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Abstract: Scales, as key structures of fish skin, play an important role in physiological function.
The study of fish scale development mechanisms provides a basis for exploring the molecular-
level developmental differences between scaled and non-scaled fishes. In this study, alizarin red
staining was used to divide the different stages of zebrafish (Danio rerio) scale development. Four
developmental stages, namely stage I (~17 dpf, scales have not started to grow), stage II (~33 dpf,
the point at which scales start to grow), stage III (~41 dpf, the period in which the scales almost
cover the whole body), and stage IV (~3 mpf, scales cover the whole body), were determined and
used for subsequent transcriptome analysis. WGCNA (weighted correlation network analysis) and
DEG (differentially expressed gene) analysis were used for screening the key genes. Based on the
comparison between stage II and stage I, 54 hub-genes were identified by WGCNA analysis. Key
genes including the Scpp family (Scpp7, Scpp6, Scpp5, and Scpp8), the Fgf family (Fgfr1b and Fgfr3),
Tcf7, Wnt10b, Runx2b, and Il2rb were identified by DEG analysis, which indicated that these genes
played important roles in the key nodes of scale development signal pathways. Combined with this
analysis, the TGF-β, Wnt/β-catenin, and FGF signaling pathways were suggested to be the most
important signal pathways for scales starting to grow. This study laid a foundation for exploring the
scale development mechanism of other fishes. The scale development candidate genes identified in
the current study will facilitate functional gene identifications in the future.

Keywords: Danio rerio; scale development; WGCNA; transcriptome; differentially expressed genes
(DEGs)

1. Introduction

Scales are the structures that cover the surface of birds’ legs, reptiles’ bodies, and fishes’
skin. Different from birds and reptiles, fish scales are derived from the dermis. Fish scales,
like fin rays, belong to the fish exoskeleton and generally refer to all the hard, flat bones in
the fish skin [1,2], which protect the fish body. Fish scales account for 2% to 3% of the body
weight and play important roles in protecting fish from external microorganisms, reducing
frictional damage caused by particles in water, and maintaining fish body shape [3,4].

Studies of fish scales mainly focus on morphological comparison and observation,
classification, structural composition, and the genes involved in scale development [5–7].
Recently, researchers have come to believe that the starting position of scale development
is mainly affected by epigenetic factors [8]. At the gene level, the related signal pathways
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and genes mainly include the EDA/EDAR, Shh, FGFs, BMP, and Wnt/β-catenin signal
pathways. [9–11]. For example, many studies showed that the Wnt signaling pathway
plays a key role in the development of fish scales [12]. However, fish scale development
is a complex process regulated by a variety of signals and there is no clear regulatory
network reported.

Zebrafish (Danio rerio), a small tropical freshwater fish, has the advantages of short
maturation cycle and easy reproduction, which makes zebrafish an important experimental
model for the study of fish scale development [13,14]. Although no major breakthroughs
have been made regarding the molecular mechanism, research on zebrafish scale develop-
ment began decades ago. Several gene mutants (such as Fls, nkt, spd, and rs-3) resulted in
fish scale development defects in zebrafish [15]. These mutants provide a convenient and
relevant basis for fish scale development studies.

With the rapid development of high-throughput sequencing technology, the process
of obtaining gene-level information has become possible [16]. Transcriptome analysis is
a useful technology and has been widely used in developmental biology studies. Many
studies regarding skin formation patterns and epidermal structural development have
been carried out on mammals and birds through transcriptome analysis [17]. However, no
transcriptome analysis regarding fish scale development has been reported.

In this study, the developmental process and signal transduction pathways of zebrafish
scale development were analyzed by transcriptome sequencing. For key genes’ screening,
WGCNA (weighted correlation network analysis) analysis was carried out. WGCNA is an
R package for weighted gene co-expression network analysis, which can simplify a large
amount of complex gene data and quickly identify core genes related to target traits, and
has been widely used in animal and plant research [18]. The purpose of this study was to
determine the key genes and pathways in the development of fish scales. These results will
increase our understanding of the molecular mechanism of fish scale development.

