously inducing device/service malfunctioning.

A typical threat model in the area of secure firmware/software update considers ex-
ternal and active adversaries, trying to induce the installation of wrong/modified versions
of the software or to induce the rollback to previous versions of the software, e.g., in order
to exploit some known security flaw.

4.3. Security Requirements

A key element in the design and deployment of a secure firmware update system
is the clear definition of the security properties that the software update system has to
guarantee, along with the corresponding deployment restrictions. Obviously, an insecure
software/firmware update system may represent a security threat that is more dangerous
than the one induced by the software bug it’s trying to fix. Classical security properties can
be instantiated in the context of software updates as follows:

Software authentication guarantees that the device is able to identify the author of
the software and the manifest before its installation. This property clearly prevents the
installation of software produced by malicious third parties.

Software integrity guarantees that the manifest or the software that is going to
be installed has not been modified by any third party. Notice that, whenever the soft-
ware consists of multiple modules/packages, software integrity guarantees that all mod-
ules/packages have been correctly delivered.

Confidentiality protection might be required in different contexts. This property
guarantees that the software and its manifest can be read only by the device that is intended
to install it. The need of protecting the software from unauthorised parties may be due to the
fact that the software is intendeLd as an intellectual property of its authors. Another reason
for which such property may be requires is the fact that an adversary may reverse-engineer
the software in order to find bugs or vulnerabilities. In [36], confidentiality protection is
considered as an optional property.

In order to guarantee “classical” security properties in IoT devices, as we have seen
in Section 3.4, there exist plenty of cryptographic primitives that have been specifically
designed to work on constrained devices. It is still necessary to continuously monitor
advances in the cryptanalysis of these primitives and to properly choose the key size for
such primitives that do allow to select such security parameter. As usual, the usage of a
secure primitive can turn into a completely insecure deployment whenever the operational
context is not considered properly. This means that the primitive has to be considered as a
building block of a more complex protocol that involves all parties listed in Section 4.1 and
whose security should be considered as a whole.

4.4. Challenges and Solutions

Besides the above classical security properties defined in the previous section, there
are a number of properties that arose in the last years and that have been set out and dealt
with in different papers.

It has been shown, e.g., [5,46–48] that, using class-4 devices, as defined in [5], i.e.,
devices with few KBs of RAM, with 8-bit processors, that do support ECC asymmetric
cryptographic primitives, in conjunction with class-1 or class-2 devices, to secure the system
operations and, in particular, the software update process. It is thus crucial to have one or
more “PC-like” devices in loop in order to be able to execute the high level computations
and to work as local decision point for the installation policy. At the same time, securing
deployments with class-5 devices is still possible but requires ad-hoc solutions that need

Cryptography 2023, 7, 30 11 of 17

use/implement symmetric cryptographic primitives, while using techniques like pre-
loaded keys to secure and authenticate communications.

The ASSURED Architecture [49] performs Secure Software Updates for embedded
devices with particular attention to the “IoT ecosystem”. In order to cover different classes
of target devices, the design of ASSURED offers different solutions for inter-parties authen-
tication, secure communication and remote attestation. In particular, ASSURED provides
end-to-end security and local update authorization leveraging TMF’s TA management
facilities as long as the pool of devices to be updated includes a TMF-enabled controller.

In some real-world scenarios, especially in the context of IoT, devices are unattended,
and/or deployed in inaccessible locations and/or can connect only wirelessly to the update
server [48–51]. In such scenarios, the security of the update procedure should consider
the need of using an over the air connection that is, by itself, insecure. Because of this,
confidentiality and authentication might be ensured in an end-to-end fashion where the
destination-end is the device and, depending on the actual deployment scenario, the
source-end might vary from the author’s distribution server to network operator one.

Typical IoT deployments consists of thousands of devices that might, potentially,
require concurrent updates. From the point of view of device manufacturers, there is the
need of setting up an update infrastructure that should be able to potentially update millions
of devices at the same time. From this discussion, it is clear that scalability is a feature that
need to needs to be provided by software update infrastructures [52–54]. Furthermore, as
observed in [49], update infrastructures cannot require interactive procedures and should
minimize the work required on the device side. Another issue to be solve, in such scenarios,
is to properly identify which device is authorized/required to download and install a
specific piece of software. In [55] the authors take advantage of naming primitives provided
by Named Networks [45] and attributed based encryption schemes, by assigning each
image a name that depends on the sequence of attributes that characterize the device for
which such image has been built. In this way, each device have a specific set of “attributes”
will be able to retrive the encrypted image it needs and to decrypt it using its own attributes.

