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Abstract: Caligus rogercresseyi, a marine ectoparasite, causes notable economic losses for the Chilean
salmonid industry. Nevertheless, the immunological responses of infected fish remain poorly
understood, including proinflammatory cytokine generation and the respective modulatory effects
of various cytokine receptors. This study evaluated mRNA expression of the NLRC5, major
histocompatibility complex (MHC) class II, I-kappa-B-alpha, a regulatory that inhibits NF-kappa-B,
and proinflammatory cytokines (IL-1β and IL-18) in the liver and muscle of Atlantic salmon
(Salmo salar) and Coho salmon (Oncorhynchus kisutch) during a time-course C. rogercresseyi infestation
trial. All assessed mRNA were strongly regulated during infestation, but S. salar showed up-regulated
expression, possibly accounting for the high infestation vulnerability of this salmonid. In conclusion,
this work helps to understand the modulation of the expression of different transcripts involved over
short periods of C. rogercresseyi infestation in two salmonid species (S. salar and O. kisutch).
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1. Introduction

Proinflammatory cytokine generation and the respective modulation of cytokines by different
receptor types are two poorly studied immunological mechanisms of fish infected by bacteria, viruses,
and ectoparasites [1–3]. Some cytokine receptors are also components of the inflammasome complex,
specifically acting as innate immune system receptors/sensors that regulate caspase-1 activation and
induce inflammation in response to infectious pathogens and molecules derived from host proteins [4].
The inflammasome complex is further composed of a nucleotide-binding domain, leucine-rich repeat
(NLR) proteins, such as NLRP1, NLRP3, NLRC4, or NLRC5; HIN-200 family member absent in
melanoma 2 (AIM2) protein; cytosolic retinoic-acid-inducible I (RIG-I) RNA; and an ASC/PYCARD
adapter molecule attached to caspase-1, which provides the enzymatic activity of the complex [5].
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Of the known NLR proteins, NLRC5 is key in forming the inflammasome complex, as described
by Beckley et al. (2013) [6]. Furthermore, an NLRC5 gene was recently identified and analyzed within
the inflammasome complex of teleost fish, reporting involvement in modulating the inflammatory
response [7]. This inflammatory response would be initiated by immune-cell (e.g., leukocytes)
recruitment to and differentiation at the site of infection, thereby activating the antimicrobial effector
mechanism and stimulating the immune response [8]. In addition, the NF-kappa B/ I-kappa-B-alpha
pathway plays an important role in the regulation of the immune response, where I-kappa-B-alpha is
an inhibitory molecule that sequesters the NF-kappaB dimer transcription activator in the cytoplasm
of unstimulated cells, blocking nuclear translocation and thus the expression of proinflammatory
cytokines [9]. It has been reported that NF-kappa B binds to sites of the NLRC5 promoter region,
stimulating its expression [10].

Interleukin-1 is an apical pro-inflammatory cytokine, and interleukin-18 (IL-18), a recently described
member of the IL-1 cytokine super-family, is now recognized as an important regulator of innate and
acquired immune responses, meaning its activity initiates and directs the cascade of inflammatory
signals in response to sensing pathogen-associated molecular patterns [11]. Several pattern recognition
receptors are involved in the control and elimination of pathogens/microorganisms, including NLR protein
receptors [12].

Aquaculture is a growing industry worldwide. Within the wide spectrum of etiological agents
that affect fish farming, crustacean copepods are a particular point for concern, especially in salmonid
cultures [13,14]. Sea lice, a common ectoparasitic copepod, are distributed globally and cause notable
economic losses for salmon farming in Chile and Norway. Furthermore, increased salmon farming
along the coastal areas of the Northern Hemisphere has also resulted in increased sea lice abundance,
posing a serious threat to wild salmon populations [15]. This scenario is mirrored in the Southern
Hemisphere, which has also seen considerable growth in the salmon industry [14].

The most prevalent parasite in the Chilean aquaculture industry is Caligus rogercresseyi [16,17],
a Caligidae family copepod [18]. Furthermore, the most cultivated salmonids in Chile (i.e., Salmo
salar [Atlantic salmon] and Oncorhynchus mykiss [rainbow trout]) are also the most vulnerable to
C. rogercresseyi infestation, whereas Oncorhynchus kisutch (Coho salmon) has a greater infestation
resistance [14]. Ectoparasites infest fish species, such as salmonids, and the consequences of infestation
can include changes in epidermal morphology and mucus composition [19,20]. Interestingly, coho
salmon express pro-inflammatory cytokines such as IL-1β, TNF-α, and MHIIb during L. salmonis
infestation [21]. At the same time, there is evidence of changes at the transcriptomic level of genes
related to the immune system of Atlantic and coho salmon when infested by C. rogercresseyi [2,3].