2. Materials and Methods
2.1. Zebrafish Maintenance

Zebrafish (AB type) were maintained at 28 ◦C in a closed water ultrafiltration purifica-
tion system at our zebrafish feeding laboratory (Shanghai Haisheng Biological Experimental
equipment Co. Ltd., Shanghai, China). The animals used in the present study were cul-
tured and euthanized following the terms of use of animals approved by the Institutional
Animal Care and Use Committee at the Shanghai Ocean University (Shanghai, China;
SHOU-DW-20171022). Zebrafish embryonic developmental stages were determined in
days post-fertilization (dpf) or months post-fertilization (mpf). According to the days after
embryo fertilization, after staining observation, we identified four stages of scale develop-
ment, namely stage I (~17 dpf, scales have not started to grow), stage II (~33 dpf, the point
at which scales start to grow), stage III (~41 dpf, the period in which the scales almost cover
the whole body), and stage IV (~3 mpf, the period in which the scales completely cover the
fish body).

2.2. Alizarin Red Staining and Observation

Zebrafish tissue samples were fixed with 4% paraformaldehyde (Sangon, Shanghai,
China) overnight and rinsed with ddH2O for 20 min the next day. Equal volumes of
1% KOH and 1% H2O2 (Sangon, Shanghai) were mixed to make a bleaching solution
and fish samples were immersed and exposed to the air for at least 10 min. After the
bleaching solution was removed, protease solution (100 mL system: 65 mL ddH2O, 35 mL
saturated sodium borate, and 1 g trypsin (Sangon, Shanghai)) was then used to remove the
excess muscle tissue until the fish body became transparent. After digestion, the protease
digestion solution was discarded and the fish samples were rinsed with 1% KOH several
times; then soaked in 1% KOH solution; and 1% alizarin red solution (1 g alizarin red
(Yuanye, Shanghai, China) dissolved in 100 mL 0.5% KOH) was gradually added. When
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the fish body surface turned light purple, the fish bodies were observed under a microscope
(Nikon SMZ1500, Tokyo, Japan).

2.3. RNA Isolation and Sequencing

Total RNA was extracted from zebrafish skin (with scales) collected at four devel-
opmental stages with the Trizol reagent (Ambion, Austin, TX, USA). The sampling site
was at the caudal peduncle shown in the alizarin red staining diagram (Figure 1). Only
high-quality samples (OD260/280 ≥ 1.8, OD260/230 ≥ 1.8) were used to build a sequenc-
ing library.
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Figure 1. Alizarin red staining of tail scales at each sampling point for transcriptome analysis.
(A) Whole-body staining of zebrafish stage I (~17 dpf). (B) Tail-scale staining of zebrafish at stage I
(~17 dpf). (C) Tail-scale staining of zebrafish at stage II (~33 dpf). (D) Tail-scale staining of zebrafish
at stage III (~41 dpf).

The library was established according to the instructions of the VAHTS Stranded
mRNA-seq Library Prep Kit for Illumina V2 (Vazyme, Nanjing, China). MRNA with a
poly-A tail was enriched using magnetic beads with oligo dT. The combined mRNA was
eluted and broken into fragments with buffer and the first chain of cDNA was formed by
reverse transcription with random primers. RNase H digestion solution was used to digest
the mRNA strand in the hybrid double-strand, synthesize the complementary strand of
cDNA, realize the synthesis of the second strand of cDNA, and conduct end repair and
dA-tailing. After the linker was connected, the second chain containing U was digested
with the UDG enzyme and then PCR primer mix 3 in the kit was used to amplify and enrich
the library. The sequencing work was carried out by Meiji Biological Company (Shanghai,
China) using an illumina 4000.

