
Citation: Bai, X.; Gao, L.; Choi, S.

Exploring the Response of the

Japanese Sardine (Sardinops

melanostictus) Stock-Recruitment

Relationship to Environmental

Changes under Different Structural

Models. Fishes 2022, 7, 276. https:

//doi.org/10.3390/fishes7050276

Academic Editors: Siquan Tian and

Jie Cao

Received: 2 September 2022

Accepted: 3 October 2022

Published: 6 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fishes

Article

Exploring the Response of the Japanese Sardine (Sardinops
melanostictus) Stock-Recruitment Relationship to
Environmental Changes under Different Structural Models
Xuan Bai 1, Li Gao 2 and Sangduk Choi 1,3,*

1 Department of Fisheries Science, Chonnam National University, Yeosu 59626, Korea
2 School of Fishery, Zhejiang Ocean University, Zhoushan 316022, China
3 Department of Aquaculture, Chonnam National University, Yeosu 59626, Korea
* Correspondence: choisd@jnu.ac.kr

Abstract: Japanese sardines (Sardinops melanostictus) are environmentally sensitive pelagic fish. We
investigated the effects of environmental factors on the stock-recruitment (S-R) relationship of S.
melanostictus in the Pacific Ocean from 1984 to 2018. We modeled and analyzed the recruitment of
S. melanostictus using the Ricker model, the Ricker environment extension model (Ricker-E), and
the generalized additive model (GAM). Different numbers of environmental factors were added to
the models for fitting, and the Akaike information criterion (AIC) was used to select the optimal
model. The results showed that the nonlinear GAM provided the best fit. The results of the GAM
single factor and multifactor analysis showed that environmental factors were significantly correlated
with recruitment in S. melanostictus (p < 0.05). The best fitting model was the GAM, with an AIC of
57.9 and a cumulative explanation rate of 95.7%. Sea surface temperature was the most dominant
environmental factor and had a negative impact on R/S. Considering both spawning stock biomass
(S) and the environmental factors in the S-R relationship is important for studying the mechanisms
of complementary changes and population changes in S. melanostictus under the influence of the
marine environment.

Keywords: stock-recruitment relationship; environment factors; Ricker model; recruitment;
Sardinops melanostictus

1. Introduction

Fluctuations in fishery resources have been closely associated with changes in the
global climate and marine environment [1]. Small pelagic fish are not only critical species
in the ecosystem, but also essential economic fish, accounting for approximately 20–25% of
the global catch annually [2–4]. Small pelagic fish are fast-growing and short-lived, with
high natural mortality, which means that changes in their recruitment influence the size
of the population. Therefore, the success rate of their recruitment is an essential factor
in population dynamics and development [5,6]. However, recruitment is susceptible to
changes in the complex marine environment of the waters in which they inhabit, and
this responds very rapidly to changes in the climate, having a high degree of population
variability. Therefore, it is necessary to investigate the effects of climate change and marine
environmental changes on small pelagic fish populations.

The Japanese sardine (Sardinops melanostictus) is a representative species of small
pelagic migratory fish that has a significant ecological and commercial value [7–9]. The
species is primarily distributed in the Northwest Pacific region of China, Japan, and Korea,
with spawning grounds on nearly all coastlines and adjacent water [10]. Information regard-
ing S. melanostictus has previously been reported, including biological measurements [11],
spawning [12], larval reproductive development [13], and environmental factors that affect
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population dynamics [14]. Morimoto [15] studied the relationship between different inter-
annual variables and the age, body length, and weight of S. melanostictus. He suggested
that age and growth changes in S. melanostictus are among the factors affecting fluctuations
of the population. The relationship between spawning stock and recruitment is crucial
to investigate, since the environment in which fish live significantly impacts their spawn-
ing, development, and growth. Fishery stock assessment and management are based on
the spawning stock-recruitment (S-R) relationship [16,17]. The population biomass of S.
melanostictus has undergone dramatic fluctuations on a multidecade scale [3,18]. Wada
and Jacobson [19] pointed out that the dynamics of recruitment under the influence of
the environment and density are important factors in the fluctuation of the S. melanos-
tictus population. Ganias [20] revealed the relationship between environmental factors
(sea surface temperatures and chlorophyll-a) and the sardine spawning rate. Takasuka
et al. [21] reported that sardines grow more slowly in warmer environments. The environ-
mental changes experienced during spawning or migration are among the key reasons for
reproductive failure. Therefore, environmental factors [22], such as the February Arctic
Oscillation (AO) [23,24], the Pacific Decadal Oscillation (PDO), and the sea surface tempera-
tures (SST), should also be considered in sardine population dynamics and complementary
predictive modeling studies.

