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Abstract: The threespine stickleback is a freshwater fish listed as endangered in Portugal, near the
southern limit of the species global distribution. However, few measures have been proposed aiming
at the conservation of this species in suboptimal environments. From existing databases and specific
sampling campaigns, we obtained occurrence data of threespine stickleback for a total of 646 sites.
The occurrence data, together with 15 environmental macrohabitat predictors, were used to model
the potential distribution of the species using an ensemble of species distribution models. Through
the results of our final ensemble, we project that the threespine stickleback occurs predominantly
at lower stretches of river systems, where sandy substrate is dominant and flow is higher. Within
this region, sticklebacks are also more likely to occur in sites with high levels of rainfall in the driest
month, thus avoiding locations with high potential for drying during summer. The species also tends
to avoid steep slope areas with high levels of annual precipitation. Based on our results, a map of
the species probability of occurrence was generated and river sections were categorized into levels
according to their importance for the species’ conservation.

Keywords: Gasterosteidae; species distribution models; ensemble forecasting; species distribution
and conservation; suboptimal environments; Iberian Peninsula

1. Introduction

The threespine stickleback (Gasterosteus aculeatus L.), a native species from Portugal,
is a small teleost fish that occurs in almost the entire northern hemisphere, presenting its
southern limit of distribution in the Mediterranean region, where the local environmental
conditions are harsh and suboptimal to the species’ preferences [1–6]. This species is char-
acterized by a complex of phenotypically different populations, including strictly marine
or freshwater populations as well as anadromous ones. These result from its different
adaptations to the different types of habitats, but despite that, all individuals captured until
now, in the Iberian Peninsula, had freshwater phenotypic characteristics [1,3,7,8].

The conservation of biodiversity requires reliable information on species distribution
and habitat use, especially when dealing with populations that are located near the limits
of the species’ global distribution, usually in harsh and less than optimal environmental
conditions. Our study was carried out in mainland Portugal, which represents the southern
limit of the threespine stickleback Atlantic distribution and where the threespine stickleback
is classified as endangered (EN) [2]. The conservation of native species that are close to
their distribution limits is very important because these species already live close to their
tolerance limits, and even small environmental changes, such as the ones happening in the
current global warming scenario, can easily lead to the decline of their populations [9–12].
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Although the habitat preferences of sticklebacks, on a micro- and meso-habitat scale,
are largely known, there are no studies aiming to know the regional (macroscale), environ-
mental variables that influence the species distribution [1,9,10,13]. Previous research has
shown that large-scale geomorphic variables (e.g., channel elevation, altitude and slope)
can be used as reliable predictors of the occurrence of fish species and their responses to
habitat characteristics, as well as for identifying atypical populations [14–16]. Since it is
difficult, these macro-habitat predictors could be useful to integrate in management and
conservation programs directed to these species and their habitats [17–19].

So, considering the existing knowledge gaps about G. aculeatus, this study aims to iden-
tify which macro-scale environmental factors determine regional distribution of G. aculeatus,
using species distribution models (SDM) to predict their potential distribution [20–22]. Ul-
timately, this information will contribute to the conservation of the threespine stickleback
populations in mainland Portugal through the identification of the areas with the most
suitable habitat for the target species. More specifically, we aim to (i) identify the occurrence
sites of this species in the study area and characterize its distribution; (ii) identify the macro-
scale environmental factors that determine their distribution near the southern limit of the
species distribution; (iii) develop a regional predictive model of occurrence probability for
the threespine stickleback; and, based on these results, (iv) identify important areas for
species conservation.

2. Materials and Methods
2.1. Study Area

This study was performed in mainland Portugal, which comprises an area of approx-
imately 89 015 km2, and is located at the western end of the Iberian Peninsula, where
most regions face a typical Mediterranean climate characterized by cool, wet winters and
hot dry summers. Seasonality and variability in rainfall are the main attributes of the
Mediterranean-type climate, with the annual mean temperature, in mainland Portugal
being 15.6 ◦C (±4.7 ◦C) and the annual mean precipitation 834 mm (±211 mm) [23–25].
Most land use in mainland Portugal is associated with agriculture (39.7%) and natural or
semi-natural forests (37.8%) [26].