2.4. Weighted Gene Co-Expression Analysis (WGCNA) of the Sequencing Data

WGCNA is a freely accessible R package for constructing the weighted gene co-
expression network [19]. After cluster analysis, two outlier samples were deleted and
the soft threshold was determined to be 12. On this basis, the co-expression network was
constructed and the relationship between sample characteristics and modules was analyzed.
Finally, it was determined that the turquoise module (turquoise, cor = 0.74, p < 0.01) was
the module with the highest correlation with scale development. Then, correlation analysis
between the module and gene importance was conducted. Finally, Cytoscape (Version
3.6.1) was used to draw the gene network diagram and Cytohubba’s EPC algorithm was
used to identify hub-genes [20].
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2.5. Differentially Expressed Gene Analysis and Functional Enrichment

In order to study the molecular mechanism of zebrafish scale development, we an-
alyzed the number and biological function of DEGs in six groups. Firstly, we mapped
all clean reads onto the reference gene sequence using HISAT2 (Hierarchical Indexing
for Spliced Alignment of Transcripts 2) [21]. Significant DEGs were detected by EdgeR
software (Version 3.26.8) and both |log2 (fold change)| ≥ 1 and p ≤ 0.05 were used as the
filtering thresholds [22]. The gene expression level of each sample was then calculated to
determine the fragments per kilobase of the exon model per million mapped fragments
(FPKM) using cufflinks software [23] with the default settings.

In addition, to further understand the function of DEGs at different scale developmen-
tal stages, we selected genes with differential expression |log2 (fold change) | ≥ 1 and
p ≤ 0.05, as well as used the clusterprofiler package in R software for enrichment analysis,
and GO terms and KEGG pathways with p ≤ 0.05 were regarded as significant [24].

2.6. Quantitative Real-Time PCR Validation of RNA-Seq Data

To verify the accuracy of the transcriptome sequencing results, 11 genes were selected
to perform qRT-PCR analysis. First, we extracted RNA from the caudal peduncle of
zebrafish at four different stages. The first strand of cDNA was synthesized according to
the instructions of the Goldenstar RT6 cDNA Synthesis Kit, version 2 (Tsingke Biological
Technology Co., Ltd., Wuhan, China). The specific process was as follows: First, we
removed the possible residual DNA in a 10 µL reaction system: 1 µg total RNA, 1 µL
gRNA remover, and 1 µL gRNA remover buffer, and added RNase-free water to 10 µL. We
incubated at 42 ◦C for 2 min and 60 ◦C for 5 min. Then, we added the following ingredients:
4 µL 5 × Goldenstar reaction buffer, 1 µL Goldenstar RT6 (200 U/µL), 1 µL oligo (DT) 17, 1
µL dNTP mix (10 mM), 1 µL DTT, and 2 µL RNase-free water. We incubated at 55 ◦C for
40 min and 85 ◦C for 5 min. Then, the synthesized cDNA was used as a template and the
primers used are as shown in Table 1. The total qPCR mixture reaction volume of 20 µL
contained 10 µL 2 × T5 Fast qPCR Mix (SYBR Green I (Tsingke Biological Technology Co.,
Ltd., Wuhan, China)), 0.8 µL of each primer (10 µM), 2 µL cDNA template, and 6.4 µL
RNase-free water. The quantitative analysis of genes was carried out by using a CFX96
fluorescence quantitative PCR instrument (BioRad, Hercules, CA, USA). The specific qPCR
procedure was as follows: pre-denaturation at 95 ◦C for 1 min, amplification at 95 ◦C for
10 s, amplification at 58 ◦C for 10 s, and amplification at 72 ◦C for 15 s, for 40 cycles in total.
The relative expression of each of the ten genes was analyzed using the comparative cycle
threshold (2−∆∆CT) method (∆CT = CTtarget gene − CTreference gene, ∆∆CT = ∆CTtreatment −
∆CTcontrol) [25]. Statistical analysis and Pearson correlation analysis were performed with
SPSS (Version 25.0, IBM, Armonk, NY, USA). The significance of the test results was tested
by t-test. Pearson correlation analyses were used to assess the strength of the relationship
between RNA-seq data and RT-qPCR measurements.

Table 1. Primers used in qPCR reactions.