In many cases, devices are running applications by different authors on top of the
firmware produced by the manufacturer [56–60] A observed in [60], different types of
software might have different degrees of criticality. Clearly, the firmware running on
a device is the most critical software whose insecurity threatens the operations of the
device. On the other hand, an insecure payload running on the device is less critical in
the sense that it might lead to the unavailability only on the service it executes, while
the other services running on the same device might be completely unaffected. One key
issue in such multi-application/multi-tenant devices is the capability to enforce the system
stability, i.e., the capability to prevent that an inappropriate update badly interfere with
the firmware or other applications on the device. This property, already identified in [61]
in the enterprise-wide applications, considered the hidden dependencies, i.e., the ones
induces by the complexity of the “enterprise” system. Authors considered different faults
types, all implicitly assumed to be part of accidental (non-malicious) errors. There were
different solutions for this model, e.g., upgrading one node at the time or enforcing and
verifying atomic updates in a sealed compartment before switching to the new software
version. However, these solutions implicitly assumed the capability of detecting a fault in a
compartment or the even stronger assumption of a centralized supervision of the update
process. However, in the context of IoT/mobile devices, an active adversary might try to
break software dependencies by installing inappropriate software [59,62], e.g., trying to
break licensing rules or to actively operate to make the system unstable.

Recently some authors consider the convergence of IoT deployments with the world
of cloud/fog storage and computing. In such scenarios, the dynamic nature of the network
topology on the cloud side is guaranteed by the SDN paradigm [54]. Although security
is clearly a prerequisite in such deployments, interoperability among different devices
for different computing services and/or storage services, e.g., smart home [63], smart
cities [64], mobile storage [65], etc.

Cryptography 2023, 7, 30 12 of 17

Security issues related to power draining attacks have always been central in the
research on battery operated devices. In particular, maliciously modified firmware may
attach directly the battery management system [66]. In these cases, different techniques are
available, ranging from preventing the attack by monitoring of the device power consump-
tion [67,68] to recovering from a modified firmware using the support of a blockchain [66].

A further step to automate and enforce IoT firmware/software updates in hetero-
geneous deployments is the one of using blockchains [50,69]. As stated in the previous
section, corrupting data stored in a blockchain is impossible. Furthermore, the geographic
distributed nature of blockchains is a guarantee for scalability for the resource demanding
task of software distribution. Notice that this solutions add new components in the model
defined in Section 4.1. Indeed, the blockchain becomes a new component that lays between
the manufacturer and the site/network operator and is used by the latter to identify and
authenticate software/firmware components before their installation on the final devices.

There are solutions, e.g., [60], that go in the opposite direction of imposing the direct
operator control over software/firmware requests. Typically, such solutions assume the
existence of a human operator who is responsible for identifying devices and software that,
in the domain under her control, need to be updated. Furthermore, she has the authority to
impose the installation of software to all the devices. As usual, whenever there is a human
in the loop, the classical problems of continuous user authentication [57,58], usability of
authentication devices [70,71] have to be carefully considered.

In Tables 1 and 2, we summarize some of the results reported above.

Table 1. Comparing existing solutions.

Zandberg et al. [46] De Sousa et al. [48] Asokan et al. [49] Karthik et al. [72]

Required
Computational

Capabilities

Class-2 devices and
lightweight

cryptography

Class-3 devices with
TCP-IP capabilities

Heterogeneous devices
assigned to a primary

domain controller with
TEE + TMF

Heterogeneous devices
grouped with a

primary domain
controller with PC-like

capabilities

Unattended operations Initial update module +
preloaded trust anchor

Bootloader rolls back
invalid updates

Remote attestation to
check updates N/A

End-to-end security Signed Manifest and
firmware

Device authentication
via preloaded

credentials

Authorization tokens in
update packages

Package source
authentication via
digital signature

Multiple stakeholders Legacy RTOS + single
firmware image N/A TEE + secure boot to

protect code and keys N/A

Scalability Multicast protocol suite Requires interactive
protocol

Package delivery
outsourced to a CDN

Requires interactive
protocol

Heterogeneous devices
Standard OS, libraries,
runtime and protocol

stack
N/A Not Specified Not Specified

Network Intelligence N/A Device management in
cloud

Payload delivery
through a CDN N/A

Cryptography 2023, 7, 30 13 of 17

Table 2. Comparing existing solutions.

Anastasiou et al. [50] Ambrosin et al. [55] Seitz et al. [60] Catuogno et al. [59]

Required
Computational

Capabilities

LoRA Alliance
complaint devices

Lightweight
cryptography

PC- like controller in
the loop + lightweight

cryptography
TEE

Unattended operations Public keys preloaded
in devices

Public keys preloaded
in devices

Software updates are
partially automated
(Human in the loop)

Software update may
be fully automatic

End-to-end security

Software packages
signed at source.