The evaluation of 27 genes related to the immune response, antioxidant system, and secretome in
Atlantic and coho salmon at 1, 3, and 7 days post-infestation by C. rogercresseyi has been described,
as well as the up-regulation of immune-related genes in head kidney and the skin of both salmonid
species [22]. Differences in susceptibility levels of C. rogercresseyi have been associated with the
regulation of iron as a mechanism to confer immunity during infestation. The regulation of transcripts
with iron is modulated in Atlantic salmon by the depletion of cellular iron, which represents a
mechanism of nutritional immunity, thus being the liver that is the most important organ in the
regulation of iron and muscle is the closest organ during infestation with the parasite, which makes it
more susceptible to C. rogercresseyi infestation than coho salmon, and therefore, makes the liver and
muscle of both salmonid species an interesting target to study [2,23].

The present study is the first to experimentally evaluate the gene expression of NLRC5, caspase-1,
I-kappa-B-alpha (inhibitory NF-kappaB pathway) of the proinflammatory cytokines IL-1β and IL-18
in two tissues (liver and muscle) in Atlantic and coho salmon during temporary infestation by C.
rogercresseyi, in order to provide information on the immune response activity that occurs when coming
into contact with this parasite. The results indicate that there are differences in gene expression between
the Atlantic salmon and coho salmon during sea lice infestation, which could activate the immune
system in muscle and liver.
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2. Results

2.1. Analysis of NLRC5 Transcript Expression in the Muscle and Liver of Atlantic and Coho Salmon Infested
with C. rogercresseyi

The mRNA levels of NLRC5 in the muscle of Atlantic salmon infested with C. rogercresseyi were
statistically significant at all time-points compared to the control group. High expression of the
transcript can be observed every day post infestation (dpi) over the trial period (Figure 1B). In Coho
salmon, NLRC5 transcript expression significantly increased at 1 and 3 dpi compared to non-infested
fish (Figure 1D), with 3 dpi presenting the highest expression. Regarding NLRC5 transcript expression
in the liver of Atlantic salmon infested with C. rogercresseyi, levels were statistically significant at 1 and
3 dpi compared to the control group. The highest transcript expression levels in Atlantic salmon liver
were recorded at 3 dpi (Figure 1A). In the liver of infested Coho salmon, NLRC5 transcript expression
was lower than the control group at 1 and 7 dpi, but was significantly higher than the control group at
3 dpi (Figure 1D).
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Figure 1. Relative expression of NLRC5 transcripts in Salmo salar and O. kitsuch muscle and liver
infested with C. rogercresseyi. Relative mRNA expression of NLRC5 in muscle at 1, 3, and 7 dpi (B,D)
and relative mRNA expression of NLRC5 in the liver at 1, 3, and 7 dpi (A,C). The 18s gene was used
as a reference gene to calibrate the cDNA template for all samples. Bars represent the mean values
(± S.E.) of 20 samples. Letters (a,b,c) represent statistical differences within the same group over time.
The + symbol represents statistical differences at the same time-point between groups (i.e., infested vs.
control). Statistical differences were established by two-way ANOVA (P < 0.05).

2.2. Analysis of IL-18 Transcript Expression in the Muscle and Liver of Atlantic and Coho Salmon Infested with
C. rogercresseyi

Muscle IL-18 mRNA expression in infested Atlantic salmon increased significantly on every
post-infestation day compared with the control group, but was mainly at day 3 post-infection. A near
identical response was presented by Coho salmon (Figure 2B,D). In turn, the expression of hepatic
IL-18 mRNA in Atlantic salmon infested with C. rogercresseyi increased significantly on each of the
days of the time-course trial compared to the control group (Figure 2A). Similarly, the expression of
IL-18 mRNA in the liver of Coho salmon was significantly increased compared to the control group at
1 and 3 dpi (Figure 2C).
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Figure 2. Relative expression of IL-18 transcripts in Salmo salar and O. kitsuch muscle infested with C.
rogercresseyi. Relative mRNA expression of IL-18 in muscle at 1, 3, and 7 dpi (B,D) and relative mRNA
expression of IL-18 in liver at 1, 3, and 7 dpi (A,C). The 18s gene was used as a reference gene to calibrate
the cDNA template for all samples. Bars represent the mean values (± S.E.) of 20 samples. Letters (a,b,c)
represent statistical differences within the same group over time. The + symbol represents statistical
differences at the same time-point between groups (i.e., infested vs. control). Statistical differences
were established by two-way ANOVA (P < 0.05).

