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Abstract: To identify key nonspecific organisational characteristics of the mid-trophic pelagic commu-
nities, which remain a challenge, we work with sound scattering layers (SSLs). Application was tested
in the three African Atlantic Large Marine Ecosystems (AALMEs) to assess the utility of adapting and
developing new acoustic variables. Our methodology allowed comparison between Large Marine
Ecosystems (LMEs) based on 14 morphological, spatial and acoustic variables to characterize SSLs
over time. These original variables were effective in monitoring and comparing the LMEs, and even
allowed us to discriminate different organisations inside the Canary Current LME. Common traits
identified for all AALMEs included the importance of the shallowest SSL. However, we identified an
unexpected night-time pattern in SSL distributions in the Benguela Current LME which reflect a major
difference in diel vertical migration mechanisms relative to other AALMEs. We also highlighted
the predominance of elementary sampling unit (ESUs) with a single SSL and an unoccupied tiny
layer close to the bottom, even if some ESUs presented up to six SSLs. Inter-annual changes in SSL
organisation are highlighted by adaptation of original variables as the proportion of the water column
occupied by SSLs and the relative importance of the shallowest SSL. SSL variables have been used
mostly in deep water; here, we applied them on the continental shelf. SSL variables can be used
to standardize the monitoring of marine ecosystems and capture change in spatial structure and
function of mid-trophic pelagic marine ecosystems worldwide, even in data-poor areas where species
identification of lower-trophic pelagic organism remains a challenge.

Keywords: sound-scattering layer; fisheries acoustics; ecosystem variables; diel vertical migration;
Matecho; Canary Current Large Marine Ecosystem; Benguela Current Large Marine Ecosystem

1. Introduction

Fisheries acoustics is effective for better understanding marine [1,2] and freshwater [3]
ecosystems. Acoustic sensors are routinely used in scientific studies and monitoring
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programs [4–6]. For a long time, pelagic echo layers (or sound-scattering layers, SSLs) were
considered as background noise when interpreting acoustics to study marine ecosystems [7].
Often, the acoustic reflections of fish schools had to be extracted or filtered from acoustic
backscatter data to be analyzed properly [8,9].

Biological aggregations have been widely studied to understand what species aggre-
gate, how and why aggregation form, and how we can study them [10]. There is a large
variety of aggregations, from top predators to phytoplankton. In this study, we focus on
SSLs, which can be produced by aggregations of a variety of pelagic species [11], such as
aggregations of zooplankton [12,13], micronekton [14,15], gelatinous macronekton [16] and
even phytoplankton [17–19]. These structures can be found in all oceans [20] and many
studies address specific aspects of SSL, such as organisation and interactions [21] or their
impact as biological pump [22]. Nonetheless, SSLs might react strongly to anthropogenic
impacts and environmental fluctuations to create changes through SSL descriptors, mostly
due to their short life cycle [23,24]. Some studies analyze SSLs to better understand a
geographic area and their relationship with environmental data [25,26], with or without
biological sampling. The early study of acoustic properties of SSLs started in the 1940s [20]
and continue to today [27,28], especially with the use of narrow-band echo-sounding
systems [29].

The present study takes advantage of previous studies and in particular on the work
of Proud et al. [28], who worked on the standardization of metrics characterizing SSL.
Our study advances and shows a new methodological approach to monitor Large Marine
Ecosystems (LMEs) using SSLs without biological data. Diel Vertical Migration (DVM)
is highly informational on vertical structuring and biocenoses function [26,28,30]. We
used DVM in parts of the three African Atlantic Large Marine Ecosystems (AA LMEs) to
demonstrate their utility to discriminate changes within an LME as well as differences and
similarities between LMEs. We expect to observe DVM of type I [31] in the studied areas.

The aim of this study is to show the utility of our methodology based on SSLs in its
ability to monitor and compare AA LMEs in the context of data-poor areas. The application
on AA LME allows illustration of the efficiency of the method on a large dataset. Previous
studies on these areas provided the ecological context [32–38]. We expect to observe
differences within and between AA LMEs [33] applying our methodology. Interannual
changes occur [35,39,40], so we can expect reported SSL changes over years. We compare
SSL signals from AA LMEs to determine which variables might be useful for monitoring
temporal change. To do this, we identified innovative SSL variables to describe SSL
organization over the continental shelf of AA LMEs by first exploring spatial features using
a dataset from several sea surveys carried out using the same research vessel and methods.
Then, we analyzed the following: (i) temporal variability of SSL organization relative to
short, diel-scale processes, i.e., to record DVMs of plankton, [41,42] and then (ii) document
SSL’s inter-annual variation.

2. Materials and Methods
2.1. Material: Annual Acoustics Survey in African Atlantic Large Marine Ecosystems

Acoustic data were recorded using a 38 kHz echosounder [2] from 10 to 500 m depth
on board the RV Dr Fridtjof Nansen. We used an ES38-B transceiver, hull mounted at a
depth of 5.5 m, with an absorption coefficient of 8.7 dB km−1, a pulse length of 1.024 ms and
a maximum used transmission power of 2000 watts [43]. The echosounder was calibrated
following classic calibration procedures [44]. Several authors have shown that the acoustic
density measured at 38 kHz is a good indicator of micronektonic abundance [45–47]; this
frequency is currently used in fisheries acoustic studies. SSLs have already been usually
studied in deeper sea, e.g., [48–50]. In this study, we consider data on the continental shelf,
i.e., with a depth under 150 m, to monitor changes in areas less studied than the high sea.

