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Abstract: Otolith morphological variability is used as a reliable indicator to discriminate fish that
experience different environmental conditions during their lifetimes. The present study examined the
effects of developmental temperature (DT) during the egg and yolk-sac larval period on the otolith
shape and asymmetry of Gilthead seabream in the later metamorphosis (56–58 days post-hatching,
dph) and the early juvenile stage (93–95 dph). The experimental populations were reared at different
water temperatures (17, 20, or 23 ◦C DT) from epiboly onset to the end of the yolk-sac larval stage
(5–7 days post-fertilization, dpf) and then at a common rearing temperature (20 ◦C), up to the end
of the trials (93–95 dph). Otolith shape and bilateral asymmetry were analyzed at metamorphosis
(20–21 mm standard length, SL) and the early juvenile stage (31–32 mm SL). The results of elliptic
Fourier analysis showed that DT significantly affected the otolith shape at both stages examined.
Furthermore, elevated DT significantly increased the asymmetry levels of seabream otoliths in the
early juvenile stage. The results are discussed in terms of the thermally induced long-term changes
of seabream otolith morphology and the potential effects of the raised otolith asymmetry on wild
seabream juveniles.

Keywords: otolith shape; bilateral asymmetry; phenotypic plasticity; post-settlement; teleosts

1. Introduction

Otoliths are crystal structures located in the inner ear of teleost fish and act as organs
of equilibrium and sound transduction [1]. They are calcium carbonate concentrations
deposited continuously in a proteinaceous organic matrix throughout the life of the fish
and are metabolically inert (i.e., once deposited, otolith material is unlikely to be resorbed
or altered) [2,3]. Because of their accretionary growth, otoliths are used as reliable tools
for recording information about the age, growth, and fish life cycle (e.g., [2,4]). Otolith
morphology is considered species-specific, and it changes allometrically during fish de-
velopment (e.g., [1,5,6]). At the individual level, otolith shape results from the combined
expression of the individual genotype and the conditions of the growing environment [7–9].
In any given species, otoliths exhibit remarkable plasticity under the action of different
environmental drivers. Abiotic and biotic factors, such as water temperature [10–12], habi-
tat depth [11,13], type of substrate [14], acidification levels [15,16], food quantity [17], and
food composition [12,18,19], have been shown to affect otolith micro- and macrostructure.
Otolith phenotypic plasticity is widely used for the identification of different fish stock units
(e.g., [8,20–22]) as well as in ecomorphological studies (e.g., [14,23]) and studies related to
the contribution of aquaculture escapees to local wild populations (e.g., [24–27]).

Fluctuating asymmetry (FA) refers to the non-directional deviations from perfect bilat-
eral symmetry and is a measure of developmental instability, which reflects the inability
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of an organism to produce an ‘ideal’ phenotype against genetic and environmental per-
turbations [28,29]. FA is a popular tool for examining the effects of environmental stress
on the health status of wild populations [30]. In fish, different meristic (e.g., fin rays and
gill rakers) and morphometric (e.g., otoliths and eyes) characters have been used to study
FA [31]. According to [32], otoliths are excellent structures for FA studies. Given that the
onset of otolith formation is very early in fish ontogeny (e.g., at hatching in salmonids, [2]),
otoliths are considered sensitive indicators of developmental stress because they reflect
growth processes [33]. However, because of their high functional value, otoliths are subject
to a stronger selection for canalization [30]. Therefore, otolith FA is maintained at the lowest
possible level to minimize functionality disturbance [34]. Individuals with abnormally
high otolith asymmetry levels can experience difficulties in functions such as hearing and
balance and thus are eliminated by natural selection [35].

Early life stages are considered critical windows in fish development because they
are sensitive to the induction of phenotypic plasticity under different environmental expo-
sures [36]. The effects of environmental conditions during this brief, early period can some-
times be observed later, inducing modifications in the juvenile or adult phenotype [36,37].
The water temperature experienced by fish during early life (developmental temperature,
DT) has been shown to induce long-lasting alterations in fish form and function in terms of
growth, survival, and physiological performance [37–39]. The existing literature suggests
that the DT influences a variety of morphological and physiological characteristics in the
later stages of fish, such as body shape [40,41], cardiac morphology [42], meristic charac-
ters [43,44], swimming performance [40,45], sex [46,47], thermal acclimation capacity [48],
and hypoxia tolerance [49].