2.2. Species Occurrence Data

The G. aculeatus occurrence data in mainland Portugal were obtained from existing
databases (i.e., previous projects of the research team responsible for this study, combined
with official data from national authorities, such as ICNF–Institute for Nature Conservation
and Forests). The data collected were verified for geographic coordinate errors and dupli-
cate records were removed. Furthermore, only data from 2010 onwards were used as we
considered previous data was outdated and would need in situ verification, which was not
feasible. Data were completed with sampling campaigns, carried out between April and
October of 2019, specifically designed to fill geographical gaps in the data from Portuguese
river basins. Sticklebacks were sampled using electrofishing (Hans Grassl ELT 60 II-HI
500 V-DC, Schönau am Königssee, Germany), following the standard sampling protocol
defined by national authorities in the scope of Water Framework Directive (WFD) [27].

2.3. Environmental Predictors

The environmental variables used to predict the distribution of G. aculeatus were
chosen based on their ecological relevance in the macro-scale distribution of other fresh-
water fish species [16]. Initially, 17 variables were selected according to their typology:
geomorphology, climate, environmental stressors and hydrology (Table 1).
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Table 1. Variables initially selected to model threespine stickleback’s distribution.

Variables Code Range

Geomorphology
Altitude (m) altitude 0–1959

Slope (◦) slope 0–48.689
Distance to coast (m) dist_coast 0–357,420

Silt (%) silt 3.6–20.3
Sand (%) sand 19.1–85.9

Climate
Annual mean temperature (◦C) tempmean 6.6–17.8

Maximum temperature of warmest month (◦C) tempmax 20.4–33.8
Annual precipitation (mm) precip 477–1880

Precipitation of driest month (mm) precipdriest 1–35

Hydrology
Flow accumulation (no. of cells) f_accum 0–9,764,683

Flow weight with rainfall (no. of cells) f_weight_rain 0–267,597,088
WTI (Wetness Topographic Index) wti 0–20.07

SPI (Stream Power Index) spi −3.5 × 109 to 4.5 × 108

Environmental stressors
Artificial surfaces (no. of cells) use_art 0–6083
Agricultural areas (no. of cells) use_agr 0–218,888

Forest and semi-natural areas (no. of cells) use_forest 0–161,346
Population (n/km2) populat 0–15,304

The environmental variables of geomorphological typology used in this analysis were:
altitude, river slope, distance to coast and the type of substrate (percentage of silt and per-
centage of sand in the soil). Altitude (“altitude”) was obtained from WorldClim version 2.1,
with a resolution of 1 km2, while both slope and distance to coast were calculated using
the SRTM Digital Elevation Model in ArcGIS [28,29]. Distance to coast (“dist_coast”) was
included as it reflects the changes in physical and chemical characteristics of the rivers from
the headwaters to downstream extent [30]. The type of substrate was recognized as an
important factor limiting the distribution of G. aculeatus because it is often used as refuge
by the studied species [31]. Two types of substrates were used in our analysis: percentage
of silt (“silt”, grain size between 0.002 and 0.063 mm) and percentage of sand (“sand”, grain
size between 0.063 and 2 mm). These data were obtained from the Harmonized World Soil
Database (1 km2/resolution) [32].

Since the habitat structure is defined largely by physical processes, especially by the
movement of water, and in some Mediterranean rivers, the flow variation is very important
for the distribution of fish species due to the temporary regime of several watercourses,
some hydrology predictors were added to our species distribution model [16,33,34]. Thus,
flow in target locations was estimated using two flow accumulation functions in ArcGIS
and two flow indexes in Saga [35]. The flow accumulation (“f_accum”) function corre-
sponds simply to the total area that drains to each location, while flow (“f_weight_rain”)
was calculated using the flow accumulation weighted by the mean annual precipitation.
The SAGA Topographic Wetness Index (“TWI”) and the Stream Power Index (“SPI”) are
measures of the wetness and the erosive power of flowing river water, respectively [36,37].