We recorded data over the continental shelf of the AA LMEs (Figure 1): the Canary
Current Large Marine Ecosystem (CCLME), the Guinea Current Large Marine Ecosystem
(GCLME) and the Benguela Current Large Marine Ecosystem (BCLME) [51] (Figure 1,
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Table 1). The CCLME extended from the Strait of Gibraltar (36◦ N, 5◦ W) to south of
Guinea-Bissau (11◦ N, 16◦ W), with our study area encompassing coastal waters from
34◦ N, 7◦ W to 12◦ N, 17◦ W. This area was sub-divided into two ecologically distinct
regions for sampling and analyses: North and South of Cape Blanc [52]. The area north
of Cape Blanc exhibited continuous upwelling, while upwelling in the area to the south
was seasonal [53]. We used data from 14 surveys in the CCLME from 1995 to 2015 totalling
99,788 nmi.
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Figure 1. Geographic locations of the study areas sampled over the continental shelf of the African
Atlantic Large Marine Ecosystems (LMEs). Rectangles represent study areas situated in the northern
and southern Canary Current LME (CCLME), Guinea Current LME (GCLME) and Benguela Current
LME (BCLME).

Table 1. Characteristics of acoustic surveys conducted in three African Atlantic Large Marine
Ecosystems (LMEs). Annual surveys conducted in the Canary Current LME (n = 14) occurred in
1994–2006, 2011, 2015, in the Guinea Current LME (n = 8) in 1999-2006 and in the Benguela Current
LME (n = 8) in 1994–2001. Transect lengths for each LME represent the total linear distance of all
surveys conducted within the same LME; the Elementary Sampling Unit (ESU) is set at 0.1 nmi in
length (during the same season and at depth < 150 m).

LME Geographic Position Sampled Years Transect (nmi) Number of Analysed ESU

Canary Current 34◦ N; 7◦ W to
12◦ N; 17◦ W 1994–2006, 2011, 2015 96,788 588,459

Canary Current North 20.8◦ N; 7.2◦ W to 34.1◦ N;
17.7◦ W 1994–2006, 2011, 2015 58,965 368,782

Canary Current South 12.2◦ N; 16.1◦ W to 20.8◦ N;
17.7◦ W 1994–2006, 2011, 2015 37,822 219,677

Guinea Current 4◦ N; 8◦ W to 6◦ N; 3◦ E 1999–2006 12,908 86,841
Benguela Current 17◦ S; 9◦ E to 31◦ S; 17◦ E 1994–2001 39,368 1086

The GCLME extended from Bissagos Island (Guinea Bissau) in the north (11◦ N,
16◦ W) to Cape Lopez (Gabon) in the south (0◦ S, 8◦ E) [36]; our study area encompassed
coastal waters from 4◦ N, 8◦ W to 6◦ N, 3◦ E. The dataset from the GCLME consisted of
eight surveys from 1999 to 2006, totalling 12,908 nmi.

The BCLME occurs along the coast of south western Africa, stretching from the border
between Namibia and Angola in the north (17◦ S, 11◦ W) southwards to the east of the
Cape of Good Hope (South Africa) (29◦ S, 17◦ E) [37]. Our study area encompassed the
coastal waters from 17◦ S, 9◦ E to 31◦ S, 17◦ E. Eight surveys were conducted in the BCLME
from 1994 to 2001, totalling 39,368 nmi.
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All survey designs were similar over years. Finally, we consider four marine ecosys-
tems: CCLME North, CCLME South, GCLME and BCLME. A seasonal upwelling is present
in both the southern Canary Current LME and the Guinea Current LME [34,54–56], whereas
the upwelling in the northern Canary Current LME and the Benguela Current LME occurs
year-round [53]. We used data from surveys not carried out during the seasonal upwelling.

2.2. Methods: Fisheries Acoustics and Sound Scattering Layers

Acoustic data were converted and cleaned using Matecho [57]. We used the echo-
integrated data at a spatial resolution of 0.1 nmi by 1 m depth. To extract SSLs, we post-
processed data with a segmentation algorithm within Matecho at an echo level threshold
of −70 dB re 1 m−1 (noted dB from here). To characterize the SSLs in the water column,
we computed SSLs variables for each elementary sampling unit (ESU) of 0.1 nmi length.
We used the −70 dB value as the lower threshold defining micronektonic SSLs [31,58].
Because there was no upper threshold, SSLs included zooplankton, micronekton and all
other pelagic organisms. To assess SSL spatial pattern variability at the inter-annual level,
we used mean volume backscattering strength (Sv in dB) [6] as a proxy for relative pelagic
abundance [58]. Before data analysis, we removed data related to transition periods in diel
vertical migration patterns. Transition periods (dawn and dusk) were linked to sun azimuth
data, i.e., by sun elevation, determined by data date, hour and geospatial position [59].
Hereafter, data from northern CCLME, southern CCLME, GCLME and BCLME were
studied independently and named here after the respective marine ecosystems. Therefore,
there are three LMEs and four marine ecosystems used in this study. We assumed that
spatial auto-correlation in data along transects was negligible [14,60,61].

We used Matecho to compute six variables per ESU “j” for each SSL “i” (Figure 2):
minimal depth (d̄i,j) [62], maximal depth (Ði,j) [62], width (Ẇi,j) [28,62], Sv (Sv,i,j) [6], sA

(sA,i,j) [6] and the number of SSLs (
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From this set of variables, we inferred new variables: the elevation of the shallowest
SSL (Å1,j) and all SSLs (Åall,j) [62]; the proportion of water column occupied by the shal-
lowest SSL (Ṗ1,j) and by all SSLs (Ṗall,j); and the relative importance of the shallowest SSL
compared to all SSLs (Ċ1,j). All calculations are detailed in Table 2. In total, we worked
with 14 variables.

Table 2. List of all sound scattering layer (SSL) variables, symbol, unit and formulae. Sv is the volume
backscattering coefficient in dB, sA is the area backscattering coefficient (m2 nmi−2) [6]. N/A means
category is not applicable. The term “i” is the SSL number, starting at 1 for the shallowest SSL and
called “all” when including all SSLs. The term “j” is the ESU number.

Calculated Variable Symbol Unit Formula Reference(s)

Bottom depth at ESU j Dj m N/A -
Number of SSL at ESU j
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proportion of  the water  column occupied) are new ones. The mixed  layers, minimum 

oxygen and euphotic zone depths should influence both variables involved in calculating 

proportional  occupancy  of  the water  column. Other  variables used  have  traditionally 

characterized acoustic pelagic  fish school using, e.g., “shoal echo‐integration”  [62] and 

adapted here to SSL.  