Many studies have investigated the effects of environmental factors on the S-R re-
lationship of S. melanostictus. However, studies have focused more on the effects of a
single environmental impact or a single model aspect [22,25,26]. In contrast, this study
focuses on comparing multiple models with different structures under the influence of
the environment, to find the best model for describing S-R relationships. To understand
the recruitment of S. melanostictus, we assumed that biomass dynamics are the result of a
combination of density-dependent and density-independent factors (changes in the marine
environment). We developed the traditional Ricker model, Ricker environment extension
model (Ricker-E), and generalized additive model (GAM), to explore the critical environ-
mental factors of S. melanostictus biomass dynamics under different model structures. The
effect of fishing is considered an important factor in the development of the population,
especially in the case of low spawner levels, where fishing pressure can hinder the recovery
and development of the population. Therefore, we should promptly adjust management
strategies through resource assessment, to achieve the sustainable development of fishery
resources. This is of great practical importance for future research on the dynamics of S.
melanostictus populations, fisheries resource management, and conservation.

2. Materials and Methods
2.1. Data Source
2.1.1. Fishery Data

The area of this study was the Kuroshio-Oyashio system in Japanese waters of the
Pacific Northwest. Our data were obtained from the Japan Fisheries Agency report of
2019, selecting biological data for S. melanostictus (stock spawning biomass 102 kt) and
recruitment (in number/102 million ind) from 1984 to 2018. Recruitment was taken as the
number of fish aged 0 [27].

2.1.2. Environmental Factors

The spawning area of S. melanostictus is located in the Kuroshio-Oyashio system
(Figure 1), and the temperature in this area has a significant correlation with the density of
sardines [28,29]. Changes in the marine environment in the Kuroshio-Oyashio area affect
the reproductive success rate of sardines [30]. In this study, the sea surface temperature
(SST; ◦C) was selected from the average autumn and winter temperature in the Kuroshio-
Oyashio Transition Zone (KOTZ) (143.5◦–155.5◦ E, 36.5◦–39.5◦ N) with a spatial coverage
of 1.0◦ × 1.0◦ [31]. The average spring area of Oyashio Current (OYA, 104 km2) is the
area where the water temperature is below 5 ◦C at a 100 m depth west of 148◦ E and
south of 43◦ N. Our spring (March–May) OYA was obtained from the Japan Meteorological
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Agency (JMA) [32]. The Southern Oscillation Index (SOI, May–April average), Pacific
Decadal Oscillation data, and February Arctic Oscillation data were downloaded from the
National Oceanic and Atmospheric Administration (NOAA) [33]. Large-scale environments
including PDO, SOI, and AO have all been shown to directly or indirectly affect fish
recruitment [34,35]. Watanabe et al. [36] showed that SST changes caused by interdecadal
climate-ocean variability would affect the decline of sardine populations. The marine
environmental time series were all from 1980 to 2018. To distinguish the descriptions
in the text, Table 1 describes the abbreviations of fisheries and environmental data used
in this study.
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Figure 1. Spawning and feeding grounds of Sardinops melanostictus in the Kuroshio-Oyashio system.

Table 1. Data abbreviations used in this study.

Abbreviation Meaning

ln(R/S) Logarithm recruitment/spawning stock biomass
KOTZ Kuroshio-Oyashio Transition Zone

SST The average autumn and winter temperature in the KOTZ
PDO Pacific Decadal Oscillation
OYA Average spring area of the Oyashio Current
AO Arctic Oscillation Index (February)
SOI Southern Oscillation Index
S-R Spawning stock-recruitment

2.2. Model Building Process

In order to determine the optimal fitting model for S. melanostictus, the influence of
environmental factors on S. melanostictus spawning stock recruitment was investigated.
We constructed and compared different S-R models: the traditional Ricker model, the
Ricker environment extension model (GLM method modeling), and the GAM model.
The predictors of the recruitment models included stock biomass individually and the
combination of stock biomass and marine environmental factors (SST, PDO, OYA, AO, and
SOI). The best model was determined by comparing the explanatory and predictive power
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of the different structural candidate models (different numbers of environmental factors)
against the traditional Ricker model. Through the analysis and comparison of different
models, the model with the best fitting effect was selected to study recruitment. This study
mainly used R (x64 version 4.1.1) and Origin for analysis.

In this study, a correlation test between environmental factors and recruitment was
conducted using the Pearson correlation coefficient to screen the key environmental factors
associated with recruitment. A Ricker type environmental extension model based on the
traditional Ricker model was constructed using the glm() function and mgcv package. The
variance inflation factor (VIF) was used to judge the collinearity numerically. Generally, a
VIF <5 is considered to indicate no collinearity effect [37].

2.2.1. Ricker and Ricker-E Model

Both Beverton-Holt (B-H) [38] and Ricker [16] are models used to describe the S-R
relationship [39,40]. However, the S-R relationship is not a simple density-dependent
relationship, and researchers have gradually introduced environmental factors into the
stock-recruitment model, to simultaneously consider the effects of density-dependent and
environmental-dependent factors on the relationship of recruitment. The B-H and Ricker
reproduction models were modified to explore the impact of the environment on the stock-
recruitment relationship [41–43]. However, the latter is used more frequently, and Ricker is
more appropriate for including environmental factors [44]; therefore, the Ricker model was
chosen to describe the S-R relationship of S. melanostictus in this study.