Gilthead seabream (Sparus aurata Linnaeus, 1758) is an important species for coastal
fisheries as well as for Mediterranean finfish aquaculture. It is a euryhaline and eury-
thermal marine fish distributed from the Black Sea and the Mediterranean to the eastern
Atlantic [50]. The spawning period of its natural populations starts around late December
to early January and lasts 3–4 months [51]. In this extending period of gamete release, the
optimum temperature range for the normal development of S. aurata during the embryonic
and larvae stages is 16–24 ◦C [52,53]. Gilthead seabream has been shown to be highly
responsive to DT, which can affect the ontogenetic timing of the fish relative to the body
size or induce body shape modifications at later stages [40,54]. In our recent relevant paper,
we demonstrated that DT during the autotrophic period (the embryonic and yolk-sac larval
stage) significantly alters the swimming performance of metamorphosing seabream lar-
vae [40]. However, to our knowledge, no study exists on the effect of DT on the otolith shape
and asymmetry of fish (including seabream) in later development. The only relevant study
focusing on the effect of DT in the subsequent otolith formation showed that short-term
water temperature fluctuations during the early lifetime reorientate the otolith ontogenetic
trajectory in brown trout (Salmo trutta Linnaeus, 1758) [55]. Following previous studies on
the potential impacts of global climate change scenarios on the biological performance of
wild fish stocks, this study examined the effect of DT during the short autotrophic period
on the otolith shape and asymmetry of the Gilthead seabream in the critical post-settlement
phase.

2. Materials and Methods
2.1. Experimental Design and Larval Rearing

Nine groups of fish were subjected in triplicates to 17, 20, or 23 ◦C water temperature
from the stage of epiboly onset to the end of the yolk-sac larval stage and the beginning
of exogenous feeding (5–7 days post-fertilization, dpf). All groups were then kept under
identical rearing conditions and rearing temperature (20 ◦C) up to the end of the trial
(93–95 dph, Figure 1). Egg acclimation was performed at a rate of 0.5 ◦C h−1 from the
spawning temperature (17 ◦C) to the test temperatures, and then at a rate of 0.2 ◦C h−1

to the common temperature for larval rearing (20 ◦C). All eggs came from the same mass
spawn, with an initial stocking density of 115 eggs L−1 per replicate. Egg incubation and
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larval rearing were performed according to the standard methodology for the species. In
short, water recirculation systems with 500 L tanks connected to biological filtration were
used. Larvae were initially fed on enriched rotifers (Brachionus plicatilis), then on Artemia
nauplii, and finally on inert diets (O-range, INVE). The water oxygen was 5.8 ± 1.0 to
6.0 ± 0.9 mg L−1, the salinity was 35–36‰, the pH was 7.8 ± 0.3, and the photoperiod was
18L:6D. Further information on the rearing process is provided by Kourkouta et al. [40].
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Figure 1. Experimental design. Fish were subjected to one of three developmental temperature
treatments (17, 20, or 23 ◦C) from the epiboly onset (Ep) to the end of the yolk-sac larval stage (eYs,
~4 mm total length, TL) and then to a common temperature up to the juvenile stage (31–32 mm, SL).
All thermal treatments were applied in triplicate. Fish otoliths were extracted and analyzed at the
end of metamorphosis (eM, 56–58 days post-hatching, dph) and the early juvenile stage (J, 93–95 dph)
(modified from Kourkouta et al. [40]).

2.2. Sampling and Otolith Extraction

The effect of developmental temperature (17, 20, or 23 ◦C) on otolith shape and asym-
metry was examined at two different developmental stages of seabream populations. From
each population, 10 fish were taken randomly at the end of metamorphosis (56–58 days
post-hatching, dph) and the early juvenile stage (93–95 dph) (30 fish per thermal regime,
Figure 1). In the laboratory, all fish were measured for standard length (SL, tip of snout
to base of the central caudal lepidotrichia, Table 1). The largest pair of otoliths (sagittae)
was removed from each specimen, cleaned (75% ethanol), and individually photographed
with a digital camera (Lumenera INFINITY 1-5C, Teledyne Lumenera, Ottawa, Ontario,
Canada) mounted on a stereoscopic microscope (Olympus SZ61, Olympus Europa SE &
Co. KG, Hamburg, Germany) under a reflected light source on a dark background.