We calculated all statistics using R version 3.4.3 [67]. We used boxplots to compare 

medians and data distributions of continuous variables associated with the four marine 

ecosystems.  We  used  ANOVA  and  the  Wilcoxon  test  to  compare  non‐parametric 

distributions of data between paired LMEs. For the comparison of more than two LMEs, 
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function. For discrete variables, we drew barplots and applied Chi‐square tests (p‐value < 
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Present study

We used the same SSL variable set for all AA LMEs, allowing us to compare ecosystems
and analyse their diel migrations and inter-annual variabilities. Two of the SSL variables
(number of SSLs and proportion of the water column occupied) that we used had already
been used by [30,63,66], whereas two others (proportion of the water column occupied
by the shallowest SSL and contribution of shallowest SSL in the proportion of the water
column occupied) are new ones. The mixed layers, minimum oxygen and euphotic zone
depths should influence both variables involved in calculating proportional occupancy of
the water column. Other variables used have traditionally characterized acoustic pelagic
fish school using, e.g., “shoal echo-integration” [62] and adapted here to SSL.

We calculated all statistics using R version 3.4.3 [67]. We used boxplots to compare
medians and data distributions of continuous variables associated with the four marine
ecosystems. We used ANOVA and the Wilcoxon test to compare non-parametric distribu-
tions of data between paired LMEs. For the comparison of more than two LMEs, we tested
the marine ecosystems by pair. Differences were considered significant if the probability
(p-value) of the statistical test was < 0.05. We used kernel density estimates [68] to scrutinize
differences in distributions identified by the Wilcoxon tests. The resolution of each variable
was used to define bandwidth parameters in the kernel density function. For discrete
variables, we drew barplots and applied Chi-square tests (p-value < 0.05) to examine the
extent of independence between variables [69].
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To analyse differences between day and night in the four marine ecosystems, we
drew two boxplots for each variable, one for daylight conditions and one for night-time
conditions. A Wilcoxon test was used to compare means between day and night for
each ecosystem and each variable. For discrete variables, we used the Chi-square test
(p-value < 0.05) to compare values between day and night. To estimate inter-annual change,
we applied a linear regression (p-value < 0.05) incorporating the mean value for each
variable for each year. Polynomial regressions were also tested up to order 3.

A principal component analysis (PCA) was run to summarise multi-dimensional
information and identify correlations between variables. The package “FactoMineR” [70]
was used to run the PCA with standardized data.

Results are organised to present (i) the spatial variability between marine ecosystems,
(ii) differences in diel vertical migrations organisations and (iii) changes over years.

3. Results
3.1. Spatial Variability of Sound Scattering Layers

When we compared the northern and southern areas of CCLME, we found that
measurements of the variables for these two marine ecosystems differed significantly from
one another (Supplementary Material S1). At a larger scale, i.e., among all AA LMEs,
we found that 83 ANOVA tests were significant among 84 and, which indicates that
variables were significantly different from one another according to Wilcoxon test results
(see Supplementary Material S1 for descriptors not presented here), except sA, all between
CCLME North and GCLME.

3.1.1. Number of Sound Scattering Layers (
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The number of SSLs per ESU (
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) differed significantly among marine ecosystems
(Figure 3). CCLME south and GCLME had the highest number of ESUs (
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SSL (more than 80%), whereas CCLME north and BCLME had the highest number of ESUs
with either no SSLs (
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= 0) or more than one SSL (
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> 1). However, CCLME north and
BCLME did not have the same mean number of SSLs. BCLME had more ESUs without any
SSLs (
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= 0) than any other marine ecosystem, but it also had the lowest proportion of
ESUs with a single SSL (
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marine ecosystems off West Africa: the Canary Current Large Marine Ecosystem north (white) and
south (in light grey), Guinea Current Large Marine Ecosystem (dark grey) and the Benguela Current
Large Marine Ecosystem (black). ESU denotes elementary sampling units (0.1 nmi). The value 4+
includes ESUs with at least four SSL in the water column.
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The analyses highlighted that ESUs with
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found in 90 ESUs, usually in waters of 100–140 m bottom depth.

3.1.2. Minimum Depth of All SSLs (d̄all)

Minimum depths of all SSLs (d̄all) differed significantly among marine ecosystems
(Figure 4a). Boxplots showed a strong difference in d̄all between the northern and southern
CCLME marine ecosystems (Figure 4). The northern part of CCLME presented more
important values of median and standard error (15 ± 16 m) for this variable than did the
southern part (10 ± 7 m). However, density peaks of minimal depth of SSLs of the marine
ecosystems occurred at similar depths (Figure 4b). Only size of the peak differed. Boxplots
and density curves for the BCLME were similar to those of the northern CCLME, whereas
data for GCLME were similar to the southern CCLME. The data showed that the four
marine ecosystems conformed to two basic types: one type with a distinctive, high-density
peak (CCLME south and CGLME), and a second type with a lower, less distinct density
peak (CCLME north and BCLME).
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differed between the northern and southern CCLMEs (Figure 5b). The highest peak (on 
the right side of Figure 5b, for Ṗall close to 100%), showed that for most ESUs (except in 
BCLME), the water column was filled more than 90% by SSLs. CCLME north and the 
BCLME were similar to each other and much different from the other two marine 
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Indeed, only BCLME (and northern CCLME to a lesser extent) showed a density peak 
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Figure 4. Variations in means and densities of minimal depth of sound-scattering layers (d̄all) for
four marine ecosystems off West Africa. Panels for the northern Canary Current Large Marine
Ecosystem (CCLME), southern CCLME, Guinea Current Large Marine Ecosystem (GCLME) and
Benguela Current Large Marine Ecosystem (BCLME): Panels: (a) boxplots showing the median, first
and third quartiles (central box) of minimum depth (d̄all), with external lines representing data range
(the upper point is the maximum or the sum of the third quartile and 1.5 times the amplitude between
first and third quartile, whereas other points are outliers) and (b) density curves for minimum depth
(d̄all) for CCLME north (full black line), CCLME south (dotted black line), GCLME (full grey line)
and BCLME (dotted grey line). The top right of panel (b) is a blow-up of the density curves at the
lower left over a depth range from 8 to 16 m.

