R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

library(readxl)

JAA_Age <- read_excel("D:/JAA_OTOLITOS/JAA_Idade.xlsx",
                      sheet= "JAA_Idade", range = "A1:C576")

Including Plots

You can also embed plots, for example:

library(rstan)
## Loading required package: StanHeaders
## Loading required package: ggplot2
## rstan (Version 2.21.2, GitRev: 2e1f913d3ca3)
## For execution on a local, multicore CPU with excess RAM we recommend calling
## options(mc.cores = parallel::detectCores()).
## To avoid recompilation of unchanged Stan programs, we recommend calling
## rstan_options(auto_write = TRUE)
## Do not specify '-march=native' in 'LOCAL_CPPFLAGS' or a Makevars file
library(pander)

dataList = list(
  'TL'=JAA_Age$Length,
  'AGE'=JAA_Age$Age,
  'N'= length(JAA_Age$Length)
)

# Initial values of MCMC chains based on data:
initslst <- lapply(1:4,function(i) {
  list(Linf = rnorm(1,50,5), k=runif(1,0,0.5), sigma=runif(1,0,5), t0=rnorm(1,0,0.1))
})

stanfit.JAA <- stan(file = 'LVB_Only.stan',
                    data = dataList , 
                    init = initslst,
                    chains = 4,
                    iter = 10000 ,
                    warmup = 2000 , 
                    thin = 1, 
                    verbose = F,
                    cores = 3)

summary(stanfit.JAA)
## $summary
##                mean      se_mean          sd          2.5%           25%
## sigma     2.3528092 6.300729e-04 0.075651591     2.2087984     2.3013288
## t0       -0.8503934 7.567391e-04 0.085501440    -1.0192826    -0.9077829
## Linf     45.3104933 6.202514e-03 0.663454615    44.0627309    44.8461349
## k         0.1773513 6.830548e-05 0.007040984     0.1639721     0.1724422
## lp__  -1345.4619943 1.280781e-02 1.411708107 -1349.0219429 -1346.1676795
##                 50%           75%         97.5%    n_eff      Rhat
## sigma     2.3511530     2.4022530     2.5068700 14416.32 0.9999536
## t0       -0.8500368    -0.7922310    -0.6855015 12765.99 1.0000319
## Linf     45.2948282    45.7544593    46.6487591 11441.60 1.0000402
## k         0.1772670     0.1820586     0.1914346 10625.65 1.0000475
## lp__  -1345.1408425 -1344.4222978 -1343.6906718 12148.98 1.0001134
## 
## $c_summary
## , , chains = chain:1
## 
##          stats
## parameter          mean          sd          2.5%           25%           50%
##     sigma     2.3541284 0.075429966     2.2096061     2.3025776     2.3525764
##     t0       -0.8491314 0.084693621    -1.0160665    -0.9059365    -0.8486640
##     Linf     45.3034939 0.658929663    44.0592174    44.8536123    45.2887111
##     k         0.1774459 0.006982161     0.1641015     0.1726049     0.1774275
##     lp__  -1345.4406557 1.393513620 -1348.9245755 -1346.1419756 -1345.1274911
##          stats
## parameter           75%         97.5%
##     sigma     2.4033693     2.5071570
##     t0       -0.7924355    -0.6838805
##     Linf     45.7399073    46.6402671
##     k         0.1820330     0.1915038
##     lp__  -1344.4180175 -1343.6944792
## 
## , , chains = chain:2
## 
##          stats
## parameter          mean          sd          2.5%           25%           50%
##     sigma     2.3521678 0.076649872     2.2109871     2.3006372     2.3487739
##     t0       -0.8515706 0.084876658    -1.0164914    -0.9082055    -0.8517092
##     Linf     45.3162809 0.657357361    44.0710322    44.8617467    45.3056759
##     k         0.1772629 0.006926823     0.1639033     0.1724511     0.1770696
##     lp__  -1345.4878628 1.432857124 -1349.0914222 -1346.1890697 -1345.1616156
##          stats
## parameter           75%         97.5%
##     sigma     2.4031407     2.5103422
##     t0       -0.7929363    -0.6900001
##     Linf     45.7612050    46.6275498
##     k         0.1818524     0.1912054
##     lp__  -1344.4345959 -1343.6870065
## 
## , , chains = chain:3
## 
##          stats
## parameter          mean          sd         2.5%           25%           50%
##     sigma     2.3525448 0.075848171     2.207602     2.3006973     2.3509932
##     t0       -0.8514984 0.086858123    -1.023807    -0.9101929    -0.8505107
##     Linf     45.3189031 0.675812769    44.055230    44.8365397    45.3052843
##     k         0.1772610 0.007193579     0.163571     0.1721655     0.1771408
##     lp__  -1345.4786776 1.391588779 -1349.022690 -1346.2048175 -1345.1771448
##          stats
## parameter           75%         97.5%
##     sigma     2.4010152     2.5066879
##     t0       -0.7927890    -0.6858649
##     Linf     45.7714072    46.6698833
##     k         0.1821613     0.1914804
##     lp__  -1344.4397657 -1343.7032828
## 
## , , chains = chain:4
## 
##          stats
## parameter          mean          sd          2.5%           25%           50%
##     sigma     2.3523959 0.074663105     2.2077598     2.3012381     2.3518500
##     t0       -0.8493732 0.085545870    -1.0167552    -0.9070260    -0.8494801
##     Linf     45.3032953 0.661527202    44.0673719    44.8349638    45.2805142
##     k         0.1774354 0.007057577     0.1641971     0.1725292     0.1774261
##     lp__  -1345.4407811 1.427968628 -1349.0155144 -1346.1285677 -1345.0963461
##          stats
## parameter          75%         97.5%
##     sigma     2.401843     2.5004867
##     t0       -0.790961    -0.6831506
##     Linf     45.745784    46.6464276
##     k         0.182134     0.1915055
##     lp__  -1344.403050 -1343.6811566

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

library(bayesplot)
## This is bayesplot version 1.8.0
## - Online documentation and vignettes at mc-stan.org/bayesplot
## - bayesplot theme set to bayesplot::theme_default()
##    * Does _not_ affect other ggplot2 plots
##    * See ?bayesplot_theme_set for details on theme setting
color_scheme_set("mix-green-blue")
pairs(stanfit.JAA, pars = c("Linf", "k","t0", "sigma"))
mcmc_combo(stanfit.JAA,pars = c("Linf", "k", "t0", "sigma"))

mcmc_acf(stanfit.JAA,pars = c("Linf", "k", "t0", "sigma"))