Gene Name Prime Sequence (5′→3′) Product Length Tm

scpp7 F: TTATTGCGCTCCGCAAGTG
R:GATTTCAGAGGGTCTTGCTGC 103 bp 57 ◦C

twist2 F:TGATAATGCCGAACGGACTGT
R:GAATGTCCTTTGGCCACGTC 100 bp 58 ◦C

bmp3 F:CTGATATCGGCTGGAGCGAG
R:GGAAGGTTTCAGAGACTTTGGC 104 bp 57 ◦C

tcf7 F: CTACGTGAGTGCTTTGGGCA
R:CGCGGCATTTCTTTGGAGAG 92 bp 58 ◦C

tgif1 F: TGCGCTCGATACTTCGTAACA
R: GACATCGCCAAAACACCCTT 139 bp 59 ◦C
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Table 1. Cont.

Gene Name Prime Sequence (5′→3′) Product Length Tm

smad6 a F:CCCAGGACTATTCAGATGCCA
R:CGTCGTGAACTGGGTACAGG 117 bp 56 ◦C

tgfb2 F: ACGCGCTTTGCAGGTATAGA
R: AGACGGTATGATGGCAGCAG 122 bp 60 ◦C

il2 rb F: ACAAGCTGGGAGATGGCAAA
R: ATGACCGTCAGTTTTCGGCT 138 bp 57 ◦C

edar F: TGCGGACACTGTTTACCAGG
R:GTGTGGACCTCATGCACTCT 121 bp 57 ◦C

bmp2a F:GAGCTTCCACCATGATGAATCTACA
R:ACCAACTCCTCGTCTGGGAT 105 bp 60 ◦C

ZF-β-Actin F: CACTGAGGCTCCCCTGAATC
R: GGGTCACACCATCACCAGAG 167 bp 60 ◦C

3. Results
3.1. Scale Development in Zebrafish

We divided the zebrafish scale development process into four stages by alizarin red
staining. Stage I (~17 dpf) is the stage when zebrafish do not grow scales (see Figure 1A,B).
Stage II (~33 dpf) is the point at which scales start to grow (Figure 1C). The third stage
(~41 dpf) is when scales extend forward along the midline with the dorsal axis and also
vertically up and down until it covers the whole fish body (Figure 1D). Stage IV (~3 mpf) is
the period in which the scales completely cover the fish body.

3.2. Gene Expression Quantification and Analysis of DEGs

Gene expression levels for the four fish scale developmental stages are shown and
visualized by Venn diagrams (Figure 2A) clearly showing the numbers of genes that were
specifically expressed at each stage and the number of genes that were co-expressed be-
tween them. The results showed that 20,345, 16,608, 14,577, and 7674 genes were expressed
in the four stages, of which 7533 genes were common among the four stages. It can be
seen from Figure 2B that the data distribution of each group was relatively scattered; the
minimum value is zero and the median is close to upper quartile.

3.3. WGCNA Analysis and Hub-Genes Screening

In total, FPKM values of the 35,116 genes for the four developmental stages were
obtained. Among them, 7223 genes with FPKM ≥ 1 were selected for cluster analysis
by the Fastcluster in the WGCNA software package. In construction of the WGCNA
network, it is important to determine the soft threshold. We analyzed the network topology
with a threshold power of 1 to 20 and determined both the scale independence and mean
connectivity as the relative balance of WGCNA. As shown in Figure 3A, the optimal
threshold β value was 12, indicating that after reaching the high threshold of 12, the curve
began to flatten and the network topology was almost connected (Figure 3A).

The “one-step method” was used to construct the network. The difference coefficient
between genes was calculated to obtain the genetic system cluster tree. After the gene
modules were determined, the eigenvalues of each module were calculated in turn. Cluster
analysis was performed on the modules. In total, 7233 genes were divided into 13 modules,
among which 10 genes did not belong to any module (Figure 3B).