2.3. Analysis of IL-1β Transcript Expression in the Muscle and Liver of Atlantic and Coho Salmon Infested with
C. rogercresseyi

Muscle IL-1β mRNA expression in Atlantic salmon infested by C. rogercresseyi significantly
increased at 1 dpi compared to the control group. Transcript expression subsequently decreased
at 3 and 7 dpi (Figure 3B). In contrast, infested Coho salmon muscle did not present IL-1β mRNA
expression (data not shown). In turn, liver IL-1β transcript expression was similar for infested Atlantic
and Coho salmon, with both salmonids presenting increased expression levels at 1 and 3 dpi followed
by a decrease at 7 dpi (Figure 3A,C). As compared to the control group, both Atlantic and Coho salmon
presented significant, and the highest levels of liver IL-1β mRNA expression at 1 and 3 dpi. However,
expression levels of the IL-1β transcript were more important in Atlantic salmon on all days of the trial
(Figure 3B).

2.4. Analysis of Caspase-1 Transcript Expression in Liver of Atlantic and Coho salmon Infested with C.
rogercresseyi

Expression of caspase-1 mRNA in Atlantic salmon liver infested by C. rogercresseyi increased its
expression at 7 dpi compared to the control group. However, transcript expression decreased at 1 and
3 dpi (Figure 4A). In turn, the expression of caspase-1 transcript in the liver of infested salmon Coho,
increased at 3 and 7 dpi (Figure 4C). In contrast, in infested Atlantic salmon and Coho muscle did not
exhibit caspase-1 mRNA expression.
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Figure 3. Relative expression of IL-1β transcripts in Salmo salar muscle infested with C. rogercresseyi.
Relative mRNA expression of IL-1β in muscle at 1, 3, and 7 dpi (B) and relative mRNA expression
of IL-1β in liver at 1, 3, and 7 dpi (A,C). The 18s gene was used as a reference gene to calibrate the
cDNA template for all samples. Bars represent the mean values (± S.E.) of 20 samples. Letters (a,b,c)
represent statistical differences within the same group over time. The + symbol represents statistical
differences at the same time-point between groups (i.e., infested vs. control). Statistical differences
were established by two-way ANOVA (P < 0.05).

2.5. Analysis of MHCII Transcript Expression in the Muscle and Liver of Atlantic and Coho Salmon Infested
with C. rogercresseyi

The expression of major histocompatibility complex (MHC) class II mRNA in Atlantic salmon
liver infested with C. rogercresseyi showed no significant differences over time compared to the control.
However, in the liver of Coho salmon the expression of the transcript significantly decreased at 1, 3,
and 7 dpi (Figure 4B,D). In the muscle of both Atlantic salmon and Coho infested with C. rogercresseyi,
the expression of MHC II mRNA was not induced.

2.6. Analysis of I-kappa-B-alpha Transcript Expression in the Muscle and Liver of Atlantic and Coho Salmon
Infested with C. rogercresseyi