Integrity and
installation policy
driven via smart

contracts

Encrypted and signed
payloads using ABE

Software packages
signed at source

Software packages
signed at source +
installation policy

enforcement via secret
sharing

Multiple stakeholders N/A Not specified Legacy OS + Multiple
third party applications

Legacy OS + Multiple
third party applications

Scalability
Multicast protocol suite

+ geographically
distributed blockchain

Use of Named
Networks N/A Not specified

Heterogeneous devices LoRA Alliance
complaint devices Not specified Not Specified Not Specified

Network Intelligence Underlying Blockchain Named Networks N/A N/A

4.5. Challenging Issues

The literature on the IoT devices is vast due to the enormous number of possible
variables that influence each deployment. Just to name few, device heterogeneity in multi-
manufacturer/multi-tenant deployments. In the specific context of software/firmware
update, the need of allowing the definition and enforcement of local installation policies
that might contrast with the manufacturer defined ones.

There are some issues we believe require specific attention when deploying a software
update system in the IoT/embedded operational context.

The first one is the need of revoking and renewal of corrupted keys. This issue
is particularly relevant in all deployments in which devices are unattended. However,
it is gaining increasing importance also in cases in which devices are somehow secure,
e.g., smart home devices, because a corrupted key provides access to an adversary to
an environment that was allegedly assumed secure. Key renewal/revocation might, in
principle involve a specific device. However, if the key management system is poorly
designed, it might induce the need of involving all devices in a given domain.

The possibility of giving control to device owners is another crucial point. If we think,
again, to the case of smart home, the owner has all the rights to decide which device
has to be updated. Unfortunately, users typically do not have the necessary expertise to
take informed decisions. In a heterogeneous single-manufacturer environment, this is not
really an issue. The complexity of decision making becomes high in multi-manufacturers
deployments in which a properly designed middleware might provide a good support to
the device owner.

The use of blockchains as support for software/firmware update infrastructures might
have an impact of scalability and security. However, there are some issues that still need to
be properly considered in an actual deployment. Blockchain transactions typically have
a cost that is used to support providers of the DLT on which the blockchain runs. In
some cases, such costs can be extremely high. A second important issue is the number of
transactions per second the blockchain can provide. In many cases, despite the interest
in such technologies, the currently available solutions in many cases cannot provide a
sufficient number of transactions per second that might be of interest for the purposes of

Cryptography 2023, 7, 30 14 of 17

software updates of worldwide distributed IoT devices. To this aim, a possible candidate
might be the Algorand blockchain [73] that has extremely low costs, currently $0.0002 per
transaction, and high number of transactions per second, currently up to 6000 TPS.

5. Conclusions

In this paper we have analyzed the problem of software/firmware updates in the
context of IoT/embedded devices. We have argued that complexity of the IoT world is
essentially related to heterogeneity and multi-manufacturer deployments. Furthermore, the
need of executing resource demanding security primitives on resource constrained devices,
makes the design and deployment of secure distribution infrastructures a challenging task.
We have discussed a set of enabling technologies and methodologies that are currently used
to deploy secure systems. We have also discussed some challenges that naturally appear
in the this specific context and listed some solutions proposed in the literature. We finally
presented some issues that we believe need to be carefully considered when designing and
deploying a new software update infrastructure in a specific application scenario.

Funding: This work was partially supported by project SERICS (PE00000014) under the MUR
National Recovery and Resilience Plan funded by the European Union—NextGenerationEU.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gao, H.; Qiu, B.; Duran Barroso, R.J.; Hussain, W.; Xu, Y.; Wang, X. TSMAE: A Novel Anomaly Detection Approach for Internet

of Things Time Series Data Using Memory-Augmented Autoencoder. IEEE Trans. Netw. Sci. Eng. 2022, early access. [CrossRef]
2. Gao, H.; Zhang, Y.; Miao, H.; Barroso, R.J.D.; Yang, X. SDTIOA: Modeling the Timed Privacy Requirements of IoT Service

Composition: A User Interaction Perspective for Automatic Transformation from BPEL to Timed Automata. Mob. Netw. Appl.
2021, 26, 2272–2297. [CrossRef]

3. Catuogno, L.; Turchi, S. The Dark Side of the Interconnection: Security and Privacy in the Web of Things. In Proceedings of the
2015 9th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing, Santa Catarina, Brazil,
8–10 July 2015; pp. 205–212. [CrossRef]

4. Cañedo, J.; Skjellum, A. Using machine learning to secure IoT systems. In Proceedings of the 2016 14th Annual Conference on
Privacy, Security and Trust (PST), Auckland, New Zealand, 12–14 December 2016; pp. 219–222. [CrossRef]

