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Aquatic animals, which are ecologically important consumers in aquatic ecosystems
and widely distributed in rivers, lakes, and seas, which occupy 70% of the earth’s surface,
respond in unique ways to environmental changes at various temporal and spatial scales,
and have optimized strategies for survival. These organisms play a role in transferring
energy to each trophic level through the ecosystem and show different types of responses
depending on their ability to adapt to environmental changes [1–3]. They may increase local
adaptability through genetic variation, or may change their habitat, regulate population
density, and adapt to the changed food web as a survival strategy [2–4]. Consequently, the
response of organisms to environmental changes leads to changes in biodiversity. Marine
environments vary from tropical to polar seas, coastal to deep seas, and pelagic to benthic
zones, and these environments are affected by local environmental changes, as well as global
climate change. During the life cycle, sedentary species (that adapt and live in a relatively
narrow spatial range) and migratory species respond sensitively to these environmental
changes, e.g., changes in the migration patterns of salmon (Oncorhynchus keta) between
rivers and seas, squid (Todarodes pacificus) moving from subtropical to subarctic waters [5–7],
or the physiological response of sedentary clams to temperature increases in temperate
coastal zones [3]. Moreover, changes in the marine environment lead to species extinction,
invasion, and changes in dominant species (Figure 1), which may lead to new biological
competitions such as changes in the food web, and both predators and prey should have
adaptive strategies to survive. In addition, effective analysis techniques are needed to
understand the response of ecosystems to environmental changes [2,8].

Figure 1. Changes in dominant species of fishery resources caught in the Pacific Northwest marginal seas.
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Invertebrates and fishes are ecologically important consumers in aquatic ecosystems,
and information on their dietary sources and trophic interactions is essential for predict-
ing the top–down consequences of potential climatic change and anthropogenic stressors.
Assessing the nutritional sources of consumer species and trophic pathways in aquatic
ecosystems is of utmost importance in understanding ecosystem functioning. Many sci-
entists have demonstrated alterations in aquatic food web structures caused by changes
in community structure and the migration, replacement, and depletion of specific aquatic
organisms in response to changing environmental conditions [2,9,10]. Especially, climate
change via ocean warming can directly or indirectly influence the abundance and composi-
tion of aquatic organisms and their feeding strategies, as well as prey–predator interactions.
To evaluate changes in dietary sources and the food web structure, stomach content analysis
has been traditionally used as a common tool [11]. Recently, the stable isotope technique has
been commonly applied to examine the trophic transfer of organic matter and the trophic
structure of aquatic organisms based on actual assimilated diets of consumer species over
longer periods [12,13]. More recently, both quantitative and qualitative analyses of prey
species could possibly be used for metabarcoding [14,15]. Those tools would enable us
to obtain a better insight into food web changes due to climate change. In addition to
ecological changes, individual physiological responses would be another area of study to
understand the impact of climate change on aquatic animals. Changes in variable physic-
ochemical parameters such as temperature, salinity, currents, or carbon dioxide would
definitely induce various physiological responses in individual animals, e.g., in relation
to the metabolic pathway, growth, or reproduction. The development of various novel
technologies could be applied to understand various responses to climate change.

Overall, in the past hundred years, human activities have had a great impact on the
earth’s environment, and the water environment is no exception. The environments in
which aquatic animals live are facing the consequences of human activities, e.g., climate
change, industrial pollution, agricultural emissions, and recreational activities. Aquatic
animals cope with and adapt to the stresses resulting from these impacts and continue
to survive. This Special Issue will provide important information to understand the
physiological and ecological response characteristics of aquatic animals to changes in the
marine environment at various temporal and spatial scales that appear in the process of
climate change, and share scientific evidence for future change prospects.
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