Table 1. Characteristics of the samples taken from the experimental populations. DT, developmental
temperature. dph, days post-hatching. SL, average standard length. Each sample consisted of 30 fish.
Different superscripts (a, b) indicate significant differences among the different groups in the same
developmental period (p < 0.05, ANOVA).

dph DT (◦C) SL (±SD, mm)

56 17 20 ± 1 a

58 20 20 ± 2 a

58 23 21 ± 1 b

93 17 32 ± 2
95 20 32 ± 3
95 23 31 ± 2
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2.3. Otolith Shape Analysis

To establish a common orientation between otoliths of the two body sides, images
of the right otoliths were horizontally flipped. Applying standard image analysis tech-
niques, all images were converted to binary (ImageJ software version 1.53k, [56]). Using
the ‘ShapeR’ package [57], an open software package in R (version 4.0.3, [58]), otolith
contours were extracted from the images, and each otolith shape was represented by
a two-dimensional coordinate matrix (x, y). Four univariate morphological descriptors
were estimated for each otolith structure: surface area (OS, mm2), perimeter (OP, mm),
maximum length (OL, mm), and maximum depth (OD, mm). To separate size and shape
variation, univariate descriptors were estimated according to the allometric relationship
(Y = a × SLb, [59]). Specifically, each measurement was transformed using the formula
Yi* = Y(SLmean/SLi)b, where SLi is the individual standard length and SLmean is the av-
erage standard length of all specimens in each developmental period [60]. The aspect
ratio (OD/OL) was calculated with the new standardized values (Yi*). ANOVA and a
posteriori Bonferroni tests were used for testing the differences in standardized univariate
morphological descriptors between the different thermal groups.

To describe otolith contours, a normalized elliptic Fourier technique was applied
following the criterion of 98.5% accuracy of otolith reconstruction. A total of 12 harmonics
were produced, each one consisting of four coefficients [57]. The first three harmonic coeffi-
cients were omitted from the analysis (48 − 3 = 45 coefficients) because of the alignment of
otolith shape data and standardization in relation to size. In order to adjust otolith shape
with respect to allometric relationships with SL, those coefficients that showed a significant
interaction (p < 0.05) between fish groups and fish standard length (SL) were automat-
ically omitted. Finally, the mean shape configuration of each fish group was displayed
for the visualization of the otolith shape variation [57]. The effect of the developmental
temperature (17, 20, or 23 ◦C) on the otolith shape of the fish was tested using a canonical
variate analysis (CVA) of the elliptic Fourier data. The Wilks’ Lambda (λ) and p-value
were calculated for the statistical significance of each test. Squared Mahalanobis distances
and the respective p-values were estimated for the pair-wise differences between thermal
groups.

2.4. Bilateral Asymmetry of the Otolith Pairs

Bilateral asymmetry was assessed for ten traits: four univariate morphometric de-
scriptors (OL, OD, OS, and OP, unadjusted by SL) and six high-amplitude harmonics
(H2–H7) (i.e., low-order harmonics, which describe the main outline characteristics of
otolith shape, [61]). Amplitudes were extracted from elliptic Fourier coefficients (unad-
justed by SL) of each harmonic descriptor. The amplitude of the harmonic n was calculated
for each otolith as follows:

ampn =
1
2

√
a2

n + b2
n + c2

n + d2
n, [61]

Primarily, all traits were tested for the type of bilateral asymmetry: fluctuating asym-
metry, directional asymmetry, or antisymmetry [62,63]. A trait exhibiting ideal FA has a
distribution of R–L (where R is the right measurement and L is the left) with mean zero
and normal variation. The two other types of asymmetry have different distribution char-
acteristics [28]: directional asymmetry has a significantly skewed distribution of R–L, and
antisymmetry presents bimodality or platykurtosis. Palmer and Strobeck [64] suggested
that conventional skew and kurtosis statistics provide the most useful descriptions and
tests for departure from normality because they provide additional useful descriptors of
the form of between-sides variation. Therefore, we tested whether the R—L distribution of
the otolith traits had skew (g1) and kurtosis (g2) equal to zero using one-sample t-tests [65].
Additionally, a simple regression analysis of the natural logarithm of the absolute bilateral
difference (ln|R-L|) against size (SL) was performed for each trait to test for size-related
variation in otolith asymmetry [62,63].
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Finally, the variance of the bilateral difference (FA1 = var(R-L)) was calculated for each
trait/fish group as an index of otolith asymmetry [30]. The significance of the differences
in FA1 between the different groups was tested using Bonferroni-corrected F-tests [28].