Temperature and precipitation are variables that also influence the distribution of
freshwater species as they directly correlate with water temperature and amount of water
received in the river basins [38,39]. To characterize Portuguese climate, four climate predic-
tors were included in our analyses: annual mean temperature (“tempmean”), maximum
temperature of the warmest month (“tempmax”), annual precipitation (“precip”) and pre-
cipitation of the driest month (“precipdriest”). All climatic predictors were obtained from
WorlClim version 2.1 database, at a 1 km2 cell resolution [28].

One of the biggest threats to the freshwater ecosystem is pollution from human
activities such as industrial effluents, agricultural activities, urban waste management
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issues and the increase in urbanized areas [12,40]. Since there are no databases with
sufficient information on all polluting sources in mainland Portugal, and assuming that
water quality is associated with uses of drained soil, we used Corine Land Cover 2000 land
use data as a proxy for water quality (100 m2/resolution) [41,42]. Land uses were divided
into three types: (1) artificial surfaces (“use_art”), (2) agricultural uses (“use_agr”) and
(3) forest and semi-natural areas (“use_forest”). Another environmental stressor included
in our study was demographic information (“populat”, total population) that was obtained
from LandScan (1 km2/resolution) and used as an indicator of the organic pollution level
from domestic effluents [43].

Collinearity between variables was accessed using VIF (variance inflation factor),
a method used to measure how strongly each predictor can be explained by the rest
of predictors [44,45]. “Annual average temperature” and the “forest and semi-natural
areas” variables were removed from the analyses because VIF values exceeded the defined
threshold (10) and could lead to an increase of model error and uncertainty [20,46,47].
Therefore, only 15 environmental variables were used in following analyses, but as the
removed variables were highly correlated with some of the remaining predictors, no
environmental information was lost.

2.4. Statistical Modeling

To reduce the uncertainty associated with SDM, we implemented an ensemble fore-
casting method that combined the weighted projections of all statistical models used and is
reported to outperform the predictions of individual statistical models [48–50]. Nineteen
different statistical models were available and, for each model, optimal parameterization
and fit evaluation were conducted using the True Skill Statistic (TSS) threshold and models
performing worst (with TSS values < 0.6) were excluded from the final ensemble [51,52].

The final ensemble included 10 of 19 statistical techniques available: generalized linear
model (Glm), random forest (Rf), flexible and discriminant analysis (Fda), multiple discrim-
inant analysis (Mda), model occurrence probability using presence-only data (Maxlike),
lasso and elastic-net regularized generalized linear models (Glmnet), multivariate adaptive
regression splines (Mars), boost regression trees (Brt), recursive partitioning and regression
trees (Rpart) and maximum entropy (Maxent).

All models were calibrated using 70% of random occurrence data, and the performance
of each model was evaluated against the remaining 30% of the data [49,53]. Beyond creating
independent or at least partially independent sets for model calibration and validation,
partition also allows us to take data uncertainty into account [54]. The procedure was
repeated 50 times and final ensemble was built using 100% of the data as data partitions
have been shown to add significant uncertainty to forecasts [48]. Data processing was
performed using SDM package [44] in R program (R Development Core Team, 2010,
Auckland, New Zealand) version 3.2.2.

2.5. Definition of Conservation Priorities

The map with the probabilities of occurrence of the target species, obtained through our
ensemble forecasting model and of the confirmed occurrences of G. aculeatus in mainland
Portugal, were used to define the classification of river stretches in four levels of importance
for the conservation of this species, being:

• Level 0 (no conservation interest): River stretches belonging to watersheds where
G. aculeatus presence was not confirmed. This level was also assigned to river stretches
with absence of the species and with an occurrence probability of less than 20% but
belonging to watersheds in which, in other river stretches, the presence of the species
has already been confirmed.

• Level 1 (moderate importance for conservation): River stretches with the absence of
the species and where the probability of occurrence ranges between 20% and 40% but
belonging to watersheds that cover other river stretches in which the presence of the
species has already been confirmed.
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• Level 2 (high importance for conservation): River stretches with the absence of the
species and where the probability of occurrence is above to 40% but belonging to
watersheds that cover other river stretches in which the presence of the species has
already been confirmed.

• Level 3 (maximum importance for conservation): River stretches with confirmed
presence of G. aculeatus and stretches upstream and downstream of the presence with
a probability of occurrence greater than 10%.