5. Gupta, H.; van Oorschot, P.C. Onboarding and Software Update Architecture for IoT Devices. In Proceedings of the 17th
International Conference on Privacy, Security and Trust, PST 2019, Fredericton, NB, Canada, 26–28 August 2019; pp. 1–11.
[CrossRef]

6. Bormann, C.; Ersue, M.; Keranen, A. RFC 7228: Terminology for Constrained-Node Networks; IETF: Wilmington, DE, USA, 2014.
7. GlobalPlatform. TEE System Architecture v1.3. 2022. Available online: http://www.globalplatform.org (accessed on

21 April 2023).
8. ARM Ltd. ARM Security Technology. Building a Secure System Using TrustZone Technology. 2008. Available online:

http://www.arm.com (accessed on 21 April 2023).
9. Costan, V.; Devadas, S. Intel SGX Explained. Cryptology ePrint Archive, Paper 2016/086. 2016. Available online: https:

//eprint.iacr.org/2016/086 (accessed on 21 April 2023).
10. Jakobsson, M. Secure Remote Attestation. Cryptology ePrint Archive, Paper 2018/031. 2018. Available online: https:

//eprint.iacr.org/2018/031 (accessed on 21 April 2023).
11. Catuogno, L.; Galdi, C. Ensuring Application Integrity: A Survey on Techniques and Tools. In Proceedings of the 9th International

Conference on Innovative Mobile and Internet Services in Ubiquitous Computing—IMIS 2015, Santa Cantarina, Brazil, 8–10 July
2015; pp. 192–199. [CrossRef]

12. Arthur, W.; Challener, D.; Goldman, K. A Practical Guide to TPM 2.0: Using the New Trusted Platform Module in the New Age of
Security; Springer: Berlin/Heidelberg, Germany, 2015.

13. ISO/IEC TR 29192; Information Security—Lightweight Cryptography. Standard International Organization for Standardization:
Geneva, Switzerland, 2013.

14. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.B.; Seurin, Y.; Vikkelsoe, C. PRESENT: An
Ultra-Lightweight Block Cipher. In Cryptographic Hardware and Embedded Systems—CHES 2007, Proceedings of the 9th International
Workshop, Vienna, Austria, 10–13 September 2007; Springer: Berlin/Heidelberg, Germany, 2007; pp. 450–466.

15. Shirai, T.; Shibutani, K.; Akishita, T.; Moriai, S.; Iwata, T. The 128-Bit Blockcipher CLEFIA (Extended Abstract). In Fast Software
Encryption; Biryukov, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 181–195.

http://doi.org/10.1109/TNSE.2022.3163144
http://dx.doi.org/10.1007/s11036-021-01846-x
http://dx.doi.org/10.1109/IMIS.2015.86
http://dx.doi.org/10.1109/PST.2016.7906930
http://dx.doi.org/10.1109/PST47121.2019.8949023
http://www.globalplatform.org
http://www.arm.com
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2018/031
https://eprint.iacr.org/2018/031
http://dx.doi.org/10.1109/IMIS.2015.31

Cryptography 2023, 7, 30 15 of 17

16. Watanabe, D.; Okamoto, K.; Kaneko, T. A hardware-oriented light weight pseudo-random number generator enocoro-128v2. In
Proceedings of the 2010 Symposium on Cryptography and Information Security, SCIS 2010, Okayama, Japan, 8–12 December
2010. (In Japanese)

17. Watanabe, D.; Owada, T.; Okamoto, K.; Igarashi, Y.; Kaneko, T. Update on Enocoro stream cipher. In Proceedings of the
2010 International Symposium On Information Theory & Its Applications, Taichung, Taiwan, 17–20 October 2010; pp. 778–783.
[CrossRef]

18. De Cannière, C.; Preneel, B. Trivium. In New Stream Cipher Designs: The eSTREAM Finalists; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 244–266. [CrossRef]

19. Guo, J.; Peyrin, T.; Poschmann, A. The PHOTON Family of Lightweight Hash Functions. In Advances in Cryptology—CRYPTO
2011, Proceedings of the 31st Annual Cryptology Conference, Santa Barbara, CA, USA, 14–18 August 2011; Rogaway, P., Ed.; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 222–239.

20. Bogdanov, A.; Knežević, M.; Leander, G.; Toz, D.; Varıcı, K.; Verbauwhede, I. Spongent: A Lightweight Hash Function. In
Cryptographic Hardware and Embedded Systems—CHES 2011, Proceedings of the 13th International Workshop, Nara, Japan, 28 September–1
October 2011; Preneel, B., Takagi, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 312–325.