3. Results
3.1. Effect of Developmental Temperature on the Otolith Shape

At the end of metamorphosis (eM, 56–58 dph, 20–21 mm SL), the developmental
temperature (DT) had a significant effect on the fish otolith shape for both left (Wilks’
λ: 0.2126, p < 0.05) and right (Wilks’ λ: 0.1124 p < 0.001) body sides. The first canonical
variate (CV1) explained 69.3% and 63.0% of the total variance for the left and right sides,
respectively, and discriminated the fish initially reared at 23 ◦C DT from the other two
experimental groups (Figure 2).

1 
 

Figure 1 

 

 

 

 

Figure 2 
 

 

 

 

 

Figure 2. Effect of developmental temperature (17, 20, or 23 ◦C) on the otolith shape of seabream
metamorphosing larvae taken at 56–58 dph (days post-hatching). Means (±2 SE) of the canonical
scores are presented. Numbers in brackets are equal to the percentage of shape variance explained by
each canonical variate (CV) axis. Squared Mahalanobis distances between the different groups and
the respective significance levels are given for both left and right otoliths in the tables below the CV
graphs. ns p > 0.05, * p < 0.05, ** p < 0.01.

The second canonical variate (CV2) explained 30.7% and 37.0% of total variance for
the left and right sides, respectively, and discriminated the fish group of 17 ◦C from the
group of 20 ◦C DT. In the case of the right body side, the squared Mahalanobis distances
were significant between the fish with 23 ◦C DT and the thermal groups of 17 and 20 ◦C
DT, whereas for the left body side, the squared Mahalanobis distance was significant only
between the groups of 20 and 23 ◦C DT (p < 0.05, Figure 2).

At the early juvenile stage (J, 93–95 dph, 31–32 mm SL), DT had a significant effect on
the fish otolith shape, but only for the right side (Wilks’ λ: 0.1453, p < 0.01). The squared
Mahalanobis distances were significant between the fish with 17 ◦C DT and the thermal
groups of 20 and 23 ◦C DT (p < 0.05, Figure 3).
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Figure 3. Effect of developmental temperature (17, 20, or 23 ◦C) on the otolith shape of seabream
early juveniles taken at 93–95 dph (days post-hatching). Means (±2 SE) of the canonical scores are
presented. Numbers in brackets are equal to the percentage of shape variance explained by each
canonical variate (CV) axis. Squared Mahalanobis distances between the different groups and the
respective significance levels are given for both left and right otoliths in the tables below the CV
graphs. ns p > 0.05, * p < 0.05, ** p < 0.01.

The first canonical variate (CV1) explained 66.2% of the total variance for the right
side, discriminating the fish with 17 ◦C DT from the other experimental groups. The
second canonical variate (CV2) explained 33.8% of the total variance for the right side,
discriminating the fish with 23 ◦C DT from the fish with 17 and 20 ◦C DT (Figure 3). In the
case of the left side, the first canonical variate (CV1) explained 60.2% of the total variance
and discriminated the fish with 23 ◦C DT from the other two experimental groups, while the
second canonical variate (CV2) explained 39.8% of the total variance and discriminated the
group of 17 ◦C from the group of 20 ◦C DT (Figure 3). Otolith shape variation was visually
displayed by the average shape configuration of each experimental group for both sampling
ages (Figures 4 and 5). Compared with the other thermal groups, metamorphosing larvae
with 23 ◦C DT presented a more pronounced notch formation at the anterior-dorsal area
(Figure 4). Additional, less pronounced shape differentiations on the otolith contour could
also be observed in fish with 23 ◦C DT for both sampling ages (Figures 4 and 5).
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  Figure 4. Average otolith shape configurations of seabream metamorphosing larvae (56–58 days
post-hatching, dph) demonstrate the main shape differences between thermal groups; 17, 20, and 23:
fish initially reared at 17, 20, and 23 ◦C DT (developmental temperature), respectively.
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Figure 5. Average otolith shape configurations of seabream early juveniles (93–95 days post-hatching,
dph) demonstrate the main shape differences between thermal groups; 17, 20, and 23: fish initially
reared at 17, 20, and 23 ◦C DT (developmental temperature), respectively.