Rt+1 = αSte−βSt · eεt(0,σ2) (1)

where Rt+1 is the recruitment in the year t + 1, St is the spawning stock in year t, α and
β are parameters to be estimated, and ε is a normally distributed random error term,
ε ∼ N (0, σ2).

Usually, Ricker allows the model to be estimated using linear regression, and Equation
(2) was used to estimate the parameters for the regression analysis:

ln
(

Rt+1

St

)
= ln α− βSt + εt (2)

The mechanism of S. melanostictus fluctuations is complex, and the density-constrained
mechanism is not the direct cause affecting population fluctuations [45]. Sakuramoto
et al. [24] suggested that the fundamental cause of S. melanostictus fluctuations in the
Northwest Pacific Ocean is related to environmental conditions. Therefore, to explore the
influence of environmental factors on S. melanostictus, we established an S-R model of envi-
ronmental influence based on the Ricker model. The Ricker model equation incorporating
environmental covariates is as follows:

ln
(

Rt+1

St

)
= ln α− βSt + f (X) + εt (3)

The function f (X) represents the effect of different marine environmental factors,
f (X) = γ1Xt,1 + γ2Xt,2 + · · ·+ γnXt,n, where Xt,1, Xt,2,. . . , Xt,n, represent environmental
variables that may impact S-R during the year. Additionally, γ1, γ2, and . . . γn denote the
values of the corresponding environmental variable parameters.

2.2.2. GAM Model

The GAM is an extension of the GLM, which was used to study the environmental
factors that affect the S-R of S. melanostictus. In general, GAM has more flexibility [46].
The GAM minimizes residuals (goodness of fit), while maximizing parsimony (lowest
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possible degrees of freedom) to detect nonlinear relationships between variables [47]. The
expressions is as follows:

g(u) = α +
p

∑
j=1

f .
j

(
xj
)
+ εt (4)

where g(u) is the desired response variable; (the Logarithm recruitment/spawning stock
biomass in this study ln( R

S ), f j is each explanatory variable xj (St, SST, PDO, OYA, AO, SOI)
of the smoothing function), and εt is a residual that follows a normal distribution. The
effects of the spawning stock and environmental variables on recruitment were fitted using
a cubic spline bs = “cr”, and an s (smoothing spline) was used as a smoother to estimate
the S-R relationship.

2.3. Selection Criteria and Validation of Models

The Akaike information criterion (AIC) is essential in testing the significance of dif-
ferences between models and is widely used to select optimal models [48]. Usually, the
minimum value of the AIC represents a good fit for the model. The expressions is as follows:

AIC = 2k− 2 ln(L) (5)

where k denotes the independent parameter format of the model and L denotes the great
likelihood function of the model.

In this study, the AIC was the selection criterion for the best model. In the Ricker-E,
the stepAIC () function of MASS was used to select the best model, considering various
combinations of environmental factors. To improve the accuracy of the model, we used
tenfold cross-validation. In the GAM, environmental factors were added to the model
successively, until the AIC value was no longer decreased, and the optimal model was
selected. Additionally, to ensure the accuracy of the selection results, the model was
predicted for verification. Similarly, single and multivariate analyses were used separately
in the GAM model building process. First, different numbers of environmental factors were
added to the model successively, until the AIC value no longer decreased, and the optimal
model was selected. Then, for the three S-R models with different structures, AIC was used
as the judgment criterion to choose the optimal model. Lastly, we validated the model, to
ensure the accuracy of the selection results.

3. Results
3.1. Screening of Environmental Factors

The results of the correlation analysis (Figure 2) showed that recruitment was signif-
icantly correlated with various environmental factors, except for SOI. At the same time,
the effect of SST on recruitment showed a negative correlation (−0.714), even higher than
the correlation coefficient between spawning stock and recruitment (0.629). On the other
hand, the AO was positively correlated with recruitment, with a correlation coefficient of
0.438. In addition, the SOI had the smallest relationship with the recruitment, which was
negative, with a correlation coefficient of −0.115. Therefore, SSB and environmental factors
should be considered when investigating the S−R relationship in S. melanostictus [24]. The
results also indicated that there may be interactions among the environmental factors (some
environmental factors had large correlation coefficients with each other, such as AO and
PDO, with a correlation coefficient of 0.779).



Fishes 2022, 7, 276 6 of 20Fishes 2022, 7, 276 6 of 20 
 

 

 
Figure 2. The results of the correlation analysis between recruitment and environmental factors of 
S. melanostictus from 1984 to 2018. Signif. codes: ‘***’ means p value ∈ [0, 0.001], ‘**’ means p value ∈ 
(0.001, 0.01], ‘*’ means p value ∈ (0.01, 0.05] ‘.’ means p value ∈ (0.05, 0.1], no cod means p value ∈ 
(0.1, 1). 