Liver I-kappa-B-alpha mRNA expression in infested Atlantic salmon significantly increased
compared to the control group only at 7 dpi. At 1 and 3 dpi the mRNA expression response was almost
identical (Figure 5A). Liver I-kappa-B-alpha mRNA decreased in the infested Coho salmon at 3 and 7
dpi compared to the control group (Figure 5B). In contrast, the infested Atlantic and Coho salmon did
not exhibit I-kappa-B-alpha mRNA expression in the muscle.
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Figure 4. Relative expression of caspase-1 and MHCII transcripts in Salmo salar and O. kitsuch liver
infested with C. rogercresseyi. Relative mRNA expression of caspase-1 in liver at 1, 3, and 7 dpi (A,C).
Relative mRNA expression of MHCII in the liver at 1, 3, and 7 dpi (B,D). The 18s gene was used as a
reference gene to calibrate the cDNA template for all samples. Bars represent the mean values (± S.E.)
of 20 samples. Letters (a,b,c) represent statistical differences within the same group over time. The
+ symbol represents statistical differences at the same time-point between groups (i.e., infested vs.
control). Statistical differences were established by two-way ANOVA (p < 0.05).
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Figure 5. Relative expression of I-kappa-B-alpha (IkB-α) transcripts in Salmo salar and O. kitsuch infested
with C. rogercresseyi. Relative mRNA expression of IkB-α in liver at 1, 3, and 7 dpi (A,B). The 18s gene
was used as a reference gene to calibrate the cDNA template for all samples. Bars represent the mean
values (± S.E.) of 20 samples. Letters (a,b,c) represent statistical difference within the same group
over time. The + symbol represents statistical differences at the same time-point between groups (i.e.,
infested vs. control). Statistical differences were established by two-way ANOVA (p < 0.05).

3. Discussion

Cytokines are molecules with key roles in regulating the immune response [24] and effector phase
in both innate and adaptive immunity [25]. These small-protein mediators produced by immune
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cells mediate inflammation, immunity, and hematopoiesis [26]. In particular, interleukins are potent
proinflammatory cytokines that have been described in teleost fishes, where IL-1β is key in the
early response, being secreted when pathogens enter circulation [10], where the receptor IL -1β is
expressed in all tissues of Atlantic salmon [27]. In turn, IL-18 has functions in the potent stimulation of
interferon-γ production, enhancement of natural killer cell cytotoxicity, and stimulation of T-helper1 cell
differentiation [28–31]. In general, IL-1β and IL-18 are potent proinflammatory cytokines that promote
innate immune processes associated with infection, inflammation, and autoimmunity, activating
monocytes, macrophages, and neutrophils, as well as inducing Th1 and Th17 cellular adaptive
responses [12,32]. Nevertheless, a balance is needed to ensure host defense against viral and bacterial
pathogens without resulting in tissue damage due to an excessive inflammatory response. The need for
this balance could explain why some species have developed mechanisms for the regulation of these
cytokines [27,32]. In mammals, the complex inflammasome caspase-1 is activated by autoproteolitic
maturation through cleavage and secretion of inflammatory cytokines such as IL-1β, IL-18, and cell
death [33]. While caspase-1 is essential for the release of mature IL-1β, it has also been associated with
the processing of many extracellular proteins involved in inflammatory regulation [34] and is known
for its pleiotropic role in innate immunity, however, in teleosts, the IL-1β processing site does not exist,
which is why its activation system is different [35,36].

The major proinflammatory cytokines, IL-1β and IL-18, were also evaluated in infested Atlantic
and Coho salmon. IL-18 mRNA expression increased mostly at 3 dpi in muscle and liver tissues,
following the same expression pattern as NLRC5. Meanwhile, IL-1β transcript expression was
only observed in Atlantic salmon muscle; the highest levels being observed at 1 dpi. The mRNA
expression of IL-1β in the liver was several times greater than the control group for both salmon species.
This observation aligns with that obtained for NLRC5 transcript expression (Figure 1).

However, when analyzing the expression of I-kappa-B-alpha mRNA, which is the inhibitor of
the NF-kappa B transcription factor, it was observed that it increases in Atlantic salmon at 7 dpi,
and decreases in Coho salmon. It is presumed that it represses the NF-kappa B pathway in Atlantic
salmon, which may then activate an alternative route that has not yet been identified. While immune
mechanisms play an important role in the responses of salmonids to sea lice infestation, the starting
point for the regulation of the inflammatory response has not yet been elucidated.

To address this lack of knowledge, the present study evaluated the transcriptional modulations
of NLRC5, MHCII, caspase-1, I-kappa-B-alpha, IL-1β, and IL-18 during C. rogercresseyi infestation in
Atlantic and Coho salmon muscle and liver tissues. Further analyses evaluated how the aforementioned
genes could be related to the inflammatory process through the inflammasome complex. While both
salmonids presented high transcript expression in response to infestation, some transcripts were
differentially expressed over the experimental period and between species. This is of great importance,
mainly due to the characteristics of the tissues used (muscle and liver), since they are not precisely
immunological, they presented gene expressions related to the fish immune system. This can be due to
the high-energy rate, that is to say lactate, which is used by these organs before infestation with C.
rogercresseyi, which could activate the immune system in both species [37], or also by an iron regulation
that could affect infestation, conferring a type of nutritional immunity [23].