21. Hirose, S.; Ideguchi, K.; Kuwakado, H.; Owada, T.; Preneel, B.; Yoshida, H. A Lightweight 256-Bit Hash Function for Hardware
and Low-End Devices: Lesamnta-LW. In Information Security and Cryptology—ICISC 2010, Proceedings of the 13th International
Conference, Seoul, Republic of Korea, 1–3 December 2010; Rhee, K.H., Nyang, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2011;
pp. 151–168.

22. Luykx, A.; Preneel, B.; Tischhauser, E.; Yasuda, K. A MAC Mode for Lightweight Block Ciphers. In Fast Software Encryp-
tion, Proceedings of the 23rd International Conference, FSE 2016, Bochum, Germany, 20–23 March 2016; Peyrin, T., Ed.; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 43–59.

23. Mouha, N.; Mennink, B.; Van Herrewege, A.; Watanabe, D.; Preneel, B.; Verbauwhede, I. Chaskey: An Efficient MAC Algorithm
for 32-bit Microcontrollers. In Selected Areas in Cryptography—SAC 2014; Joux, A., Youssef, A., Eds.; Springer International
Publishing: Cham, Switzerland, 2014; pp. 306–323.

24. ISO/IEC TR 29167; Information Technology—Automatic Identification and Data Capture Techniques—Part 1: Security Services
for RFID Air Interfaces. Standard International Organization for Standardization: Geneva, Switzerland, 2014.

25. Hinz, W.; Finkenzeller, K.; Seysen, M. Secure UHF Tags with Strong Cryptography-Development of ISO/IEC 18000-63 Compatible
Secure RFID Tags and Presentation of First Results. In Proceedings of the SENSORNETS 2013—Proceedings of the 2nd
International Conference on Sensor Networks, Barcelona, Spain, 19–21 February 2013; pp. 5–13.

26. Beaulieu, R.; Treatman-Clark, S.; Shors, D.; Weeks, B.; Smith, J.; Wingers, L. The SIMON and SPECK lightweight block ciphers. In
Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC), San Francisco, CA, USA, 7–11 June
2015; pp. 1–6. [CrossRef]

27. ISO/IEC TR 15946; Information Technology—Security Techniques—Cryptographic Techniques Based on Elliptic Curves. Interna-
tional Organization for Standardization: Geneva, Switzerland, 2016.

28. ISO/IEC TR 18033; Information Technology—Security Techniques—Encryption Algorithms—Part 2: Asymmetric Ciphers.
International Organization for Standardization: Geneva, Switzerland, 2006.

29. ISO/IEC TR 9796-3; Information Technology—Security Techniques—Digital Signature Schemes Giving Message Recovery—Part
3: Discrete Logarithm Based Mechanisms. International Organization for Standardization: Geneva, Switzerland, 2006.

30. ISO/IEC TR 14888; IT Security Techniques—Digital Signatures with Appendix—Part 3: Discrete Logarithm Based Mechanisms.
International Organization for Standardization: Geneva, Switzerland, 2018.

31. ISO/IEC TR 11770-3; Information Security—Key Management—Part 3: Mechanisms Using Asymmetric Techniques. International
Organization for Standardization: Geneva, Switzerland, 2021.

32. NIST Lightweight Cryptography competition (2019–2023). Available online: https://csrc.nist.gov/Projects/lightweight-
cryptography (accessed on 21 April 2023).

33. Ascon—Lightweight Authenticated Encryption & Hashing. Available online: https://ascon.iaik.tugraz.at (accessed on 21 April 2023).
34. CEASER Cryptographic competitions (2014–2019). Available online: https://competitions.cr.yp.to/caesar.html (accessed on 21

April 2023).
35. NIST. NIST Post-Quantum Cryptography Project. 2017. Available online: https://csrc.nist.gov/projects/post-quantum-

cryptography (accessed on 21 April 2023).
36. Moran, B.; Tschofenig, H.; Brown, D.; Meriac, M. A Firmware Update Architecture for Internet of Things. RFC 2021, 9019, 1–25.