Figure 3 shows the overall decreasing trend in recruitment during the period of 
1986−2013; after 2013, the recruitment increased under the general trend. However, the 
recruitment was on a downward trajectory, while the SST increased from 1986 to 1988. 
The SOI changed from a negative to a positive correlation from 1986 to 1988, and El Niño 
became La Niña during 2013−2018, with an overall fluctuating increase and a decrease in 
individual years. 

Figure 2. The results of the correlation analysis between recruitment and environmental factors
of S. melanostictus from 1984 to 2018. Signif. codes: ‘***’ means p value ∈ [0, 0.001], ‘**’ means
p value ∈ (0.001, 0.01], ‘*’ means p value ∈ (0.01, 0.05] ‘.’ means p value ∈ (0.05, 0.1], no cod means
p value ∈ (0.1, 1).

Figure 3 shows the overall decreasing trend in recruitment during the period of
1986−2013; after 2013, the recruitment increased under the general trend. However, the
recruitment was on a downward trajectory, while the SST increased from 1986 to 1988.
The SOI changed from a negative to a positive correlation from 1986 to 1988, and El Niño
became La Niña during 2013−2018, with an overall fluctuating increase and a decrease in
individual years.
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observations distributed around the Ricker curve. However, before 1992, the fitted values 
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speculated that this might have been influenced by the marine environment. By fitting the 
traditional Ricker model, the AIC was 100.25, and the BIC was 104.91. The parameter 
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Figure 3. Time series plots of trends in environmental factors and recruitment during 1984–2018.
(a) Trend of SST and R time series; (b) Trend of PDO and R time series; (c) Trend of OYA and R time
series; (d) Trend of AO and R time series; (e) Trend of SOI and R time series.

3.2. Traditional Ricker Model

From 1984 to 2018, the Ricker curve of S. melanostictus showed the characteristics of
the Ricker model dome (Figure 4). The S-R fit was satisfactory from 1992 to 2018, with
observations distributed around the Ricker curve. However, before 1992, the fitted values
had significant deviations, especially during the period from 1984 to 1991, in which the
observed values were far from the Ricker curve, and the fit was poor. Therefore, we
speculated that this might have been influenced by the marine environment. By fitting
the traditional Ricker model, the AIC was 100.25, and the BIC was 104.91. The parameter
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estimation results showed that the α parameter was 26.16, and the β value was −0.0149.
Therefore, the equation of the traditional Ricker model was as follows:

Rt+1 = 26.16Ste0.0149St+ε (6)
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Figure 4. The relationship of S. melanostictus stock recruitment and the environment in 1984–2018.

3.3. Results of the Ricker Environment Extension Model

A stepwise regression analysis showed that the optimal Ricker-E model included three
environmental variables (SST, AO, and SOI) that significantly affected the recruitment
(p < 0.05) (Table 2). Moreover, the results of collinearity showed that the VIF was less than 5
during the modeling process, so there was no collinearity. The SST had the smallest p-value
(0.0079) among the environmental variables, indicating that SST had the most significant
influence on the dependent variable. The model fit AIC was 84.60. The expression of the
Ricker-E model with the addition of environmental factors was as follows:

lnRt+1 − lnSt = 18.118 + 0.024St − 0.977SST + 0.4AO + 0.542SOI + ε (7)
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Table 2. Results of the best Ricker-E model with the addition of environmental factors in
different numbers.

Formula Variable Estimate Standard Error t Value Pr(>|t|) VIF AIC BIC

ln(R/S) ~ S + SST 22.087 5.149 4.290 0.0002 *** 90.00 96.20
S −0.024 0.004 −5.640 0.0000 *** 1.51

SST −1.226 0.335 −3.660 0.0009 *** 1.51

ln(R/S) ~ S + SST + AO Intercept 17.293 5.645 3.060 0.0045 ** 88.50 96.30
S −0.023 0.004 −5.600 0.0000 *** 1.53

SST −0.918 0.366 −2.510 0.0176 * 1.93
AO 0.283 0.157 1.800 0.0816 . 1.33

ln(R/S) ~ S + SST + AO + SOI Intercept 18.118 5.287 3.430 0.0018 ** 84.60 94.00
S −0.024 0.004 −6.206 0.0000 *** 1.55

SST −0.977 0.343 −2.847 0.0079 ** 1.94
AO 0.400 0.155 2.575 0.0152 * 1.49
SOI 0.542 0.231 2.346 0.0258 * 1.18

Note: Signif. codes: ‘***’ means p value ∈ [0, 0.001], ‘**’ means p value ∈ (0.001, 0.01], ‘*’ means
p value ∈ (0.01, 0.05], ‘.’ means p value ∈ (0.05, 0.1], no cod means p value ∈ (0.1, 1).