Some of the confirmed presences of threespine stickleback occurred at isolated sites,
surrounded by low or null probability areas. As these isolated populations are of the
uttermost importance for species conservation, and defined protection sites would be
poorly effective, we opted for a conservative approach to the protection of the species. We
assigned the maximum importance level of conservation not only to the isolated population
area but also to the adjacent river stretches to prevent the fragmentation of species habitat
since river connectivity is essential for species viability and for maintaining their population
structure [55]. The maximum importance level of conservation, in adjacent river stretches to
places with the presence of the species, excluded places where the probability of occurrence
is less than 10% as they are considered suboptimal for the survival of the species.

Additionally, the waterlines that maintain connectivity between sites with presence
of G. aculeatus and the ocean have been highlighted as sections where particular attention
should be given to ensure the maintenance of longitudinal connectivity due to the probabil-
ity, not yet confirmed for Portugal, that this species can develop an anadromous form [2].
Since the definition of several levels of conservation interest for small water courses close
to each other would be impractical and ineffective, when the same water line has different
probabilities of occurrence, the interest level assigned corresponds to the level that has
the greatest extension in that waterline. Existing reservoirs were superimposed onto our
probability map and defined, through expert judgement, as sites with no interest for this
species due to their abiotic and biologic characteristics (e.g., dominance of non-indigenous
piscivorous fish).

3. Results
3.1. Distribution of G. aculeatus

Data from databases and sampling campaigns comprised our final dataset with
646 points. However, the presence of threespine stickleback was detected only at 7.9%
(presence = 51) of the total sites and was mainly observed close to the Portuguese coast
(Figure 1). A wider distribution of stickleback was observed in the Vouga River basin,
where about 37% of the species overall presence was found.

3.2. Relationship between G. aculeatus Occurrence and Environmental Predictors

According to our final ensemble results, occurrence of G. aculeatus is manly influenced
by the macro-habitat variables “slope”, “precipdrie”, “precip”, “sand”, “f_weight_rain”
and “f_accum”, with contribution values of 49.5%, 23.9%, 15.5%, 9.5%, 8.4% and 6.6%,
respectively. The selected set of environmental variables and the selection of models with
TSS values greater than 0.6 allowed the development of a final ensemble with a very good
performance, with a mean TSS of 0.68 (±0.05).

According to the response curves of the target species occurrence with the variation
of the most important predictors (Figure 2), we can conclude that the threespine stickle-
back presence is mostly associated with river segments combining slopes lower than 15◦

and with the predominance of sandy substrates. The occurrence of this species is also
associated with habitats with low values of average annual precipitation but with high
values of precipitation in the driest month, occurring mainly in areas where these variable
values are around 20 and 30 mm, respectively. The response curves also demonstrate a
preference of the species for sites with running water but not necessarily for rivers with
larger drainage areas, which reflects a dependence of the species from the local climate,
especially concerning water availability.
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small independent systems of Oeste, (9) Lis, (10) Mondego, (11) Vouga, (12) small independent 
streams between Douro and Vouga River basins, (13) Douro, (14) Ave, (15) Cávado, (16) Lima and 
(17) Minho. 
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Figure 1. Distribution of the sampling sites (N = 646) according to the presences and absences
observed for the target species. Green circles indicate sites where the presence of G. aculeatus was
confirmed, and red circles indicate probable absence. The map in the lower right corner of the figure
shows the location of the main Portuguese river basins: (1) small independent streams of Algarve,
(2) Arade, (3) Mira, (4) small independent streams of Alentejo, (5) Guadiana, (6) Sado, (7) Tagus,
(8) small independent systems of Oeste, (9) Lis, (10) Mondego, (11) Vouga, (12) small independent
streams between Douro and Vouga River basins, (13) Douro, (14) Ave, (15) Cávado, (16) Lima and
(17) Minho.
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Figure 2. Response curves for the variables that had higher influence on the species distribution and
occurrence. It demonstrates how the probability of occurrence of G. aculeatus varies within the range
of each variable.