3.2. Effect of Developmental Temperature on the Otolith Asymmetry

For both sampling ages (eM, J), correlations between the otolith traits’ asymmetry
(ln|R-L|) and the fish SL were statistically non-significant (all p > 0.05, not shown). Thus, no
correction for the size dependence of FA was applied [63]. Antisymmetry was also absent,
with all kurtosis (g2) estimates either non-statistically different from zero or significantly
positive (leptokurtic) (Table 2). Interestingly, directional asymmetry (skew significantly
positive, R > L) was detected for the otolith size descriptors OS, OL, and OD at the early
juvenile stage (tS < 0.001, Table 2). However, asymmetry indices based on signed R–L
values (e.g., FA1) are not biased by skewed distributions [28].

Developmental temperature (DT) had a significant effect on otolith fluctuating asym-
metry (FA) of Gilthead seabream. For many size and shape morphometric descriptors, FA1
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was significantly higher in the juveniles initially reared at 23 ◦C DT than those reared at 17
and/or 20 ◦C DT (OS, OP, OL, H2, and H4, Figure 6).

 

3 

Figure5 

 

 

 

Figure 6 

 

 

 

 

Figure 6. Effect of developmental temperature (17, 20, and 23 ◦C) on seabream otolith asymmetry
(index FA1) at the end of metamorphosis (eM, 56–58 days post-hatching, dph) and early juvenile
stage (J, 93–95 dph). For each developmental period (eM, J), values without a letter in common are
statistically different (p < 0.05, F-test).

Table 2. Estimates of skew (g1) and kurtosis (g2) of otolith asymmetry values (R-L) for surface (OS),
perimeter (OP), maximum length (OL), maximum depth (OD), and harmonics 2–7 (H2–H7), separately
for metamorphosing larvae (eM, 56–58 days post-hatching, dph) and early juveniles (J, 93–95 dph).
SE, standard error, tS, t-statistic, n, sampling size. * p < 0.05, ** p < 0.01, *** p < 0.001.

Stage R−L n Skew (g1) Kurtosis (g2) SE (g1) SE (g2) ts (g1) ts (g2)

eM

OS 90 −0.216 1.925 0.254 0.503 −0.85 3.83 **
OP 90 −0.179 0.004 0.254 0.503 −0.71 0.01
OL 90 −0.292 0.257 0.254 0.503 −1.15 −0.51
OD 90 0.056 0.417 0.254 0.503 0.22 0.83
H2 90 0.139 −0.597 0.254 0.503 0.55 −1.19
H3 90 0.395 −0.465 0.254 0.503 1.56 −0.92
H4 90 −0.146 −0.535 0.254 0.503 −0.58 −1.06
H5 90 −0.004 −0.318 0.254 0.503 −0.02 −0.063
H6 90 −0.070 −0.262 0.254 0.503 −0.27 −0.52
H7 90 −0.014 −0.613 0.254 0.503 −0.05 −1.22

J

OS 90 2.889 15.293 0.254 0.503 11.37 *** 30.41 ***
OP 90 0.430 3.285 0.254 0.503 1.69 6.53 ***
OL 90 2.444 14.198 0.254 0.503 9.62 *** 28.23 ***
OD 90 2.005 11.106 0.254 0.503 7.89 *** 22.08 ***
H2 90 −0.141 0.332 0.254 0.503 −0.56 0.66
H3 90 0.418 1.542 0.254 0.503 1.65 3.07 *
H4 90 −0.484 0.302 0.254 0.503 −1.90 0.60
H5 90 −0.024 0.156 0.254 0.503 −0.10 0.31
H6 90 0.098 0.645 0.254 0.503 0.38 1.28
H7 90 0.034 −0.046 0.254 0.503 0.14 −0.09



Fishes 2022, 7, 82 9 of 15

3.3. Effect of Developmental Temperature on Otolith Size

Standardized univariate morphological descriptors (OS*, OP*, OL*, and OD*) did not
exhibit any significant differences between fish initially reared at different developmental
temperatures (DT) for either sampling age (Figures 7 and 8).
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Figure 7 

 

 

 

Figure 8 

 

Figure 7. Box plots (—, median; �, 25 and 75% percentiles; I, highest and lowest values) of stan-
dardized univariate morphological descriptors (Z-values) for seabream metamorphosing larvae
taken at 56–58 dph (days post-hatching); 17, 20, and 23: fish initially reared at 17, 20, and 23 ◦C
DT (developmental temperature), respectively. OL: maximum otolith length, OD: maximum otolith
depth, OS: otolith surface area, OP: otolith perimeter.