In order to explore genes that were highly correlated with the module and phenotype,
we conducted a heat map of module-associated phenotypes (Figure 3C). Among the four
scale developmental stages, we mainly focused on stage II, the starting point of scale
growth (~33 dpf, zf33). It was clearly shown that compared with other modules, the
turquoise module was highly correlated with stage II (zf33), which indicated that genes
in the turquoise module might play an important role in zebrafish scale development
(Figure 3C).
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Figure 2. Statistical analysis of the transcriptome sequencing data. (A) Gene expression numbers of
the four fish scale developmental stages. (B) Distribution of gene expression levels for each sample.
The X-axis represents the sample name and the Y-axis represents the value of log10 (FPKM + 1). The
box chart of each part corresponds to the following from top to bottom: upper quartile, median, lower
quartile, and lower limit. The upper and lower limits do not take outliers into account.
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Figure 3. WGCNA analysis and hub-gene identification. (A) Network topology analysis of various
soft threshold powers. The left figure shows the relationship between the scale-free fitting index
(Y−axis) and the soft threshold capability (X−axis). The right graph shows the relationship between
average connectivity (Y−axis) and soft threshold power (X−axis). (B) Clustering tree graph of genetic
system based on topological overlap. Based on the dissimilarity of topological overlap, genes were
classified into 13 different modules, where each color represents a module. (C) Correlation heat map
between gene co-expression network module and different developmental stages of scales. (D) The
top 10 hub-gene networks. The color intensity in the figure represents the connectivity; the darker
the color, the more important it is.
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Then, the connectivity of genes in the turquoise module was calculated. Genes with
gene significance > 0.87 and intra-module connectivity > 0.8 were identified as the key
genes (hub-genes). In total, 54 hub-genes with high connectivity were identified (see
Table S1). In addition, the top 10 key genes were obtained by Cytoscape software(Version
3.6.1, UCSD et al, Califonia, USA)package CytoHubba(Version1.5.1, UCSD et al, Califonia,
USA) using the EPC algorithm (Figure 3D).

3.4. GO and KEGG Pathway Enrichment Analysis

In order to explore important pathways and biological processes involved in scale
development, the gene expression in the four developmental stages was compared and both
GO and KEGG enrichment were carried out. As shown in Figure 4A, compared with stage
I, stage II mainly involves metabolic processes, such as ATP metabolism and translation,
indicating that a large amount of energy is required in the process of scale formation. In
addition, the corresponding enrichment pathways are mainly energy metabolism pathways,
such as carbon metabolism, ribosome, and other pathways (Figure 4B).
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classification of (II vs. I) groups. (B) KEGG pathway classification of (II vs. I) groups. (C) In the gene
interaction network diagram in group (II vs. I), the bubble size represents the number of connection
points between the focal gene and other genes; the more connection points, the more important
the gene is in the enriched pathway. Changes in color from red to orange represent a decrease
of expression.
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Compared with stage I, stage III is mainly involved in the biological process of energy
metabolism and translation (Figure S1A), and the corresponding KEGG pathway was also
related to energy metabolism, such as the TCA cycle and glucose metabolism (Figure S1B).
Compared with stage I, stage IV is mainly involved in a series of biological processes of
skeletal muscle growth (Figure S1C) and both focal adhesion and the ECM receptor in the
enriched pathway are mainly involved in the process of cell adhesion (Figure S1D).

3.5. Gene-Act Network

Compared with stage I, 320 genes (log2FC≥ 3.0, p≤ 0.01) in stage II (the starting point
of scale growth) were selected to explore the relationship between DEGs. Among them,
48 DEGs were identified for the linkage map constructing of the gene interaction network
by Cytoscape software (Figure 4C). Several gene families, such as Fgf (Fgfr1b and Fgfr3)
and Scpp (Scpp5, Scpp7, Scpp6, and Scpp8), were included (Figure 4C). It was clearly shown
that Scpp6, Scpp5, Fgfr1b, Runx2b, Il2rb, and Tcf7 had complex interactive relationships with
other genes, which indicated the important roles that those genes played (Figure 4C).