3.1.3. Proportion of Water Column Occupied (Ṗall)

The proportion (in volume) of the water column occupied by all SSLs (Ṗall) differed sig-
nificantly among marine ecosystems; boxplots highlighted variations for these differences
(Figure 5a). Density curves for SSLs were bimodal and the peak density values differed
between the northern and southern CCLMEs (Figure 5b). The highest peak (on the right
side of Figure 5b, for Ṗall close to 100%), showed that for most ESUs (except in BCLME),
the water column was filled more than 90% by SSLs. CCLME north and the BCLME were
similar to each other and much different from the other two marine ecosystems relative to
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the proportion of the water column (by volume) occupied by SSLs. Indeed, only BCLME
(and northern CCLME to a lesser extent) showed a density peak representing a sparsely
filled water column (Ṗall close to 0–10%).
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Figure 5. Variations in percent of the water column occupied by all sound-scattering layers for
four marine ecosystems off West Africa. Panels for the northern Canary Current Large Marine
Ecosystem (CCLME), southern CCLME, Guinea Current Large Marine Ecosystem (GCLME) and
Benguela Current Large Marine Ecosystem (BCLME). Panels: (a) boxplots depicting the median, first
and third quartiles (central box) of percent of water column occupied by all sound-scattering layers
(Ṗall), with external lines representing data range (the upper is the maximum or the sum of the third
quartile and 1.5 times the amplitude between first and third quartile, whereas the other points are
outliers). (b) Density curves for percent of water column occupied by all sound-scattering layers
(Ṗall) in CCLME north (full black line), CCLME south (dotted black line), GCLME (full grey line) and
BCLME (dotted grey line).

3.1.4. Mean Volume Backscattering Strength of First Sound Scattering Layer (Sv, 1)

Sv, 1 differed significantly among studied marine ecosystems (Figure 6a). Density
curves of all marine ecosystems showed similar shapes, but they peaked at slightly different
values (about −65.0/−60.0 dB). The peak backscattering strength for CCLME north was
a bit lower than for CCLME south. The peak for CCLME north, at −65.6 dB, is close to
the peak for BCLME (−66.6 dB), whereas the peak of CCLME south (−63.5 dB,) is similar
to the peak for GCLME (−64.0 dB). However, mean Sv, 1 values are quite similar among
marine ecosystems.

3.2. Comparative Analysis of Diel Differences among Marine Ecosystems

All pelagic marine ecosystems in this study differed in their SSL spatial organisation
over a diel cycle. All variables measured among marine ecosystems during daytime and
night-time differed significantly (Figure 7), except for the maximum depth of the shallowest
SSL (Ð1) in BCLME (other variables, whose Ð1, are shown in Supplementary Material S2
as statistical tests).

In all four marine ecosystems, d̄all (minimum depth of all SSLs) was deeper during
the day than at night and included a more extensive range of depths (Figure 8a). The
water column was also more filled with organisms at night than during the day. Sv, 1 (mean
volume backscattering strength of the shallowest SSL) was higher at night, except for water
mass BCLME, where Sv, 1 was similar during day and night. The number of ESUs (
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)
without SSLs was lower for all ecosystems at night. In CCLME north and BCLME, the
proportion of ESUs with four SSLs or more was higher at night.
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3.2. Comparative Analysis of Diel Differences among Marine Ecosystems 
All pelagic marine ecosystems in this study differed in their SSL spatial organisation 

over a diel cycle. All variables measured among marine ecosystems during daytime and 
night-time differed significantly (Figure 7), except for the maximum depth of the 
shallowest SSL (Đ1) in BCLME (other variables, whose Đ1, are shown in Supplementary 
material 2 as statistical tests). 

Figure 6. Variations in backscattering strength of the shallowest sound-scattering layers (Sv, 1) of
four marine ecosystems off northern Canary Current Large Marine Ecosystem (CCLME), southern
CCLME, Guinea Current Large Marine Ecosystem (GCLME) and Benguela Current Large Marine
Ecosystem (BCLME). Panels: (a) boxplots showing the median, first and third quartiles (central box)
of backscattering strength of the shallowest SSL (Sv, 1), with external lines representing data range
(the upper is the maximum or the sum of the third quartile and 1.5 times the amplitude between
first and third quartile, whereas the other points are outliers). (b) Density curves for backscattering
strength of the shallowest SSL (Sv, 1) in CCLME north (full black line), CCLME south (dotted black
line), GCLME) (full grey line) and BCLME (dotted grey line).
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Figure 7. Variations in characteristics of sound-scattering layers (SSLs) from four marine ecosystems
off West Africa. Panels for the Canary Current Large Marine Ecosystem North (CCLME north) and
South (CCLME south), Guinea Current Large Marine Ecosystem (GCLME) and Benguela Current
Large Marine Ecosystem. Panels: (a) boxplots of daytime (white) and at night (grey) depicting
minimum depth of shallowest SSL (d̄all). (b) Boxplots of daytime (white) and at night (grey) of
the proportion of the water column occupied by all SSLs (Ṗall). (c) Boxplots of daytime (white)
and at night (grey) of mean volume backscattering strength of shallowest SSL (Sv, 1). (d) Bar chart
for proportion (
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) of SSLs in an elemental sampling unit (black = no SSL; dark grey = one SSL;
grey = two SSLs; light grey = three SSLs; very light grey = four SSLs or more). Boxplots depict the
median, first and third quartiles in the central box. External lines represented data range (the upper
point is the maximum or the sum of the third quartile and 1.5 times the amplitude between first and
third quartiles). Other points are outliers.
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Figure 8. Selected significant variables for sound-scattering layers (SSLs) of four marine ecosystems
off West Africa. Panels for (a,c,e,i) the northern Canary Current Large Marine Ecosystem (CCLME),
(b,f,j) southern CCLME, (d,g) Guinea Current Large Marine Ecosystem (GCLME) and (h) Benguela
Current Large Marine Ecosystem (BCLME). Panels present mean by year and significant trend for
(a,b) minimal depth (d̄1) in m; (c,d) Mean volume backscattering strength of all sound-scattering
layers (SSLs) (Sv, all) in dB; (e–h) Proportion of the water column occupied by all SSLs (Ṗall) in %;
(i,j) Number of SSLs (