3.3. Spatial Predictions of G. aculeatus Probability of Occurrence

The values of probability of occurrence for G. aculeatus, predicted for mainland Portu-
gal, according to our model, range from 0% to ca. 56% (Figure 3). The highest values of
occurrence probability were found in the northern region of mainland Portugal, near the
coast, in the Minho, Lima and Vouga River basins, while the lowest values were found in
the east zone of the country, close to the border with Spain, and in the south, specifically
in the Algarve region, where the probability of occurrence values rarely exceeded 0%.
The probability of occurrence was also moderately high (between 30% and 40%) in some
watercourses located in watersheds where the species was not detected, for example in the
Neiva and Ave River basins.

3.4. Map of Conservation Priorities

In total, the different importance levels of conservation were assigned to about 1021 km
of river sections, being the maximum level, the one that covered a greater number of
kilometers (540 km) (Table 2), followed by the moderate importance level (313 km) and,
finally, the high importance level (48 km) (Figure 4). Due to the possible existence of the
anadromous form of threespine stickleback, about 120 km of important river sections for
the maintenance of longitudinal connectivity with the sea have been identified. At least
one of the importance levels for conservation has been assigned to almost all major river
basins, except for the Douro, Guadiana and Ave River basins and also except for some of
the smaller independent streams that exist along the country’s littoral region, namely the
Algarve, North and West Streams.
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Table 2. Table with rivers categorized with the maximum level of conservation priority, number
of kilometers covered, presence/absence of the species and the need for measures directed to the
maintenance of connectivity with the sea.

Catchment River River Stretch (km) Maintenance of
Connectivity with Sea

Mira Pilriteiro Stream 15 Yes

Sado
Gema Stream 17 No

Grândola Stream 21 No
Marateca Stream 8 Yes

Tejo

Almansor River 10 Yes
Tejo River 57 Yes

Almonda River 18 No
Zêzere River 7 Yes
Pisão Stream 5 No

Lis
Lis River 15 Yes

Leça Stream 15 Yes

Mondego
Arunca River 29 Yes
Anços River 11 Yes
Ança Stream 27 Yes

Vouga

Vale da Corujeira Stream 31 Yes
Varziela Stream 13 Yes
Palhal Stream 15 Yes
Vouga River 36 Yes

Águeda River 14 Yes
Cértima River 30 Yes
Negra Stream 13 Yes
Seixo Stream 3 Yes
Cáster Stream 5 Yes

Cávado Milhases Stream 5 Yes

Lima
Lima River 32 Yes
Vez River 13 Yes

Estorãos River 8 Yes

Âncora Âncora River 8 Yes

Minho
Minho River 48 Yes
Coura River 11 Yes

4. Discussion
4.1. Influence of Environmental Variables on the Distribution of G. aculeatus

The large survey conducted for this study demonstrated that in mainland Portugal,
the areas with the highest probability of occurrence were found close to the coast (less
than 40 km from the sea), from the central area of Portugal, in the Mondego River basin, to
the far north of the country, specifically on the Minho River. With increasing distance to
the coast, the probability of occurrence of the species decreased considerably. The areas
with the lowest probability of occurrence were, in most cases, as we expected, those for
which there are no detections of the species presence, such as the Guadiana River basin and
Algarve Streams. Lentic water ecosystems, as the reservoirs that we can find, for example,
in the Douro basin, associated with the construction of dams and similar impassable
structures, were considered by expert judgement as places with no conducive conditions to
the occurrence of sticklebacks and defined as sites of null probability of occurrence, because
they have, among other characteristics, low and highly fluctuating levels of oxygen, which
are not suitable to the development of their eggs and juveniles [10]. Furthermore, these
habitats with lentic characteristics are usually dominated by invasive species that compete
for resources and space with sticklebacks and even predate our target species.
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Our study showed that the distribution of the threespine stickleback in the study area
is explained mainly by six macroscale environmental variables (Appendix A: Figure A1):
“slope”, “percentage of sand”, “precipitation of driest month”, “annual precipitation”,
“flow accumulation” and “flow”.