The points in Figure 5a are randomly distributed; therefore, there is no heteroskedas-
ticity. The points in Figure 5b are distributed on the 45◦ diagonal, indicating that the sample
approximately obeyed a normal distribution. Meanwhile, the points in Figure 5c are ran-
domly distributed, and the maximum Cook distance in Figure 5d is approximately 0.3. We
typically used 0.5 and 1 as the criteria for outliers [49]; therefore, there were no outliers.
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We used tenfold cross-validation for model selection, using R-squared and RMSE
as the judging criteria, and the results were the same as those of the models selected by
stepwise regression. Table 2 shows the best Ricker-E models with the addition of different
numbers of factors. A comparison of the best models in each group revealed that the
model containing four factors had the largest R-squared (0.705) and the smallest RMSE
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(0.749) (Table 3). Furthermore, when five environmental factors were added, the RMSE and
RMSESD became larger, and the Required became smaller. This indicated that the Ricker-E
model with four factors (S, SST, AO, and SOI) was the optimal model.

Table 3. Results of the tenfold cross-validation for the optimal Ricker-E model.

Nvmax RMSE Required MAE RMSESD RsquaredSD MAESD

1 0.931 0.686 0.747 0.334 0.338 0.277
2 0.789 0.610 0.653 0.365 0.323 0.292
3 0.935 0.653 0.781 0.299 0.282 0.264
4 0.749 0.705 0.617 0.264 0.297 0.235
5 0.806 0.641 0.668 0.331 0.295 0.286
6 0.820 0.656 0.687 0.299 0.285 0.263

Note: Nvmax represents the number of different factors added to the model.

3.4. Analysis Results of GAM
3.4.1. Single Factor Analysis of the GAM

Table 4 shows that S had the largest explained deviation and Rsq.(adj), followed by SST
with 76.40% and 61.70%, and 0.724 and 0.503, respectively. The results of the single factor
analysis of the GAM showed that each environmental factor was statistically significant
and had a significant effect (p < 0.05). In addition, the estimated degrees of freedom (edf)
of PDO and AO were 1, indicating that PDO and AO had a linear relationship effect on
ln(R/S) in the single factor model. Another factor, edf, was greater than 1, indicating
nonlinear effects.

Table 4. Results of the GAM single factor fit of S. melanostictus.

B.Smooth
Terms edf Ref. df F Value p Value GCV Deviance

Explained Rsq.(adj) AIC

s(S) 4.87 4.99 18.9 <2 × 10−16 *** 0.848 76.4% 0.724 94
s(SST) 5.98 6.67 6.32 <2 × 10−16 *** 1.484 61.7% 0.536 114
s(PDO) 1 1 11.16 <2 × 10−16 *** 2.094 25.20% 0.229 127
s(OYA) 5.95 6.62 2.16 <2 × 10−16 *** 2.487 35.8% 0.221 132
s(AO) 1 1 9.60 <2 × 10−16 *** 2.167 22.5% 0.202 128
s(SOI) 3.2 3.83 0.88 <2 × 10−16 *** 2.705 15.80% 0.070 136

Note: Signif. codes: ‘***’ means p value ∈ [0, 0.001].

The trend in Figure 6a shows two peak values at 20 × 102 kt and 95 × 102 kt. Before
20 × 102 kt and between 48 × 102 kt and 95 × 102 kt, the ln(R/S) showed an increasing
trend. Meanwhile, the periods of 20 × 102 kt–48 × 102 kt and 95 × 102 kt–130 × 102 kt
showed a decreasing trend. Figure 6b shows that at 14.0 ◦C, the ln(R/S) was the highest,
whereas, between 14 ◦C and 15 ◦C, the ln(R/S) rapidly decreased; between 15 ◦C and
16 ◦C SST, the ln(R/S) fluctuated after experiencing a reduction. Furthermore, the ln(R/S)
decreased when temperatures surpassed 16 ◦C. Figure 6c,e show that the effects of PDO
and AO on ln(R/S) exhibited an increasing linear trend; with an increase in the PDO and
AO indices, while ln(R/S) also increased. Figure 6d shows the ln(R/S) fluctuating variation
of OYA between 5 × 104 km2 and 15 × 104 km2. The OYA significantly increases in ln(R/S)
after 15× 104 km2 − 20× 104 km2. Figure 6f shows a decreasing trend of ln(R/S) at the SOI
of −0.6, with a change at −0.5. At less than −0.5, the ln(R/S) decreased with an increasing
SOI; at an SOI greater than −0.5, there was a gradual positive correlation, with ln(R/S)
increasing with SOI.
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(f) Residuals of Southern Oscillation Index.