Fishes 2022, 7, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 2. Schema showing typical sound-scattering layers (SSLs) variables exported under Matecho. 

Maximum depth of shallowest SSL (Đ1 in m), minimum depth of shallowest SSL (đ1 in m), vertical 

width of shallowest SSL (Ẇ1 in m), elevation above the sea floor of shallowest SSL (Å 1 in m) and 

total number of SSLs (Ŋ) present (here, n = 2) in the water column. The right axis depicts mean 

volume backscattering strength (Sv in dB) and left axis depicts local bottom depth. SSLs were 

extracted and contoured by a black curve. Black bold line represents sea surface; the sea bottom is 

represented by a blue line. A single elementary sampling unit (ESU) of 0.1 nmi is shown as example, 

outlined by two vertical grey lines. 

From this set of variables, we inferred new variables: the elevation of the shallowest 

SSL (Å 1,j) and all SSLs (Å all,j) [62]; the proportion of water column occupied by the 

shallowest SSL (Ṗ1,j) and by all SSLs (Ṗall,j); and the relative importance of the shallowest 

SSL compared to all SSLs (Ċ1,j). All calculations are detailed in Table 2. In total, we worked 

with 14 variables. 

Table 2. List of all sound scattering layer (SSL) variables, symbol, unit and formulae. Sv is the 

volume backscattering coefficient in dB, sA is the area backscattering coefficient (m2 nmi−2) [6]. N/A 

means category is not applicable. The term “i” is the SSL number, starting at 1 for the shallowest 

SSL and called “all” when including all SSLs. The term “j” is the ESU number. 

Calculated Variable Symbol Unit Formula Reference(s) 

Bottom depth at ESU j Dj m N/A - 

Number of SSL at ESU j Ŋ j - N/A [30,62,63] 

Minimum depth of all SSLs at ESU j  đ all,j m N/A [62,64] 

Maximum depth of the shallowest SSL at ESU j Đ 1,j m N/A Adapted from [62,64] 

Maximum depth of all SSLs at ESU j Đall,j m ∑ Đ𝑖

Ŋ

𝑖=1

 Adapted from [62] 

Minimal elevation of the shallowest SSL at ESU j Å 1,j m 𝐷𝑗 − Đ𝑖,𝑗  Adapted from [62,65] 

Minimal elevation of all SSLs at ESU j Å all,j m 𝐷𝑗 − Đ𝑎𝑙𝑙,𝑗 Adapted from [62,65] 

Width of shallowest SSL at ESU j Ẇ1,j m Đ𝑖,𝑗 −  đ𝑖,𝑗 [28,62] 

Sv of shallowest SSL at ESU j Sv, 1,j 
dB re 1 

m−1 
10 log10 𝑠𝑣 Adapted from [6] 

Mean Sv of all SSLs at ESU j Sv, all,j 
dB re 1 

m−1 10  log10

∑ 10
𝑆𝑣,𝑖,𝑗

10⁄Ŋ
𝑖=1

Ŋ
 Adapted from [6] 

sA of shallowest SSL at ESU j sA, 1,j m2 nmi−2 4 𝜋 (1852)²𝑠𝑎 Adapted from [6] 

). Non-significant regressions have not been plotted.

3.3. Inter-Annual Variability and Trends in the Atlantic African Large Marine Ecosystems

Testing variables to detect annual changes (1995–2015) in each marine ecosystems
independently (Figure 8, Table 3), we found few SSL variables significantly responding.
We report two types of inter-annual variations: without or with trend over years.

For the northern CCLME, the mean volume backscattering strength of all SSLs (Sv, all)
and the number of SSLs (
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) were the only two variables which decreased and increased,
respectively, over the years (Figure 8c,i). The same variable (
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) significantly increased over
years in the southern CCLME (Figure 8j). In the southern CCLME, there was a significant
increase in the proportion of the water column occupied by all SSL (Ṗall). The GCLME
possessed three variables that showed significant changes over years: the proportion of
the water column occupied by the shallowest SSL (Ṗ1), the proportion occupied by all
SSLs (Ṗall) (Figure 8f), and the proportion of the water column occupied by the shallowest
SSL relative to the proportion occupied by all SSLs (the ratio Ċ1). All the above-described
variables increased over the time period examined. BCLME did not show any significant
trend in variables over the period examined. All significant regressions are presented in
Supplementary Material S3.

Regressions were initially tested using the whole dataset, but only means by years
have been graphically represented. Significant variables using means by year were also
significant using averaged data.
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Table 3. Summary of the significance tests of the linear regression for change over time (y) for
sound-scattering layer (SSL) variables collected from African Atlantic Large Marine Ecosystems. “NS”
represents a non-significant p-values > 0.05. In each cell, the order of the polynomial regression and
the adjusted R-squared (R2) are written, followed by the associated p-value in brackets.