“Slope” is the strongest predictor for the distribution of G. aculeatus in the study area.
The peak probability of occurrence of this species occurs at very low slope values, found
mostly in river stretches near the coast, and begins to decrease in areas with slope higher
than 15◦, with the probability of occurrence of 0% in the mountainous areas of mainland
Portugal. “Slope” is a variable with an indirect effect on species distribution as it influences
other variables, such as annual mean temperature, water flow, granulometric composition
and, mainly, because it is related to altitude [56,57]. With the increase in the slope, there
is a decrease in the “annual mean temperature” (a variable that was removed from our
analyses because it was highly correlated with the slope) and, consequently, in the water
temperature of rivers [38]. Water temperature is a determining factor in the distribution
of fish species due to its influence in spawning periods and in the growth and mortality
rates [58]. Knowing that most sticklebacks fail to reach sexual maturity when exposed to
temperatures below 10◦C, we expected that this species will tend to avoid river stretches
with low water temperatures associated with steep slopes and high altitudes [5,59,60].

The slope of the river channel has a vital role also in streamflow and in the water
accumulated by the basins, determining the hydrologic and geomorphologic character-
istics of the river [61–64]. In our final ensemble model, two variables related to the river
flow had an important influence in the distribution and occurrence of G. aculeatus, these
being the flow (“f_wheight_rain”) and flow accumulation (“f_accum”). However, as we
concluded from our analyses (cf. Figure 2), the amount of water that the basin receives
from precipitation (“f_weight_rain”) had more influence on the distribution of sticklebacks
in Portugal than the dimension of the drainage basin. The increase in the probability of
occurrence of this species with the increase of flow (“f_weight_rain”) and with the increase
of the “precipitation in the driest month”, which is also one of the variables with higher
influence in the distribution of G. aculeatus, is an indicator that the species avoids rivers
with temporary regimes, which is a highly important feature for populations of this species
inhabiting southern Mediterranean areas [65]. Even if these temporary rivers, with typi-
cally Mediterranean characteristics and mainly found in the south of Portugal, have large
drainage basins, they are not favorable to the occurrence and survival of G. aculeatus due to
the severe variation and reduction in the amount of water and the consequent degradation
of aquatic habitat in the driest months [6,9,10]. The few isolated populations of the target
species that were found and persist in this type of temporary habitat (e.g., Sado and Mira
basins) have probably developed adaptations to survive in these adverse and suboptimal
conditions [5–7]. Although this species tends to avoid temporary rivers, it also tends to
avoid rivers with large drainage basins that can accumulate too much water from high
levels of “annual precipitation” and even too high levels of “f_weight_rain”. In rivers with
these characteristics, mainly in steep channel slopes, the effects of flash floods associated
with this large amount of water are more intense, and the current velocity is higher, making
nest building more difficult and potentially causing higher mortality and displacement of
individuals since sticklebacks have poor swimming capability [66,67]. In addition, habitats
with these characteristics require greater energy expenditure by aquatic organisms, and
sticklebacks need to save this energy for nest building and parental care [13,68].

The fact that the slope influences the water flow means that it indirectly also influences
the type of sediment and substrate of the river. From our results, we observed that the
percentage of sand is also one of the factors that most influences the distribution of the
threespine stickleback in the study area, corroborating other studies where individuals
of this species were captured in habitats constituted mostly by sand and gravel [9]. The
probability of occurrence of G. aculeatus increases with increasing percentage of sand,
probably because this small substrate is easy to dig, being then used by sticklebacks to
build nests and as a refuge in the presence of predators [9,13].
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4.2. Prioritizing Conservation of G. aculeatus

To protect this species, we recommend a set of regional conservation measures based
on our map of conservation priorities since most of the confirmed occurrences and the
places with the highest probability of occurrence are not covered by any type of legal
protection, e.g., the National Network of Protected Areas of Portugal [69].

The isolated populations residing in river stretches surrounded by low or null prob-
ability areas, as observed in the Sado and Mira river basins and in some tributaries of
the Tagus river (streams with typical Mediterranean characteristics), although probably
having developed adaptations to survive the harsh environment observed in such rivers
during the summer, are still less likely to persist because they face greater risk of extinction
through demographic and environmental stochasticity and Allee effects and are less likely
to be recolonized through dispersal from neighboring populations [17]. Therefore, as
these populations may represent alternative strategies and genetic profiles distinct from
all other populations in the world, they should be effectively protected to conserve the
evolutionary heritage of the stickleback adaptive radiation [6,7,10,12]. Additionally, despite
the attempt to cover all the geographic area of mainland Portugal, it is possible that we did
not capture all the environmental space where the species occurs, so the final model might
underestimate the probability of occurrence in these areas [70].