The mRNA expression of NLRC5 was highest within the inflammasome complex of C. rogercresseyi
infested muscle at 1 dpi for Atlantic salmon and 3 dpi for Coho salmon. In turn, infested liver
samples from both salmonids showed increased NLRC5 transcript expression at 3 dpi. These findings
provide the first description of expressional changes for the NLRC5 transcript in two species with
different susceptibilities to C. rogercresseyi infestation. Indeed, prior reports have only described that C.
rogercresseyi modifies the main routes of energy metabolism in the liver and muscle [38]. The current
results and the latter report indicate that C. rogercresseyi can modulate the expression of genes related
to the immune response in both salmonid species and that this is dependent on the infested tissue.

In addition, the expression of MHCII, which is directly regulated by NLRC5 in mammals, has
been evaluated by binding sequences that activate the transcription of this gene, through the enhancer
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of binding sites [39]. No significant differences in MHCII mRNA expression were observed in Atlantic
salmon liver, this is probably due to a differential regulation in this organ or because the energy
is used for the energetic metabolism during infestation with C. rogercresseyi [37,38]. It was even
possible to determine that mRNA expression decreased in Coho salmon liver during the infestation
process, which could be possible due to different signaling pathways, and MHCII mRNA was not
detected in the muscle of both salmonid species. Ectoparasite-induced inflammatory responses mainly
affected Atlantic salmon, which presents a rapidly induced, mixed inflammatory response to the initial
infestation [40]. Additionally, immune response modulation in Atlantic salmon can change mRNA
expression in the skin, spleen, and head kidney [41]. Skin expression could best explain the defense
mechanisms present in the head kidney of Atlantic salmon, specifically when evaluating different
parameters during C. rogercresseyi infestation [42].

The presented data indicate increased early-phase mRNA expression of NLRC5, IL-18, and IL-1β
in Atlantic salmon muscle, whereas expression were altered in the later infestation phases for Coho
salmon muscle and liver tissues. This is consistent with transcriptomic response analyses of Atlantic
and Coho salmon when infested with the sea louse C. rogercresseyi, with reported modulation of the
TLR/IMD signaling pathway during the early phase of Atlantic salmon infestation and increased
transcription during the infestation process in Coho salmon [2]. However, the non-expression of
caspase-1 transcripts in the muscle of both salmonids, suggests that the activation of these genes may
be involved in other signaling pathways, such as the NF-kappa B pathway, which could be activated
in early stages in Atlantic salmon and at later stages in Coho salmon (Figure 5A,B). The mRNA
expression profiles of NLRC5 in Atlantic and Coho salmon have also been evaluated in the muscle of
both salmonids to determine the relationship of this NLR, and of the NLR family in general, with the
fish immune system [43] and with how the inflammasome complex responds to a parasite. A clear
difference in gene activity modulation has been reported between both salmonid species, further
supporting data obtained in the current study.

Additionally, the susceptibilities of different salmonid species to the Northern Hemisphere sea
louse Lepeophtheirus salmonis have been evaluated. Atlantic salmon have the highest degree of L. salmonis
infection, while pink salmon (Oncorhynchus gorbuscha) has the lowest, with differences particularly
during early-phase infection [44]. It has been described that teleost fishes are exposed to stress by
modified parasite energy metabolites that modulate the immune responses against pathogens [45–48].
In addition, the muscle of salmonids needs more energy to be able to adapt to an infestation [37].
Therefore, the muscles of these two salmonids have a decreased immune reaction against an infestation
with C. rogercresseyi. These findings regarding vulnerability align with those presently obtained for S.
salar and O. kisutch when infested with C. rogercresseyi in this research.

4. Materials and Methods

All experiments complied with guidelines established by the Comisión Nacional de Ciencias
y Tecnología de Chile (CONICYT) and the Universidad Austral de Chile authorization for use in
laboratory animals.