 

4 

Figure 7 

 

 

 

Figure 8 

 
Figure 8. Box plots (—, median; �, 25 and 75% percentiles; I, highest and lowest values) of standard-
ized univariate morphological descriptors (Z-values) for seabream early juveniles taken at 93–95 dph
(days post-hatching); 17, 20, and 23: fish initially reared at 17, 20, and 23 ◦C DT (developmental
temperature), respectively. OL: maximum otolith length, OD: maximum otolith depth, OS: otolith
surface area, OP: otolith perimeter.
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4. Discussion

In the present study, we found that water temperature during early development
influences the shape and asymmetry but not the size of Gilthead seabream otoliths at the
metamorphosis (20–21 cm, SL) and the early juvenile (31–32 cm, SL) stages. The existing
literature supports the sensitivity of fish otoliths to the effect of water temperature during
their early ontogeny. Following Vignon [55], short-term temperature fluctuations during
the yolk-sac larval period in brown trout (Salmo trutta) induced long-lasting changes in
otolith ontogenetic trajectories, leading to progressively divergent shapes throughout fish
development. On the contrary, the water temperature experienced by the fish at later
developmental stages (juvenile period) did not appear to change the trajectory of otolith
morphogenesis [12]. In our study, the different developmental temperatures (DT) were
applied from the first day of embryonic development (epiboly onset) to the end of the
yolk-sac larval stage (5–7 dpf) of Gilthead seabream. This period includes the onset of
otolith formation because, in many fish species, the otolith structures are already visible
before hatching (reviewed by Fuiman [66]; otolith formation onset around 60–70% of the
total duration of the embryonic stage, Gilthead seabream, [67]).

Previous studies have shown that daily thermal variations (ranging from 11 ◦C to
19 ◦C) for 5 consecutive days during the yolk-sac larval period can induce long-term
plasticity of otolith shape in brown trout [55]. In the present study, to avoid potentially
detrimental effects of rapid temperature changes on fish embryos and larvae, a slow
acclimation procedure was applied at both the beginning (epiboly stage) and the end
(end of the yolk-sac larval stage) of the DT exposure period. The involvement of these
temperature changes in the observed differentiation of otolith morphology should be
excluded because fish were initially acclimated to the test temperatures well before otolith
formation (epiboly stage). In addition, differences in otolith morphology were irrelevant
with temperature changes during the second acclimation period (end of the yolk-sac
larval stage). Specifically, our results revealed significant otolith shape and asymmetry
differences between the groups of 17 and 23 ◦C DT, which were both subjected to thermal
acclimation (to 20 ◦C). The exact mechanism of the DT effects on otolith morphology
remains unknown. Observed otolith variability might result from a direct effect of DT on
otolith initial formation and ontogenetic trajectory, as well as from indirect effects of DT,
via modifications of the neurocranium phenotype (which may regulate otolith growth and
morphology, [68]). In support of our hypothesis, DT was shown to affect the shape of the
fish skeleton in a variety of species, including Gilthead seabream [69].