3.6. Key Genes and Pathways Related to Scale Development

The 10 hub-genes obtained by WGCNA analysis were highly expressed in stage II
of scale development (Figure 5A). Through traditional transcriptome analysis methods,
this study found that the genes of these families were also upregulated in stage II of
scale development, which included the Scpp family (Scpp6, Scpp7, Scpp5, and Scpp8), Wnt
(Wnt10b), the Fgf family (Fgfr1b and Fgfr3), Tcf7, Il2rb, and Timp4.1 (Figure 5B). In order
to further understand the process of scale formation, after further analysis of these genes,
we found that they are mainly in three pathways: the Wnt, TGF-β, and FGF signaling
pathways (Figure 5C). For further details about these genes, see Table S2.
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3.7. qPCR Analysis Verifications

In order to further evaluate the reliability of transcriptome data, we selected 11 genes
for qPCR detection. The correlation between RT-qPCR and RNA-seq results was analyzed
by calculating the Pearson correlation coefficient (R2). The expression data of 11 selected
genes showed the consistency between RNA-seq and RT-qPCR. The R2 value (>0.7) of the
correlation between RT-qPCR and RNA-seq data confirmed the reliability of differential
expression analysis in this study. Although the R2 values of two genes (Runx2b and
Col10a1a) were less than 0.7, their trend of expression was the same (Figure 6).
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Figure 6. The comparison of the selected gene expression patterns in RT-qPCR and RNA-seq showed
a high correlation between the two methods. The calculation and mapping of the log2 ratio of
expression changes in the other three stages was relative to the first stage (the log2 ratio of stage I
was set to 0). The blue line shows the RT-qPCR results and the orange line shows the RNA sequence
results. The Pearson correlation coefficient (R2) was used to measure the correlation between RT-
qPCR and RNA-seq results. The results were analyzed by t-test. * indicates significant correlation
(p < 0.05) while ** indicates highly significant correlation (p < 0.01).

4. Discussion

In fishes, scales are produced by directed differentiation from fish skin primitive
stem cells [26]. Relevant research data show that the skin has already been formed at
the beginning of the scale developmental process [27]. In this study, we used zebrafish
as a model to study scale development by using alizarin red staining and we divided
the developmental process into four stages: stage I (17 dpf), stage II (~33 dpf), stage III
(~41 dpf), and stage IV (~3 mpf) (Figure 1). Studies have shown that first scale appearance
in zebrafish is related to fish size. Zebrafish with a body length of 8.1–8.2 mm at 30 dpf had
the first scale at the caudal peduncle [1]. The time of stage II of scale development (~33 dpf)
was similar to that reported in the literature. The molecular mechanisms of fish scales
starting to grow attract the interest of researchers. In order to find the key genes of scale
development, we used WGCNA and differentially expressed gene analyses to perform
gene identification.

According to the WGCNA analysis results, the study first identified hub-genes related
to scale development, which included nusap1, tbx1, smad6a, and mynn (Figure 3). These
genes have been reported to be involved in skin or bone development and have been con-
firmed to participate in many known skeletal development-related pathways. For example,
Tbx1 is connected to several major signaling systems, such as FGF, WNT, and SHH, and
is involved in the cell proliferation and regulation of cell shape and cell dynamics. It is
expressed only in hair follicles in healthy human skin [28–30]. Id1 is a small molecule acti-
vator of BMP signaling [31] and is positively correlated with bone morphogenetic protein
(BMP) signal metabolism during fin repair [32]. Bmp participates in the TGF-β signaling
pathway and is a key regulatory gene in the pathway. Tgif1 is in the TGFβ1/Smad2/3



Fishes 2022, 7, 64 10 of 13

signaling pathway [33]. All these observations indicate that these hub-genes play both
direct and indirect roles at key nodes in the scale development pathway.