3.4.2. Multifactor Analysis

Table 5 indicates that the best model for a single environmental factor was GAM2.
Compared to GAM1, the AIC decreased from 94.4 to 70.6, while the R-sq. (adj) increased
from 0.72 to 0.88, indicating a significantly improved fit with the addition of the environ-
mental factor. After adding the remaining environmental factors to GAM2, the best model
was GAM3, with a decrease in the AIC to 67.2 and an increase in R-sq. (adj). We found
that, after adding four factors to GAM4 and then adding the environmental factors OYA
and SOI, the AIC increased to 58.20 and 60.00, respectively. The R-sq. (adj) values did not
increase significantly. Therefore, we determined that the model with the addition of four
factors (GAM4) was the best. The GAM expression was as follows.

ln(R/S) = s(S) + s(SST) + s(PDO) + s(AO). (8)
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Table 5. Comparison of the best models with different numbers of factors in the GAM.

Model Formula edf t Value p adjR2 Explained AIC BIC

GAM1 ln(R/S) ~ s(S) 32.2 *** 0.72 76.40% 94.4 105.0
s(S) 4.87 ***

GAM2 ln(R/S) ~ s(S) + s(SST) 48.1 *** 0.88 91.90% 70.6 91.8
s(S) 4.91 ***

s(SST) 6.75 ***

GAM3 ln(R/S) ~ s(S) + s(SST) + s(PDO) 50.9 *** 0.89 93.40% 67.2 91.3
s(S) 4.9 ***

s(SST) 6.72 ***
s(PDO) 1.83

GAM4 ln(R/S) ~ s(S) + s(SST) + s(PDO) + s(AO) 58.6 *** 0.91 95.70% 57.9 86.7
s(S) 4.83 ***

s(SST) 6.87 ***
s(PDO) 2.30 *
s(AO) 2.49 .

Note: Signif. codes: ‘***’ means p value ∈ [0, 0.001], ‘**’ means p value ∈ (0.001, 0.01], ‘*’ means
p value ∈ (0.01, 0.05], ‘.’ means p value ∈ (0.05, 0.1], no cod means p value ∈ (0.1, 1).

Figure 7b indicates the highest values at 14.4 ◦C, corresponding to the highest ln(R/S).
The ln(R/S) decreased significantly between 14.4 ◦C and 15 ◦C. It fluctuated between
15 ◦C and 16 ◦C, with two relatively small peaks at 15.3 ◦C and 15.9 ◦C. Figure 7c,d show
that PDO and AO had opposite effects on ln(R/S). With a negative PDO index, ln(R/S)
decreased, whereas, with a positive PDO index, ln(R/S) increases; AO was precisely the
opposite of PDO. The visual analysis of Figure 7 revealed a possible interaction between
the environmental factor SST and spawning (Figure 8a). Figure 8b shows a significant
interaction between SST and spawning (p < 0.001), with either a too high or too low SST
interacting with spawning, thus affecting the recruitment.
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3.5. Fitting Verification of the Optimal Model

According to GAM single factor and multivariate analysis, GAM4 was the best model.
A fitting test of the model was carried out to confirm the accuracy of the results. Figure 9
indicates the fit of the predicted values of the three models to the observed values, as well as
the degree of fit of the three models to the recruitment varies. All three models were fitted
well by the predictor variables after 1992. However, for the prediction of recruitment during
1984–1992, the fitted line of the traditional Ricker model (Figure 9a) was compared with the
fitted line of the Ricker model, with the addition of environmental factors (Figure 9b). We
found that the latter was less variable. As a result, the difference between the predicted and
observed values was smaller, and the fitting effect was better. However, the fit of the GAM
to recruitment (Figure 9c) showed a significantly better model fit with less variation than
the previous two. This may be because environmental factors strongly influenced it before
1992, and the GAM had a better fit and better explained the effects of the environment
on recruitment.
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4. Discussion
4.1. S-R Model

The Ricker model is widely used to describe S-R relationships in stock assessment, but
it is more inclined toward the influence of biological factors such as SSB on recruitment [50].
However, the influence of abiotic factors in the ecosystem, including the environment,
food, and other factors on recruitment, cannot be ignored [51,52]. The GLM and GAM are
widely used for studying environmental impacts on fisheries [53–55]. Langley et al. [56]
developed a GLM to study changes in the recruitment of yellowfin tuna (Thunnus albacares)
under changing marine environmental factors. In our study, a linear model (Ricker-E) and
nonlinear model (GAM) were used to study the S-R relationship between the environment
and S. melanostictus. The Ricker-E model fit better than the traditional Ricker model, which
indicates that a model incorporating environmental variables better describes the S-R
relationship [57]. The GAM had the smallest AIC (57.9), proving that the nonlinear model
was better than the linear model. Deyle et al. [58] found that nonlinear (state-dependent)
models produced better predictions than linear models, after studying environmental
effects on sardine ichthyoplankton. Cardinale and Arrhenius [59] noted that the GAM was
better than the Ricker-E model in describing the number of environmental strengths in the
recruitment of cod. Megrey et al. [60] concluded that the GAM, a nonparametric approach,
is better than parametric methods in predicting parameter estimates in recruitment intensity.
Shih et al. [61] found that GAM could fit the data better than the linear model in their study
of environmental effects on recruitment for North Pacific Albacore tuna (Thunnus alalunga).
The fitting results (Figure 9) indicate that the nonlinear GAM had a smaller prediction error
relative to the Ricker-E model and was the best model to describe the environment of the
S-R relationship of S. melanostictus [62].