[CrossRef]
37. Banegas, G.; Zandberg, K.; Baccelli, E.; Herrmann, A.; Smith, B. Quantum-Resistant Software Update Security on Low-Power

Networked Embedded Devices. In Lecture Notes in Computer Science, Proceedings of the Applied Cryptography and Network Security—
20th International Conference, ACNS 2022, Rome, Italy, 20–23 June 2022; Ateniese, G., Venturi, D., Eds.; Springer: Berlin/Heidelberg,
Germany, 2022; Volume 13269, pp. 872–891. [CrossRef]

38. Manna, M.L.; Perazzo, P.; Treccozzi, L.; Dini, G. Assessing the Cost of Quantum Security for Automotive Over -The-Air Updates.
In Proceedings of the IEEE Symposium on Computers and Communications, ISCC 2021, Athens, Greece, 5–8 September 2021;
pp. 1–6. [CrossRef]

http://dx.doi.org/10.1109/ISITA.2010.5649627
http://dx.doi.org/10.1007/978-3-540-68351-3_18
http://dx.doi.org/10.1145/2744769.2747946
https://csrc.nist.gov/Projects/lightweight-cryptography
https://csrc.nist.gov/Projects/lightweight-cryptography
https://ascon.iaik.tugraz.at
https://competitions.cr.yp.to/caesar.html
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
http://dx.doi.org/10.17487/RFC9019
http://dx.doi.org/10.1007/978-3-031-09234-3_43
http://dx.doi.org/10.1109/ISCC53001.2021.9631426

Cryptography 2023, 7, 30 16 of 17

39. Shamir, A. Identity-Based Cryptosystems and Signature Schemes. In Advances in Cryptology; Blakley, G.R., Chaum, D., Eds.;
Springer: Berlin/Heidelberg, Germany, 1985; pp. 47–53.

40. Sahai, A.; Waters, B. Fuzzy Identity-Based Encryption. In Advances in Cryptology—EUROCRYPT 2005, Proceedings of the 24th
Annual International Conference on the Theory and Applications of Cryptographic Techniques, Aarhus, Denmark, 22–26 May 2005; Cramer,
R., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 457–473.

41. Goyal, V.; Pandey, O.; Sahai, A.; Waters, B. Attribute-based encryption for fine-grained access control of encrypted data. In
Proceedings of the 13th ACM Conference on Computer and Communications Security, CCS 2006, Alexandria, VA, USA, 30
October–3 November 2006; pp. 89–98. [CrossRef]

42. Bethencourt, J.; Sahai, A.; Waters, B. Ciphertext-Policy Attribute-Based Encryption. In Proceedings of the 2007 IEEE Symposium
on Security and Privacy (S&P 2007), Oakland, CA, USA, 20–23 May 2007; pp. 321–334. [CrossRef]

43. Xia, W.; Wen, Y.; Foh, C.H.; Niyato, D.; Xie, H. A Survey on Software-Defined Networking. IEEE Commun. Surv. Tutor. 2015,
17, 27–51. [CrossRef]

44. Content-Centric Networking. Available online: https://wiki.fd.io/view/Cicn (accessed on 7 April 2023).
45. Named Data Networking. Available online: https://named-data.net (accessed on 7 April 2023).
46. Zandberg, K.; Schleiser, K.; Acosta, F.; Tschofenig, H.; Baccelli, E. Secure Firmware Updates for Constrained IoT Devices Using

Open Standards: A Reality Check. IEEE Access 2019, 7, 71907–71920. [CrossRef]
47. Maksuti, S.; Bicaku, A.; Zsilak, M.; Ivkic, I.; Péceli, B.; Singler, G.; Kovács, K.; Tauber, M.; Delsing, J. Automated and Secure

Onboarding for System of Systems. IEEE Access 2021, 9, 111095–111113. [CrossRef]
48. de Sousa, M.J.B.; Gonzalez, L.F.G.; Ferdinando, E.M.; Borin, J.F. Over-the-air firmware update for IoT devices on the wild. Internet

Things 2022, 19, 100578. [CrossRef]
49. Asokan, N.; Nyman, T.; Rattanavipanon, N.; Sadeghi, A.; Tsudik, G. ASSURED: Architecture for Secure Software Update of

Realistic Embedded Devices. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 2290–2300. [CrossRef]
50. Anastasiou, A.; Christodoulou, P.; Christodoulou, K.; Vassiliou, V.; Zinonos, Z. IoT Device Firmware Update over LoRa: The

Blockchain Solution. In Proceedings of the 2020 16th International Conference on Distributed Computing in Sensor Systems
(DCOSS), Marina del Rey, CA, USA, 25–27 May 2020; pp. 404–411. [CrossRef]

51. Casola, D.; Cattaneo, G.; Catuogno, L.; Petrillo, U.F.; Galdi, C.; Roscigno, G. TRUST: TRust Unguarded Service Terminals. In
Communications in Computer and Information Science, Proceedings of the Pervasive Systems, Algorithms and Networks—16th International
Symposium, I-SPAN 2019, Naples, Italy, 16–20 September 2019; Esposito, C., Hong, J., Choo, K.R., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 1080, pp. 155–169. [CrossRef]

52. Bizanis, N.; Kuipers, F.A. SDN and Virtualization Solutions for the Internet of Things: A Survey. IEEE Access 2016, 4, 5591–5606.
[CrossRef]