4.1. Fish and Experimental Design

The present study was based on the same specimens and experimental procedures described in
the study by Vargas-Chacoff et al. (2016) [38]. Briefly, a group of Atlantic salmon (166 ± 17.5 g body
weight [mean ± SD], n = 240) and a group of Coho salmon (161 ± 15.8 g body weight [mean ± SD],
n = 240) were, respectively, purchased from the Puerto Phillipi Fish Farm (Puerto Montt, Chile) and
Chaparano Fish Farm (Puerto Montt, Chile). Prior to acquisition, 30 fish from each center were
health-screened by accredited laboratories to verify pathogen-free statuses. All fish were transported
to the Fundación Chile Experimental Unit (Lenca, Puerto Montt Municipality, Chile). For each species,
fish were equally distributed among eight tanks (n = 30 fish per tank; 500 L tanks with continuous flow,
12:12 h light:dark photoperiod, and 12 ± 2 ◦C). Fish were acclimatized for two weeks. Once reaching
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this salinity (35 practical salinity unit [psu]), fish were maintained without changes to conditions for a
further three weeks. Fish were fed to satiety during the acclimatization and maintenance stages using
EWOS transfer 100 (EWOS, Puerto Montt, Chile).

4.2. Experimental Conditions

The salmonid immune response (O. kisutch and S. salar) to C. rogercresseyi infestation was evaluated
through an experimental design that considered two parasite-infested groups (n =10 samples per
time-point, per tank, with three replicates) and a non-infested control group (n = 10 samples per
time-point, per tank, with two replicates). Three tanks per species were infested with 35 C. rogercresseyi
copepodites/fish. Their age was 3 to 5 days after moulting, where 90% of the free-living lice were
in the copepod stage. Where the abundance was of 21 parasites per fish (copepodid stage) on coho
salmon and Atlantic salmon (meanwhile the other 14 parasites were in free-living lice) at 1 dpi; after
3 dpi the adherence was to coho salmon of 12 parasites per fish (copepodid stage) and 12 parasites
per fish in Chalimus stages I-II, meanwhile Atlantic salmon had 7 parasites per fish (copepodid stage)
and 28 parasites per fish in Chalimus stages I-II. At 7 dpi the adherence was of 4 parasites per fish
at 7 dpi on coho salmon and 35 parasites per fish on Atlantic salmon all parasites were in Chalimus
stages I-II. All the calculated values were approximated. The 220 µm labels were used as a filter for the
parasites that were detached, the loss or shedding of parasites by the fish, and the accidental ingestion
or expulsion by the seawater flow system. The collection of sea lice was less than 24 h, where the
fish were placed in tanks in complete darkness without water flow for 2 h, being supplemented with
oxygen and breath daily during the period of infestation The applied C. rogercresseyi were obtained
from fish maintained at the Fundación Chile Laboratory (Puerto Montt, Chile) according to protocols
established in Gonzalez et al. (2015) [47]. The non-infested control tank was subject to the same
procedures as the infested tanks, but without the addition of parasites. Samples were taken at 1, 3, and
7 days post-infestation (dpi) [2].

4.3. Sampling Procedure

Fish were netted, euthanized with lethal doses of clove oil (50mg L−1; AQUI-S, Lower Hutt, New
Zealand), and subjected to spinal sectioning before tissue removal. Each fish, respective water tray,
and tray were inspected for detached parasites, which were counted and classified according to their
developmental stage according to González and Carvajal (2003) [48]. The number of parasites per fish
was quantified for both species (35 copepodids per fish). Fish were weighed, and then muscle portions
(muscle without skin) and the complete liver were dissected aseptically, frozen in liquid nitrogen, and
stored at −80 ◦C.