In addition, the interaction between environmental SST and S was determined through
visualization of the optimal model (Figure 8). The highest value of SST in Figure 8 was
approximately 14 ◦C. Therefore, SST was the main environmental factor influencing the
S-R relationship in this study.

4.2. The Effect of the Environment on Recruitment

Small pelagic fish are susceptible to environmental changes, and warm and cold
changes in seawater alter stratification, habitat, and biological rates, thereby affecting
population changes in marine fish. Large-scale climate indices such as AO, PDO, and
SOI have been widely demonstrated to affect population fluctuations of small pelagic fish,
including sardines [34,63–66]. Yastu et al. [34] reported that a wide range of environmental
indices, such as PDO and AO, may be helpful in understanding and predicting the effects
of the environment on the productivity and recruitment of sardines.

4.2.1. Kuroshio Oyashio Regional

Jacobson and MacCall [67] showed that SST affects changes in the recruitment of
Pacific sardines. As sardines spawn in winter or early spring near the Kuroshio in southern
Japan, their juvenile and adult fish pass through the Kuroshio and Kuroshio extension,
to feed in the Oyashio area [68,69]. Therefore, the SST in this study area is important for
sardine recruitment. Takasuka [70] suggested that a cooler SST in winter spawning grounds
improves the success rate of sardine recruitment. Water temperature and zooplankton
abundance affect sardine survival during early growth stages (up to 1 year old) [71].
Typically, warm events are associated with low productivity, where the release of larval
predators during warm periods outweighs the scarcity of food, thereby affecting the
survival of eggs and larvae. Typically, the low productivity associated with warmth affects
the survival rate of eggs and larvae [29,72]. Noto and Yasuda [73] indicated that winter–
spring SST in the Kuroshio extension and its southern recirculation zone was positively
correlated with the effect of natural mortality of S. melanostictus larvae from late stages to age
1. This study showed that SST was significantly correlated with S. melanostictus recruitment
(p < 0.05), and that SST was the dominant environmental influence. Furthermore, the
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GAM results showed that ln(R/S) increased with increasing temperature and achieved a
maximum of 14.4 ◦C. However, after a rapid decrease after reaching 14.4 ◦C, the rate of
decline slowed down and fluctuated. We speculate that this elevated temperature may
promote the growth of fish cells until a critical point is reached, but exceeding the critical
point affects the metabolic rate of sardines, leading to a decrease in growth [74]. Takasuka
et al. [21] stated that the optimal growth temperature for sardine larvae is 16.2 ◦C, while
the maximum ln(R/S) achieved at 14.4 ◦C in this study may be the result of multifactorial
climatic effects.

The dynamics of the OYA affect the migration and abundance of pelagic fish, through
changes in primary productivity and mesopelagic biomass [75]. The results of the GAM
single factor fit showed that the effect of the OYA on S. melanostictus recruitment was
significant, with an explanation of variance of 35.8% (Table 4). This study found that the
effect on recruitment was small and irregular when the OYA was small. However, with an
area of 15 × 104 km2, recruitment tended to increase with increasing OYA (Figure 5d). The
positive correlation between OYA and S. melanostictus recruitment at this point may be due
to the low water temperature, low salinity, and rich nutrient characteristics of the Oyashio,
which ensure sardine feeding.

4.2.2. Large-Scale Climatic Patterns

SST anomalies (cooling or warming) caused by alternating cold and warm PDO
periods impact the temperature and location of fish spawning grounds. During positive
PDO indices, cooler seas in the western North Pacific are favorable for sardine populations
to flourish in Kuroshio systems [70]. Parrish [76] showed that the main positive PDO
periods were associated with the accumulation of larger sardine biomass. However, the
PDO was negative, and the SST gradually warmed, consistent with the rapid decline in
sardine biomass [77]. Similarly, Figure 7c confirms this view. When the PDO index was at
−1.5 to 0, the ln(R/S) showed a decreasing trend. In contrast, when the PDO index was
positive, the ln(R/S) started to show an increasing trend. This indicates that the positive
and negative PDO indices affected S. melanostictus population changes, with a positive
direction favoring recruitment growth, and a negative direction inhibiting recruitment
growth. Sardines are suited to living in cooler environments and grow more slowly in
warmer environments [21]. During the negative PDO period, the population decline
was due to low reproductive success, resulting in a total mortality exceeding recruitment.
Pitcher and Hart [78] indicated that the highest correlation was between sardine recruitment
during the spawning season and the PDO index, which may be related to the cumulative
effect of the before-spawning environment on adult sardines. Interestingly, Sakuramoto [66]
showed that the partial regression coefficients associated with PDO were not statistically
significant in the S-R prediction model of S. melanostictus populations in the Pacific.