Sound-Scattering Layers Variables (SSL)
CCLME

GCLME BCLME
North South

Minimum depth of all SSLs (d̄all)
R2 = 7.45 × 10−3

(p < 2.2 × 10−16)
R2 = 4.56 × 10−3

(p < 2.2 × 10−16)
NS NS

Maximum depth of first SSL (Ð1) R2 = 3.46 × 10−3

(p < 2.2 × 10−16)
NS NS NS

Width of first SSL (Ẇ1) R2 = 1.35 × 10−2

(p < 2.2 × 10−16)
NS NS NS

Minimum elevation of first SSL (Å1) NS R2 = 7.19 × 10−3

(p < 2.2 × 10−16)
NS NS

Minimum elevation of all SSLs (Åall) NS R2 = 5.11 × 10−3

(p < 2.2 × 10−16)
NS NS

Mean volume backscattering strength of first
SSL (Sv, 1) NS NS R2 = 2.71 × 10−2

(p < 2.2 × 10−16)
NS

Mean volume backscattering strength of all
SSLs (Sv, all)

R2 = 4.73 × 10−3

(p = 0.090)
NS

R2 = 2.76 × 10−2

(p < 2.2 × 10−16) NS

Nautical area scattering strength of first SSL
(sA, 1) NS NS NS NS

Mean nautical area scattering strength of all
SSLs (sA, all)

NS NS NS NS

Proportion of the water column occupied by
first SSL (Ṗ1)

R2 = 4.60 × 10−2

(p < 2.2 × 10−16)
NS R2 = 2.37 × 10−2

(p < 2.2 × 10−16)
R2 = 6.64 × 10−2

(p < 2.2 × 10−16)
Proportion of the water column occupied by

all SSLs (Ṗall)
R2 = 4.45 × 10−2

(p < 2.2 × 10−16)
R2 = 4.22 × 10−3

(p = 0.084)
R2 = 1.81 × 10−2

(p < 2.2 × 10−16)
R2 = 7.18 × 10−2

(p < 2.2 × 10−16)
Contribution of first SSL in the proportion of

the water column occupied by (Ċ1)
R2 = 8.43 × 10−3

(p < 2.2 × 10−16)
NS R2 = 3.80 × 10−3

(p < 2.2 × 10−16)
NS

Number of SSLs (
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NS NS

3.4. Global Analyse of Correlations between SSL Variables

The two first dimensions of the PCA captured 49% of the variability (Figure 9). Based
on the vectors of the PCA diagram, we classified variables into four groups: (1)
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, Å1 and
Åall, (2) Ðall, Ð1 and Ẇ1, (3) Ċ1, Ṗ1 and Ṗall and (4) all acoustic variables. The variable d̄all
is located between group 1 and 2, with low correlation with other variables.
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4. Discussion
4.1. Relevance of Choice of Variables

SSL variables provided insights into spatio-temporal distributions of mid-trophic
pelagic organisms. Some variables appeared to be correlated with one other (e.g., Ṗ1 with
Ṗall and Sv, 1 with Sv, all), which suggests a high importance of the shallowest SSL in the
four marine ecosystems studied. Indeed, this SSL drove a high part of the variability and
there was often a single SSL in the water column. The PCA analysis gave a general idea
of correlations and groupings within the data. This PCA captured 49% of the variability,
which highlighted the diversity of variables. The two main axes were not able to capture
the diversity. However, although all of the variables we examined were useful in revealing
distributions of pelagic organisms, other SSL variables might prove more important in other
marine ecosystems or were the ecosystems studied to become altered. Innovative variables
presented here were found to be efficient to monitor the ecosystems, and especially to detect
trends over time, e.g., the number of SSLs. An ecosystem can be monitored with fewer
variables by deleting some of the variables that auto-correlate, but one must be careful
to retain some variables capable of detecting ecosystem change, i.e., some variables may
become more important than others in altered systems. In any case, the set of variables
that we used in this study appeared to be capable of distinguishing differences both within
and between marine pelagic ecosystems. Indeed, the marine ecosystem studied are already
known to exhibit different system organisation [51]. SSL variables appeared efficient
to characterize on various and heterogeneous marine pelagic ecosystems even if future
application on other case studies would require specific adaptations.

4.2. Comparative Analysis of Sound-Scattering-Layer Variables within and between Atlantic
African Large Marine Ecosystems

SSL variables were used to compare marine ecosystems inside LME, such as CCLME
North and South, and between AA-LMEs. As expected, we found significant differences,
which can be explained by specific processes already described in the literature.

Previous studies explored differences between SSLs from northern and southern
CCLME [34], which could be explained by the upwelling effect. In fact, upwelling in both
the southern Canary Current LME and the Guinea Current LME were seasonal [34,54–56],
whereas the upwelling in the northern Canary Current LME and the Benguela Current LME
occurred year-round [53]. These differences were captured by our methodology, which
highlights its efficiency. Upwelling involves many changes in biocenoses, especially in
abundance and species occurrence. This phenomenon has been studied for plankton in
all the AA LME [32,35,38]. Thus, the differences in functioning within the CCLME are
well documented (e.g., [34,71]) and especially the difference between North and South
parts [31,40]. In our results, GCLME function was close to the southern CCLME one.
GCLME plankton was very sensitive to upwelling presence [72]. The upwelling regime of
southern CCLME and GCLME lead micronekton populations in the same direction in both
LMEs. BCLME, with functioning closer to northern CCLME, was quite different from other
marine ecosystems. In fact, this area was characterised by extensive mixing and variability,
which strongly influences the dynamics of the system [73]. SSLs were intrinsically linked
to environmental parameters, and this high variability influences number and composition
of micronekton population, which involves different water-column organisations.

Our SSL variables were influenced by the oceanographic conditions found in the
different marine ecosystems and were therefore suitable to discriminate different marine
ecosystems. For example, CCLME south and GCLME characterized by seasonal upwelling
had the highest number of ESUs with only one SSL, while CCLME north and BCLME,
where the upwelling is permanent, had the highest number of ESUs with no SSLs. The same
pattern has been observed for Sv, 1 (Sv, 1 peak for northern CCLME, and BCLME was a bit
lower than CCLME South and GCLME). Indeed, SSLs need stable hydrological conditions
to form and persist [74,75]. For instance, in Monterey Bay (California), a decline in acoustic
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backscatter intensity was observed in the upper part of the water column immediately
following an upwelling event [76].