4.4. Gene Expression Analyses

Total RNA was extracted with TRIzol reagent (Invitrogen, Thermo Fisher Scientific, Carlsbad,
CA, USA) following the manufacturer’s instructions, and the obtained samples were treated with
amplification-grade DNase I (1 U µg1 RNA; Invitrogen). The SuperScript III RNase H-Reverse
Transcriptase platform (Invitrogen) synthesized first-strand cDNA from total RNA (1 µg) using the
oligo-dT primer [Integrated DNA Technologies, Inc. (IDT)] at 50 ◦C for 50 min. Quantitative PCR
(qPCR) analysis was carried out with the AriaMx Real-Time PCR System (Agilent Technologies, Santa
Clara, CA, USA). Reaction mixtures were incubated for 10 min at 95 ◦C, followed by 40 cycles of 10 s
at 90 ◦C, 30 s at 60 ◦C, and, finally, 15 s at 95 ◦C, 1 min at 60 ◦C, and 15 s at 95 ◦C. Melting curve
analysis of the amplified products was performed after each PCR to confirm that only one PCR product
was amplified and detected. Expression levels were analyzed using the comparative Ct method
(2−∆∆CT) [49]. Data are expressed as the fold-difference in normalized mRNA expression relative to
values obtained for un-infested control fish. The primers used are listed in Table 1. In all cases, each
qPCR was performed with triplicate samples and repeated with at least two independent samples.
The PCR products were visualized on 2% agarose gel, purified using the E.Z.N.A Gel Extraction
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Kit (Omega Biotek), and sequenced by Macrogen Inc. Sequences were identified through BLAST
analysis (http://blast.ncbi.nlm.nih.gov) against sequences in the NCBI GenBank database. All data
are given in terms of relative expression and are expressed as the mean ± standard error of the mean
(S.E.M.). PCR efficiencies were determined by linear regression analysis (Table 1) of sample data using
LinRegPCR [50].

Table 1. Primer sequences for qPCR used in the experiments.

Primer Nucleotide Sequence (5′ → 3′) GenBank
Accession nº

Efficiency Muscle (%)
(S.salar/O.Kitsuch)

Efficiency Liver (%)
(S.salar/O.Kitsuch)

NLRC5—Forward TCTGTCTACCGTGACCATAAGCCT
XM_014149024.1 101.1/104.3 96.2/93.2

NLRC5—Reverse CCCACTCTACCAATGCTGGTCAAT

IL-18—Forward GGAGCAACCTTTGCCTGACCAAAT
NM_001141408.1 103.1/105.1 100.3/95.7

IL-18—Reverse CTGGTCCATCCTCAAAGCTCAAGT

Il-1β—Forward TGGGTGCACGCACATCAACAT
NM_001123582.1 95.8 103.4/94.2

Il-1β—Reverse AGGGGCGCTTACCACAATATTGAC

18S—Forward GTCCGGGAAACCAAAGTC AJ427629.1 103.4/103.1 103.3/103.2
18S—Reverse TTGAGTCAAATTAAGCCGCA

Caspase-1—Forward TTGGCACTGAAGAGCAGGAAAGAG 101.3/92.3
Caspase-1—Reverse GGCCTAAGATCAGCTTGGCAAATG

MHCII—Forward GCAGAAGGGTCCAACAAGAG
XM_014133066.1 100.2/97.1

MHCII—Reverse GCAGACTCATCGATCAGCAA

IkB-α—Forward TAGGCCAGCTCTATGTGGCT
XM_014204687.1 100.8/104.6

IkB-α—Reverse TGAGGAGGAGTGCATGTCTG

4.5. Statistical Analyses

Assumptions of normality and homogeneity for the variances were tested. Each gene expression
was analyzed through two-way analysis of variance. The factors of variance were the infested fish and
time. A post-hoc Tukey’s test was used to identify significant differences, as established at p < 0.05.

5. Conclusions

This study reports the effects of C. rogercresseyi sea lice on genes related to the immune system of
two salmonids (Atlantic and coho salmon) in poorly studied tissues (liver, muscle), which can play
an important role in the type of defense or nutritional immunity to an infestation [50]. Infestation
vulnerability has been evaluated in coho and pink salmon, which are more resistant to L. salmonis
sea louse infestation, mainly due to an increased expression of pro-inflammatory cytokines [21,45].
Therefore, our results suggest the regulation of transcripts related to the inflammatory complex, such as
NLRC5, caspase-1, IL-18, IL-1β, MHCII, and I-kappa-B-alpha during C. rogercresseyi infestation of S. salar
and O. kisutch. Furthermore, the differential expression of these genes during early-phase infestation
would likely explain the higher vulnerability of S. salar to this ectoparasite. Additionally suggesting
the activation of NF-kappa B signaling pathway, mainly in the liver of both species. In contrast, O.
kisutch responded with changes in gene-level regulation of the inflammasome complex during the
later phase of C. rogercresseyi infestation. Apparently different modifications on gene expression of
immune response, among salmonid species are indicating that the expression is tissue-dependent, and
this is likely due to a use of energy to the detriment of the immune response against infestation with C.
rogercresseyi.
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