Table 2 shows that the AO was significantly correlated with the Ricker-E model fit
(p < 0.015). In the GAM single factor fit, AO showed a positive linear correlation with
ln(R/S) (Figure 6e). Meanwhile, the multifactor fit showed a nonlinear relationship and
the opposite trend to the PDO variation. Positive PDO abnormalities imply low levels
of recruitment, while negative abnormalities are associated with high levels. The AO
tends to be in a positive phase when the stratospheric vortex is strong in winter [79]. A
positive AO affects snow melting, resulting in a large runoff into the ocean and causing sea
surface salinity, density, and temperature changes [80]. Negative AO affected recruitment
by changing the food supply of sardines through cold air temperatures [81]. Many reports
have shown that the AO affects different regional populations. Báez et al. [63] found that
AO influenced the relative abundance of sardines in West Africa. Castro-Gutiérrez et al. [82]
concluded that the extreme values (positive and negative) in the AO seemed to have a
negative impact on the landings of European sardines in the same year.

Positive and negative changes in the SOI can lead to climate anomaly events, such as El
Niño and La Niña, which manifest as large-scale persistent seawater anomalies. Large-scale
ocean fluctuations such as ENSO events have been identified as possible causes of sardine



Fishes 2022, 7, 276 16 of 20

population fluctuations in the Pacific Ocean [83,84]. The SOI had a significant effect on
recruitment in the GAM single factor analysis (p < 0.05), but was not included in the final
model in the multifactor analysis. The reason for this may be that its effect could not be
highlighted under the combined influence of multiple factors or was replaced by other
relevant strong environmental factors. There was an inflection point in the GAM single
factor analysis when the SOI was positive or negative, where recruitment decreased and
increased during El Niño, with the opposite trend during La Niña. El Niño events cause a
weakening of cold currents and a decrease in upwelling, a decrease in the nutrient level
of seawater, and an increase in the likelihood of extreme weather typhoons and storms.
All of these factors have adverse effects on fish populations. Sogawa et al. [85] reported
that the bottom-up effects of Kuroshio and Kuroshio extension areas supported the high
productivity of sardines. The decrease in sea surface winter temperature caused by La Niña
provides a suitable living environment for sardines. Consequently, there is an increase
in recruitment. However, successive La Niña events caused sea surface temperatures to
continue to decrease, at which point the temperature was no longer suitable for sardine
survival and growth. In contrast with our conclusion, Deyle et al. [58] identified the SOI
as one of the three variables least important for sardine dynamics, with a strong negative
impact on prediction.

The influence of the marine environment on the population dynamics of S. melanos-
tictus is complex. Uncertainties in fishery stock assessment and management cannot be
ignored [86]. Sun et al. [87] developed harvest control rules based on management objec-
tives, to control the impact of uncertainty. Environmentally induced changes in recruitment
are one source of uncertainty in fishery stock assessment and management. Therefore, it
is necessary to incorporate uncertain factors such as the environment into the evaluation
management framework [88,89]. Tanaka et al. [90] used a bioclimate envelope model to
confirm that climate change drove changes in habitat suitability, which favored increased
recruitment of lobsters. This suggests that incorporating environmental variables into
stock assessments and fisheries management can provide a more accurate picture of stock
status. Siple et al. [91] also demonstrated that the inclusion of uncertainties, such as the
environment in the management framework for assessing pelagic fish, can improve the
accuracy of assessments. We can then include other issues that may create uncertainty in the
fishery (species distribution, predator models, etc.) into the integrated management target
system. There may be a delay in the current year’s environmental influences on recruitment,
especially with regard to the large-scale climate. In this study, we did not consider lags in
environmental impacts. Therefore, we will consider the delay of environmental factors in
future studies, to ensure that more accurate prediction models are developed to explore the
environmental effects on the S-R relationship of S. melanostictus.

5. Conclusions

This paper used estimates of stock/recruitment density for S. melanostictus, as well as
matching environmental data collected from 1980 to 2018. We fitted the Ricker-E, GAM,
and traditional Ricker models to fit models to these data. The results showed that the
nonlinear GAM was the most suitable model to describe changes in the recruitment of
S. melanostictus under environmental influences. SST, PDO, and AO are environmental
factors that influence the level of recruitment. Among them, SST is the most important
environmental factor, with a negative impact on the level of recruitment. This has important
implications for studying the recruitment changes of S. melanostictus under the influence of
the marine environment.
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