Changes in the SSLs’ elevation (Åall, distance between the deepest SSL and the sea
floor) were not explained by the location of the euphotic zone because changes are also
found in shallow parts of the shelf. Thus, the height of a SSL above the sea floor is likely
related to physiochemical phenomena (e.g., water turbulence, internal wave effects on
the bottom, or the existence of a bottom layer [77] possessing different physiochemical
characteristics than the overlying water column). An alternative explanation for changing
heights of SSLs above the sea floor could be due to the behaviour of pelagic mid-tropic
organisms, linked or not [78] with physical or environmental characteristics. Variations
might also be explained by the high biodiversity of the AA LME [79,80], especially in
light of the intense upwelling area near latitude 26–27◦ South, just off Lüderitz Bay [39,73].
All zooplankton systems within Atlantic African LME are dominated by copepods [81];
phytoplankton are dominated by diatoms and there are few endemic species. Species
composition can largely change over season and years linked to environmental parameters.
Therefore, we speculate that the differences we observed among LMEs are likely due to
physical and biogeochemical characteristics of the pelagic habitat [72].

All variations detected by SSL variables have a biological reality and an explanation
previously studied. This highlights the efficiency of our method to monitor ecosystem and
capture their variability using SSL variables.

4.3. Comparison of Diel Vertical Migration

The SSL variables, efficient for comparing marine ecosystems, also are useful to
perform comparisons within the same ecosystem, such as variation in diel organisations.
Therefore, SSLs were more distributed throughout the water column at night than during
the day, with a higher proportion of the water column occupied by organisms (and wider
SSLs) at night in the whole CCLME. In addition, SSLs were closer to the surface during
the night, a characteristic typical of nocturnal ascendant diel vertical migration (DVM)
behaviour [82]. DVM is a behavioural mechanism generally characterized by an ascent
during the night to feed and a descent to avoid predation by visual predators during the
day [22,59]. Higher acoustic densities (Sv and sA) at night than during the day in the
CCLME and GCLME can be explained by the diel migration, which involved populations
with different aggregative behaviour between day and night. This difference of acoustic
density could also be explained by the behaviour of some species, which could be too close
to bottom or to surface during the day to be detected by acoustic tools and to be visible
in the water column only during the night. In contrast, the BCLME exhibited different
DVM behaviour, with similar values for acoustic variables during day and night and no
difference in the maximum depth of the shallowest SSL, which could be explained by
other populations, who present different diel behaviour. Moreover, the proportion of ESUs
without SSL was much higher at night in the BCLME than in the other LME systems that
we examined. We conclude that the mid-trophic compartment is more scattered throughout
the water column at night than during the day. Therefore, we assume that the difference in
the DVM movements in the BCLME were due to predator–prey interactions rather than
physical or biogeochemical differences. Indeed, our results showed that during daytime,
SSL variables were similar to those recorded in the northern CCLME.

4.4. Annual Variability and Trends in Atlantic African Large Marine Ecosystems

SSLs are known to present high variability over years [35]. This variability is known to
be linked with some environmental parameters, such as sea surface temperature (SST) [35]
or wind stress [38]. We find this variability in several regressions of second or third order,
which did not present a trend, but highlights high inter-annual variability.

Moreover, we also observed trends in our study, which are out of usual inter-annual
variability. Indeed, CCLME north had the highest number of ESUs, with no SSLs, whereas
CCLME south had the highest number of ESUs, with only one SSL. These differences in SSL
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number observed between the north and the south could be explained by the differences in
the upwelling regime between both areas. Indeed, the CCLME north is characterised by a
permanent upwelling that remains intense throughout the year [56], whereas the CCLME
south is characterised by a seasonal upwelling in winter [53]. SSLs formation requires
stable conditions in the water column [31]. SSLs form and persist under stable conditions
allowing stratification (thermocline, pycnocline, halocline), i.e., in the absence of turbulence,
caused by intense upwelling [83,84]. Our observations are also consistent with those of
other studies highlighting trends, for environmental parameters, such as SST [31,85], and
in some fishes and plankton populations [31,38,72]. In the mid-trophic compartment, the
northern and southern CCLME were therefore impacted in the same way over the study
period. Indeed, data suggest a substantial increase in upwelling intensity off northwest
Africa [86–88], which could explain the changing distributions of organisms in the water
column. Furthermore, Sarré et al. [52] reported during the same study period northward
shifts in the distribution of Sardinella and other small pelagic species in the CCLME. This
change in distribution has been attributed to low thermal tolerance species to high warming
trends in the southern part of CCLME. The number of SSLs (

Fishes 2022, 7, x FOR PEER REVIEW 5 of 21 
 

 

 

Figure 2. Schema showing typical sound-scattering layers (SSLs) variables exported under Matecho. 

Maximum depth of shallowest SSL (Đ1 in m), minimum depth of shallowest SSL (đ1 in m), vertical 

width of shallowest SSL (Ẇ1 in m), elevation above the sea floor of shallowest SSL (Å 1 in m) and 

total number of SSLs (Ŋ) present (here, n = 2) in the water column. The right axis depicts mean 

volume backscattering strength (Sv in dB) and left axis depicts local bottom depth. SSLs were 

extracted and contoured by a black curve. Black bold line represents sea surface; the sea bottom is 

represented by a blue line. A single elementary sampling unit (ESU) of 0.1 nmi is shown as example, 

outlined by two vertical grey lines. 

From this set of variables, we inferred new variables: the elevation of the shallowest 

SSL (Å 1,j) and all SSLs (Å all,j) [62]; the proportion of water column occupied by the 

shallowest SSL (Ṗ1,j) and by all SSLs (Ṗall,j); and the relative importance of the shallowest 

SSL compared to all SSLs (Ċ1,j). All calculations are detailed in Table 2. In total, we worked 

with 14 variables. 