Since stage II is the point at which scales start to grow and stage I is the stage zebrafish
do not grow scales, the transcriptome comparison between II and I is very important. It
is helpful for us to identify important upregulated genes involved in scale development.
Therefore, we focused on the gene interaction map of groups (II vs. I) in which we found
that the Scpp family (Scpp7, Scpp6, Scpp5, and Scpp8), the Fgf family (Fgfr1b and Fgfr3),
Tcf7, Wnt10b, Runx2b, and Il2rb are closely connected, indicating that these genes play
a key role in scale development (Figure 4C). Of course, some of the selected genes are
consistent with existing literature reports. For instance, Z Liu et al. [34] further analyzed the
transcriptome of scaled and non-scaled fishes, and found that two genes that play a leading
role among the upregulated genes are the apolipoprotein and Scpp genes. In addition,
Scpp has been reported to be involved in skeletal muscle development and tooth tissue
calcification [35–40]. Wntl0b participates in the regulation of animal hair follicle growth
and regeneration hair follicles are highly expressed during embryonic development, which
promotes hair growth and participates in the maintenance of the hair follicle cycle [41].
FGFR (fibroblast growth factor receptor) is a member of the immunoglobulin superfamily
and the gene itself also belongs to a polygenic family [42]. The FGFR gene is considered to be
an important developmental gene which can regulate the differentiation and proliferation
of a variety of cells [43]. Studies have shown that Fgfr1a and Fgfr20a mutations will lead
to changes in the scale size of zebrafish during scale development [44,45]. The Fgfr1b and
FGFR3 identified in this study belong to the FGFR family and are also highly expressed at
the stage of scale formation, which is consistent with the results of existing reports. The
TCF/lef transcription factor family can regulate the Wnt signaling pathway, including
the Tcf7 gene identified in our study [46,47]. Ducy et al. [48] found that the Runx2 gene
regulates bone formation by controlling osteoblast activity.

In the comparison of the RT-qPCR and RNA-seq results of the screened genes, we
conducted correlation analysis and the t-test was used to test whether the correlation was
significant. The results showed that the R2 of most genes was greater than 0.7 and two
genes (EDAR and Bmp2a) had a very significant correlation (p < 0.01); the correlation of one
gene (Scpp7) was significant (p < 0.05) but the correlation of the others was not significant
(p > 0.05). However, while the R2 value of the RT-qPCR and RNA-seq of the genes was
less than 0.7 or their correlation was not significant, their expression trend was consistent,
indicating the reliability of the transcriptome results. This result is consistent with the
results presented in many literature reports, that is, the expression trend of RT-qPCR and
RNA-seq is consistent [49–51].

Scale development is an extremely important and complex process. Therefore, study-
ing the mechanism of scale development and its related signaling pathways can help
understand animal evolution, growth, development, and reproduction. It involves many
signaling pathways and genes, such as the SHH, FGFs, BMP, EDA/EDAR, and Wnt/β-
catenin signaling pathways, as well as transcription factors including Twist2 [9–11,52].
These factors control the occurrence and development of scales. However, in our current
study, the Shh, EDA/EDAR, BMP, twist2, and ApoE genes were not identified during scale
development, although they are still important. Based on the results of WGCNA analysis
and traditional transcriptome analysis, we mainly found that the Wnt/β-catenin, TGF-β,
and FGF signaling pathways play a very important role in the process of scale development.

At present, only a few genes related to scale development have been functionally
verified in zebrafish and most genes have not been functionally verified to prove their
impact on scale development. Moreover, with the development of gene editing technology,
it is possible to use gene knockout to assess gene function. In future work, our focus is to
identify the genes related to scale development using gene knockout.
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5. Conclusions

In this study, four different stages of zebrafish scale development were determined by
alizarin red staining and the skin transcriptome was studied regarding these four stages.
Using WGCNA analysis, we found 54 hub-genes highly related to scale development. In
addition, combined with transcriptome analysis, we found the TGF-β, Wnt/β-Catenin
and FGF signaling pathways, and the highly expressed Scpp family (Scpp7, Scpp6, Scpp5,
and Scpp8), the Fgf family (Fgfr1b and Fgfr3), Tcf7, Wnt10b, Runx2b, and Il2rb genes to be
involved in scale development. In conclusion, this study provides a powerful reference for
further study on the molecular regulation mechanism of gene regulation, morphogenesis,
and the function of related genes in fish scale formation.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fishes7020064/s1, Figure S1: Compared with stage I, the biological
process and pathways enriched in stage III and stage IV; Table S1: WGCNA analysis of 54 highly
connected genes in the turquoise module; and Table S2: According to the results of WGCNA and
transcriptome analysis, the FPKM values of 21 candidate genes related to zebrafish scale development
were identified.
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