53. Gonzalez, C.; Flauzac, O.; Nolot, F.; Jara, A. A Novel Distributed SDN-Secured Architecture for the IoT. In Proceedings of the
International Conference on Distributed Computing in Sensor Systems—DCOSS 2016, Washington, DC, USA, 26–28 May 2016;
pp. 244–249. [CrossRef]

54. Conti, M.; Kaliyar, P.; Lal, C. CENSOR: Cloud-enabled secure IoT architecture over SDN paradigm. Concurr. Comput. Pract. Exp.
2019, 31, e4978. [CrossRef]

55. Ambrosin, M.; Busold, C.; Conti, M.; Sadeghi, A.R.; Schunter, M. Updaticator: Updating Billions of Devices by an Efficient,
Scalable and Secure Software Update Distribution over Untrusted Cache-enabled Networks. In Proceedings of the ESORICS
(2014), Wroclaw, Poland, 7–11 September 2014; pp. 76–93.

56. Catuogno, L.; Galdi, C. A Fine-grained General Purpose Secure Storage Facility for Trusted Execution Environment. In
Proceedings of the 5th International Conference on Information Systems Security and Privacy—ICISSP 2019, Prague, Czech
Republic, 23–25 February 2019; pp. 588–595. [CrossRef]

57. Catuogno, L.; Galdi, C.; Riccio, D. Off-line enterprise rights management leveraging biometric key binding and secure hardware.
J. Ambient Intell. Humaniz. Comput. 2019, 10, 2883–2894. [CrossRef]

58. Catuogno, L.; Galdi, C.; Riccio, D. An Enterprise Rights Management System for On-the-Field Maintenance Facilities. IEEE
Access 2020, 8, 95987–95996. [CrossRef]

59. Catuogno, L.; Galdi, C.; Persiano, G. Secure Dependency Enforcement in Package Management Systems. IEEE Trans. Dependable
Secur. Comput. 2020, 17, 377–390. [CrossRef]

60. Seitz, L.; Tiloca, M.; Gunnarsson, M.; Höglund, R. Secure Software Updates for IoT Based on Industry Requirements. In
Proceedings of the 9th International Conference on Information Systems Security and Privacy (ICISSP 2023), Lisbon, Portugal,
22–24 February 2023; pp. 698–705.

61. Dumitras, T.; Narasimhan, P. Why Do Upgrades Fail and What Can We Do about It? In Lecture Notes in Computer Science,
Proceedings of the Middleware 2009, ACM/IFIP/USENIX, 10th International Middleware Conference, Urbana, IL, USA, 30 November–4
December 2009; Bacon, J., Cooper, B.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 5896, pp. 349–372. [CrossRef]

62. Catuogno, L.; Galdi, C.; Persiano, G. Guaranteeing Dependency Enforcement in Software Updates. In Lecture Notes in Computer
Science, Proceedings of the Secure IT Systems, 20th Nordic Conference, NordSec 2015, Stockholm, Sweden, 19–21 October 2015; Buchegger,
S., Dam, M., Eds.; Springer: Berlin/Heidelberg, Germany, 2015; Volume 9417, pp. 205–212. [CrossRef]

63. Jararweh, Y.; Al-Ayyoub, M.; Darabseh, A.; Benkhelifa, E.; Vouk, M.A.; Rindos, A.J. SDIoT: A software defined based internet of
things framework. J. Ambient Intell. Humaniz. Comput. 2015, 6, 453–461. [CrossRef]

http://dx.doi.org/10.1145/1180405.1180418
http://dx.doi.org/10.1109/SP.2007.11
http://dx.doi.org/10.1109/COMST.2014.2330903
https://wiki.fd.io/view/Cicn
https://named-data.net
http://dx.doi.org/10.1109/ACCESS.2019.2919760
http://dx.doi.org/10.1109/ACCESS.2021.3102280
http://dx.doi.org/10.1016/j.iot.2022.100578
http://dx.doi.org/10.1109/TCAD.2018.2858422
http://dx.doi.org/10.1109/DCOSS49796.2020.00070
http://dx.doi.org/10.1007/978-3-030-30143-9_13
http://dx.doi.org/10.1109/ACCESS.2016.2607786
http://dx.doi.org/10.1109/DCOSS.2016.22
http://dx.doi.org/10.1002/cpe.4978
http://dx.doi.org/10.5220/0007578605880595
http://dx.doi.org/10.1007/s12652-018-1023-9
http://dx.doi.org/10.1109/ACCESS.2020.2995564
http://dx.doi.org/10.1109/TDSC.2017.2777991
http://dx.doi.org/10.1007/978-3-642-10445-9_18
http://dx.doi.org/10.1007/978-3-319-26502-5_15
http://dx.doi.org/10.1007/s12652-015-0290-y