Table 2. List of all sound scattering layer (SSL) variables, symbol, unit and formulae. Sv is the 

volume backscattering coefficient in dB, sA is the area backscattering coefficient (m2 nmi−2) [6]. N/A 

means category is not applicable. The term “i” is the SSL number, starting at 1 for the shallowest 

SSL and called “all” when including all SSLs. The term “j” is the ESU number. 

Calculated Variable Symbol Unit Formula Reference(s) 

Bottom depth at ESU j Dj m N/A - 

Number of SSL at ESU j Ŋ j - N/A [30,62,63] 

Minimum depth of all SSLs at ESU j  đ all,j m N/A [62,64] 

Maximum depth of the shallowest SSL at ESU j Đ 1,j m N/A Adapted from [62,64] 

Maximum depth of all SSLs at ESU j Đall,j m ∑ Đ𝑖

Ŋ

𝑖=1

 Adapted from [62] 

Minimal elevation of the shallowest SSL at ESU j Å 1,j m 𝐷𝑗 − Đ𝑖,𝑗  Adapted from [62,65] 

Minimal elevation of all SSLs at ESU j Å all,j m 𝐷𝑗 − Đ𝑎𝑙𝑙,𝑗 Adapted from [62,65] 

Width of shallowest SSL at ESU j Ẇ1,j m Đ𝑖,𝑗 −  đ𝑖,𝑗 [28,62] 

Sv of shallowest SSL at ESU j Sv, 1,j 
dB re 1 

m−1 
10 log10 𝑠𝑣 Adapted from [6] 

Mean Sv of all SSLs at ESU j Sv, all,j 
dB re 1 

m−1 10  log10

∑ 10
𝑆𝑣,𝑖,𝑗

10⁄Ŋ
𝑖=1

Ŋ
 Adapted from [6] 

sA of shallowest SSL at ESU j sA, 1,j m2 nmi−2 4 𝜋 (1852)²𝑠𝑎 Adapted from [6] 

) increased during the study
period in both parts of CCLME. In the northern part, we also noticed an increase in Sv, all.
In the southern part of CCLME, the filling rate of the water column is increasing. These
trends can be attribute to the increase in upwelling intensity.

Three variables increased significantly in the GCLME (Ṗ1, Ṗall, Ċ1) during the study
period and all were linked to the proportion of the water column occupied by the SSLs.
This result highlights an increase in the proportion of the occupied water column, espe-
cially by the shallowest SSL. The growing importance of this SSL can be explained by an
environmental change, favourable to particular pelagic species living in the upper part of
the water column.

There are a few possible hypothesis for there being no change in SSL distributions in
the BCLME: (1) there were no ecosystem changes during the decadal study period, (2) the
SSL variables were not able to detect change, or (3) the BCLME was not spatially homoge-
neous and should have been partitioned into two or more homogeneous systems [79,89].
Indeed in the BCLME, the northern and southern area [52] were difficult to partition due to
our sampling design. Moreover, there is few minor seasonal upwelling cells in the northern
Benguela [73,79], and a high heterogeneity (different currents and natural borders), relating
different function [79]. This phenomenon could require a special survey design.

The water column was inhabited by both vertically migrating and non-migrating
species during the transition periods, which were not included in this study and would, if
their compositions were known, provide important information regarding the structure
and species composition of the ecosystems represented by the SSLs. Indeed, in absence of
taxonomic data, which is often non-existent in sub-systems of the AA LMEs, the insights
that we obtained on the temporal and spatial behaviours of the DVM still allowed us
differentiate migrating from non-migrating species [90]. Future work should focus on
examining alterations in DVM patterns as indicators of ecosystem change. Such information
is needed for better understanding the role of micronekton and macrozooplankton on the
biological pump [14,91].

5. Conclusions

In the AA LME, surveys covered a large area, with an important temporal range,
which allow us to compare systems and to monitor them. The method developed here
allows us to synthetically describe the pelagic component of these ecosystems and monitor
them without additional data, e.g., biological sampling. Innovative descriptors, such as
number of SSL or proportion of the water column occupied by shallowest SSL, complete
existing SSL variables [6,28,30,48,62,63]. Half (7/14) of the variables presented in this work
can be extracted directly by the Matecho open software.

The structures of SSLs are dynamic from diel to annual temporal scales and could
be associated with specific water bodies as shown in this study. Even when species
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composition appears to be stable within a system, the acoustic relative biomass of the
SSLs temporally and spatially vary quantitatively [92]. It is challenging, time-consuming
and often difficult to obtain an integrated view of an ecosystem including SSL roles and
effects. However, SSL variables can provide composite and synthetic indices of pelagic
conditions. Where the availability of data is “poor”, or when logistical means are not
available, a standardized method for collecting information on SSL provides data relevant
for obtaining elementary information of the organisation of pelagic organisms over time.
This method can monitor the functioning of the pelagic habitats over the continental shelf as
in the high sea [48]. Such a method can be used to monitor changes in particular processes,
e.g., changes in SSLs during DVMs [93]. Future work should concentrate on fine-scale
processes [31,94] to provide new perspectives on interactions among indicators associated
with processes occurring at the mixed layer depth, oxygen minimum zone, and other
indicators associated with vertical structure in the water column, e.g., peak fluorescence,
pycnocline [31]. A common spatial trait relative to all the systems we studied was the
importance of ESUs with a single SSL compared to ESU with two or more SSLs. That is, the
shallowest SSL is often unique in the water column and if not, it stays the most important,
i.e., bigger and with higher acoustic density. The SSLs over the shelf were rarely multiple,
but sometimes can reach six. In this work, the limitation to the shallowest SSL should not
hide the interest of this new SSL variable to be applied in the high sea, where multiple
layers often occur.

We also report the existence of a singular “empty layer” between the sea floor and the
deepest part of the deepest SSL. This phenomenon can likely be characterised by as a yet
unknown process(es), certainly of bio-physical origin, underlying once again the interest of
such new descriptors of the SSL in marine sciences.
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