The fact that the maximum level of interest for conservation of this species has been
assigned to river stretches with confirmed presence of G. aculeatus and to the surrounded
stretches to maintain the connectivity of the waterlines represents a conservative approach
for the problem of isolated populations. Moreover, the high and moderate interest levels
for conservation of sticklebacks were created to categorize rivers that have no confirmed
presence but that have environmental characteristics capable of supporting the existence of
stickleback populations, thus being the first rivers to be repopulated if necessary. Addition-
ally, as environmental conditions are expected to vary due to climate change, these areas
might become important refuges in future scenarios.

The anadromous form of the threespine stickleback is thought to occur in Portugal, al-
though its presence was never confirmed, which is probably related with the lack of studies
directed to this objective with an adequate selection of sampling areas (e.g., downstream
brackish sections of main rivers and respective tributaries, coastal lagoons) and methods
(e.g., minnow traps, hand nets) [71,72]. Nevertheless, in this study we decided to highlight
the river stretches that are important for the maintenance of connectivity with the sea
because, independently of the presence or absence of the anadromous stickleback form in
Portuguese river basins, the maintenance of longitudinal connectivity between freshwater
and marine habitats will always improve the conservation of aquatic ecosystem in general,
helping the migration and completion of the life cycle of other endangered diadromous
species that share similar distribution areas with G. aculeatus, such as the anadromous river
lamprey (Lamprey fluviatilis L.), in the Tagus river, or allis shad (Alosa alosa L.), the sea trout
(Salmo trutta L.) and the Atlantic salmon (Salmo salar L.) in the northern and central river
basins of Portugal [16,68,70–73].

Although the results obtained in this study can be used as per the definition of
conservation measures for this species, it is necessary to consider the possibility of carrying
out further studies in the future to corroborate these results. The fishing data are subject
to several sources of uncertainty, since not capturing individuals in one location does not
mean that the species does not exist in that site, so our study may have underestimated
the presence data, distorting our results. In addition, sometimes there may be undeclared
catches, uncertainty in species identification and incorrect use of capture techniques due
to a lack of knowledge of species ecology, among others. As much as these sources of
uncertainty have been reduced, the difference in the amount of data between presences and
absences of the species was high, so the area where the probability of occurrence is very low
may have been overestimated. In addition to the uncertainties associated with occurrence
data, sometimes the lack of more recent information for some environmental variables can
also cause a slight bias in results, such as the lack of more recent data for land use. As
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well as the uncertainty associated with the statistical models used in the ensemble forecast,
to implement more effective conservation measures for the designated rivers, it becomes
necessary to add to the analysis more detailed and local variables that can affect the species
in these specific habitats, such as, for example, micro- and meso-habitat (e.g., temperature,
salinity, dissolved oxygen, substrate, depth, current velocity, refuges) and fish assemblage
(e.g., presence of stickleback competitors or predators, non-native species) characteristics.
Future efforts should focus on addressing these topics to improve the projections of species
distribution models, with the aim of corroborating and even improving the conclusions
obtained in this study.

5. Conclusions

Despite wide geographical distribution, evolutionary history and high genetic, mor-
phological and behavioral diversity, G. aculeatus populations are declining due to threats
such as the introduction of non-native species, pollution and human activities [1,2,7,8,10,12].
This critical situation is more relevant and worthy of additional concern for species popula-
tions inhabiting regions located near the southern limit of its global distribution, in which
suboptimal environmental conditions are exacerbated by the Mediterranean climate, with
accentuated changes between dry and wet periods with unpredictable flash floods and
droughts [23]. Since the lack of knowledge regarding the distribution and ecological re-
quirements of the species, especially in southern European regions, has been an obstacle to
the definition of effective conservation measures for G. aculeatus, the information obtained
in this study makes it possible to properly address this issue and define hot spots for the
conservation of the threespine sticklebacks in Portugal.
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