Cryptography 2023, 7, 30 17 of 17

64. Qin, Z.; Denker, G.; Giannelli, C.; Bellavista, P.; Venkatasubramanian, N. A Software Defined Networking architecture for the
Internet-of-Things. In Proceedings of the 2014 IEEE Network Operations and Management Symposium, NOMS 2014, Krakow,
Poland, 5–9 May 2014; pp. 1–9. [CrossRef]

65. Catuogno, L.; Galdi, C. Improving Interoperability in Multi-domain Enterprise Right Management Applications. In Communica-
tions in Computer and Information Science, Proceedings of the Information Systems Security and Privacy—5th International Conference,
ICISSP 2019, Prague, Czech Republic, 23–25 February 2019; Mori, P., Furnell, S., Camp, O., Eds.; Springer: Berlin/Heidelberg,
Germany, 2019; Volume 1221, pp. 382–402. [CrossRef]

66. Kim, T.; Ochoa, J.; Faika, T.; Mantooth, H.A.; Di, J.; Li, Q.; Lee, Y. An Overview of Cyber-Physical Security of Battery Management
Systems and Adoption of Blockchain Technology. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 1270–1281. [CrossRef]

67. Catuogno, L.; Galdi, C.; Pasquino, N. An Effective Methodology for Measuring Software Resource Usage. IEEE Trans. Instrum.
Meas. 2018, 67, 2487–2494. [CrossRef]

68. Catuogno, L.; Galdi, C.; Pasquino, N. Measuring the effectiveness of containerization to prevent power draining attacks. In
Proceedings of the IEEE International Workshop on Measurement and Networking, M&N 2017, Naples, Italy, 27–29 September
2017; pp. 1–6. [CrossRef]

69. Yohan, A.; Lo, N.W. An Over-the-Blockchain Firmware Update Framework for IoT Devices. In Proceedings of the 2018 IEEE
Conference on Dependable and Secure Computing (DSC), Kaohsiung, Taiwan, 10–13 December 2018; pp. 1–8. [CrossRef]

70. Catuogno, L.; Galdi, C. On the Security of a Two-Factor Authentication Scheme. In Lecture Notes in Computer Science, Proceedings
of the Information Security Theory and Practices. Security and Privacy of Pervasive Systems and Smart Devices, 4th IFIP WG 11.2
International Workshop, WISTP 2010, Passau, Germany, 12–14 April 2010; Samarati, P., Tunstall, M., Posegga, J., Markantonakis, K.,
Sauveron, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; Volume 6033, pp. 245–252. [CrossRef]

71. Catuogno, L.; Galdi, C. A Graphical PIN Authentication Mechanism with Applications to Smart Cards and Low-Cost Devices.
In Lecture Notes in Computer Science, Proceedings of the Information Security Theory and Practices. Smart Devices, Convergence and
Next Generation Networks, Second IFIP WG 11.2 International Workshop, WISTP 2008, Seville, Spain, 13–16 May 2008; Onieva, J.A.,
Sauveron, D., Chaumette, S., Gollmann, D., Markantonakis, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5019,
pp. 16–35. [CrossRef]

72. Karthik, T.; Brown, A.; Awwad, S.; McCoy, D.; Bielawski, R.; Mott, C.; Lauzon, S.; Weimerskirch, A.; Cappos, J. Uptane: Securing
software updates for automobiles. In Proceedings of the International Conference on Embedded Security in Car, Munich,
Germany, 16–17 November 2016 ; pp. 1–11.

73. Algorand Inc. Algorand Blockchain. 2019. Available online: https://algorand.com (accessed on 21 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/NOMS.2014.6838365
http://dx.doi.org/10.1007/978-3-030-49443-8_18
http://dx.doi.org/10.1109/JESTPE.2020.2968490
http://dx.doi.org/10.1109/TIM.2018.2815431
http://dx.doi.org/10.1109/IWMN.2017.8078370
http://dx.doi.org/10.1109/DESEC.2018.8625164
http://dx.doi.org/10.1007/978-3-642-12368-9_19
http://dx.doi.org/10.1007/978-3-540-79966-5_2
https://algorand.com

	Introduction
	Reference Scenario
	Enabling Methodologies and Technologies
	Hardware Classification
	Trusted Execution Environments
	Remote Attestation
	Lightweight Cryptography
	Intelligent Networking
	Blockchains and DLTs

	Software Distribution Systems
	Secure Software Distribution Models
	Threat Model
	Security Requirements
	Challenges and Solutions
	Challenging Issues

	Conclusions
	References