Elevated water temperature during the early life stages has been shown to increase the
fluctuating asymmetry of fish skeletal bilateral structures (i.e., paired fins or branchiostegal
rays, [70–72]). Similar to these findings, our results showed that the elevated water tem-
perature during the short autotrophic period significantly increased the otolith asymmetry
levels of juvenile seabream. Deviations from bilateral symmetry were not restricted to only
fluctuating asymmetry but also composed of directional asymmetry. Directional asym-
metry (DA) reflects a consistent bias of a character toward greater development on one
specific body side [29]. In roundfish species, the existing literature suggests that deviations
from perfect bilateral symmetry in otolith morphology potentially result from FA or DA
(e.g., [32,35,73]). Otolith FA has been widely used as a sensitive indicator of developmental
instability to test the effects of different environmental stressors on fish health, performance,
and population fitness (reviewed by Diaz-Gil et al. [74]). On the other hand, the origin
of otolith DA in roundfish is largely unknown and has been proposed to have a genetic
origin or to be a phenotypic plastic response induced by environmental drivers and could
reveal a functional adaptation (e.g., water temperature, [12]). In the present study, the
temperature-induced increase in otolith asymmetry in some characters was expressed as
FA (OP, H2, and H4) and in others as DA (OS, OL, OD). This finding suggests that some
characters’ responses (FA) might be the result of thermal stress, whereas others’ responses
(DA) may correlate with functional adaptation against elevated early temperature.
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In the present study, the effect of DT on the otolith shape was differentiated with
respect to the body side and the ontogeny of fish. In the case of the left side, differences
in otolith shape among the three thermal regimes (17, 20, and 23 ◦C) decreased with fish
development at the common temperature condition (20 ◦C). The opposite response was
detected in the case of the shape of the right otoliths, with the differences among groups
significantly increasing from metamorphosis to the early juvenile stage (Figures 2 and 3).
These different responses between the two body sides might be the underlying mechanism
of the DA (the right side larger than the left side concerning OS and OL, Table 2) increase
at elevated developmental temperature (23 vs. 17–20 ◦C). The bilateral differentiation of
the otolith shape variability was also observed in a previous study on stock discrimination
of bogue (Boops boops Linnaeus, 1758), with geographical stock units being significantly
discriminated with respect to the shape of the right but not the left otoliths [21]. It will
be interesting to study the potential mechanism by which environmental factors, such as
temperature, during critical ontogenetic periods of fish induce bilateral differentiation in
biomineralization processes and, therefore, the morphological differences between the left
and right pair of otoliths.

Otolith shape variability is the outcome of changes in the relative growth of the
different otolith parts (allometry) during fish growth [1,18,68]. In the present study, a
possible size effect on the observed otolith shape differences among the thermal groups
should be excluded because all size-related Fourier shape coefficients were removed from
the analysis. Moreover, all juvenile samples were homogenous with respect to mean SL
(Table 1). In different fishes, elevated water temperatures during the early life stages induce
shifts in the ontogenetic timing toward smaller body sizes at the attainment of the different
ontogenetic events (e.g., yolk-sac resorption, fin formation, squamation, etc.) [69,75,76].
Whether the observed otolith shape variability (present study) is related to thermally
induced alterations of the ontogenetic scale remains unknown.

Otoliths have an important role in the fish auditory system because of their intimate
involvement with the senses of balance and hearing [77]. Previous studies have suggested
that increased otolith asymmetry could affect the acoustic functionality of fish [78,79] and
have been associated with kinetotic swimming behavior (i.e., spinning movements and
looping responses) [80–83]. In the present study, the elevated temperature during the em-
bryonic and yolk-sac larval period increased otolith asymmetry levels at the early juvenile
stage, which in nature occurs soon after seabream settlement to the coastal demersal habi-
tats [84,85]. Considering that individuals with abnormally high OA levels are eliminated
by natural selection [35], an increase in otolith asymmetry levels of wild seabream juveniles
due to elevated DT may potentially reduce their ability to avoid predators in the new
coastal environment.

5. Conclusions

Currently, there is an increasing interest in the implications of climate change scenarios
regarding natural fish populations. Following existing models for the future impacts of
climate change on the sea, the temperature of the epipelagic zone is expected to increase
by ~0.7 to 3.1 ◦C by 2100 [86]. Our results suggest that a temperature increase of 3 ◦C
during a short and early ontogenetic period (embryonic and yolk-sac larval stages) may
significantly alter the shape and bilateral asymmetry of fish otoliths. Given the high
functional value of fish otoliths [77], such alterations may have a significant impact on the
wild stocks. Moreover, along with using otoliths as a tool for spatiotemporal discrimination
of fish populations that experience different environmental conditions during their lifetime,
our results suggest that otolith morphology (shape and asymmetry) could be a reliable
indicator of the past growth temperature conditions, providing information on the thermal
experience of fish during critical early ontogenetic windows.
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