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Abstract: The present study evaluated a polyculture system with Pacific white shrimp (Litopenaeus
vannamei) and the macroalga Gracilaria birdiae and its potential to remove nutrients. The experimental
design consisted of a shrimp monoculture of 100 animals/m2 (T0) and three multitrophic cultures
with L. vannamei (100 animals/m2) and with G. birdiae at densities of 500 (T500), 1000 (T1000), and
2000 (T2000) g/m2. Nitrogen and phosphorus concentrations decreased at the beginning of the
experiment in the treatments with macroalgae, but this reduction was not maintained throughout the
cultivation period. The stable values of G. birdiae biomass were perhaps related to the high turbidity
of the water. There was an increase in shrimp biomass during cultivation, which reached the final
individual averages of 7.5 g (T0), 7.6 g (T500), 5.9 g (T1000), and 7.5 g (T2000), with no significant
differences between treatments. Nevertheless, the absence of macroalgae growth provides no added
profit for the producer. Thus, there is no economic advantage in using G. birdiae in an integrated
multitrophic system with L. vannamei at a high density and conditions of high water turbidity.
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1. Introduction

The environmental impacts of aquaculture are a global concern due to the discharge of
particulate organic matter from wastes and unconsumed feed [1,2]. Organic wastes settle
at the bottom and enrich sediments, which increase the risk of the eutrophication of the
environment and ultimately the creation of harmful algal blooms that inhibit aquaculture
activities [3,4]. The priority of aquaculture is to be sustainable with minimal negative
impacts on the environment [5,6]. Hence, integrated multi-trophic aquaculture (IMTA)
is an alternative to traditional monoculture that increases the sustainability of producing
aquatic organisms by optimizing the space and time of a culture unit, and it could be an
alternative that could alleviate environmental problems [7–10].

IMTA systems usually consist of a primary species of economic interest and a sec-
ondary extractive species that takes advantage of the unused nutrients of the culture
system for growth [11–13]. The removal of nutrients occurs through biological processes
and may be conducted using macroalgae species, which contribute to the reduction in
negative impacts on the environment [14–18]. IMTA must also consider profitability to the
producer [19]. Integrated aquaculture tends to be more productive due to the commer-
cialization of both the fed species and the secondary extractive species [20,21]. One of the
main markets for macroalgae is fresh or dry biomass. It is also used for extracts, which
have bioactive properties when used as ingredients in food supplements, animal feed, and
cosmetics [22].
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The main criteria for selecting a macroalga species for production in IMTA are high
growth rate, nutrient absorption capacity, ease of cultivation, and resistance to epiphytes.
Macroalgae have advantages when used in IMTA systems, and some species are efficient
biofiltrators [23,24]. The species of algae that grow without fixing to substrate are con-
sidered more suitable for cultivation; an example is the red algae Gracilaria [24,25]. The
cultivation of the macroalgae of the genus Gracilaria in a shrimp pond has a high capacity
for the absorption of nitrate and phosphate and can be a major contributor to the removal
of nitrogen and phosphorus from the growing environment [26,27]. Thus, the present study
evaluated the performance of Pacific white shrimp (Litopenaeus vannamei) when reared in a
polyculture system with different densities of Gracilaria birdiae macroalgae. The macroalga
was observed for growth and its potential to remove nutrients from the shrimp culture.

2. Materials and Methods

G. birdiae was obtained at Flecheiras beach (3◦13′06.1′′ S and 39◦15′51.4′′ W), which
is located on the eastern coast of Ceará state in northeastern Brazil. Individuals of good
physiological condition and without signs of depigmentation were collected during low
tide. The macroalga was transported to the Aquaculture Sector of the Federal Rural
University of the Semi-Arid in isothermal boxes. Post-larvae of Pacific white shrimp were
transported in plastic bags with oxygen. The individuals of G. birdiae and L. vannamei were
acclimated to experimental conditions for two weeks prior to starting the experiment.

The experimental design was completely randomized with four treatments and four
replicates for a total of 16 experimental units (1000 L fiberglass tanks with an area of
1 m2); the units were supplied with seawater with a salinity of 35 and continuous aeration.
The control treatment was a shrimp monoculture (100 shrimp/m2—T0). In the three
multi-trophic systems, the shrimp densities were the same as those of the monoculture
(100 shrimp/m2), with the macroalga at densities of 500, 1000, and 2000 g/m2 of wet
mass for the T500, T1000, and T2000 treatments, respectively. The experimental units were
outdoors for exposure to a natural photoperiod, and they had no shading.

The shrimp post-larvae (0.005 g) were stocked in the experimental units ten days
before the introduction of G. birdiae. Initially, a commercial feed was supplied four times
daily to the shrimp (40% crude protein). When the shrimps reached 1 g, a commercial
pelleted feed was offered twice daily in trays (35% crude protein). The daily amount of
pelleted feed supplied to the shrimps was 6 g per tank and increased gradually when no
feed was detected in the trays. The experiment was run for 90 days.

The G. birdiae wet biomass was sampled 30 days after the beginning of the experiment
to optimize the acclimatization of the macroalgae to the experimental units. The macroalgae
were tied to polypropylene ropes at a depth of 20 cm from the water surface. Then, the
wet biomass of the macroalga was sampled every 15 days and weighed using an analytical
balance. The mean shrimp biomass was estimated every two weeks using a sample of
10% of the shrimp population in each experimental unit. G. birdiae was suspended on a
mesh stretched on the water surface. Survival (S) was calculated from the final number of
animals divided by the number of stocked individuals and multiplied by one hundred. The
apparent feed conversion (AFC) factor was calculated according to the total food offered
divided by the final biomass of the shrimp. The daily growth rate was calculated using the
following Equation (1):

Daily growth rate (%/day) = (final wet weight − initial wet weight)/(initial wet weight) × 100/days of culture (1)

The tanks were siphoned daily and replenished to compensate for evaporation and
syphoning at about 10% of the water in each tank every day. The temperature (◦C), pH,
dissolved oxygen (mg/L), and turbidity (NTU) of the water in the cultivation systems were
monitored weekly with a Horiba U-50 multiparameter probe. Water transparency was
determined using a Secchi disk, and salinity was determined with a portable refractometer.
Water samples were collected every two weeks to analyze the concentrations of total phos-
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phorus [28] and total nitrogen using standard methods [29]. The values of the productive
performance parameters of the shrimp, the biomass of the macroalgae, and the limnological
variables were analyzed using the Shapiro–Wilk and Bartlett tests to evaluate normality
and homoscedasticity, respectively. For the variables that showed normal distribution
and homogeneous variance, analysis of variance (one-way ANOVA) was applied and, a
posteriori, the Tukey test, which identified the significant differences (p < 0.05) between
treatments.

3. Results and Discussion

No significant differences were found in the limnological variables between treatments
except for turbidity. The mean turbidity values at T0 and T500 were significantly higher
than the mean values of T1000 and T2000 (Table 1). The high turbidity values may be
related to the absence of G. birdiae in T0 and to the reduced biomass of the macroalgae in
T500. The water quality in shrimp mariculture generally shows high loads of suspended
solid particles, which contribute to the increase in suspended particulate matter [30,31]
(Table 1).

Table 1. Mean (±SD) of temperature, pH, dissolved oxygen (OD), turbidity, transparency, and
salinity for the different treatments throughout the experimental period of 90 days. T0: L. vannamei
monoculture (100 shrimp/m2); T500: (100 shrimp/m2 and 500 g/m2 macroalgae G. birdiae); T1000:
(100 shrimp/m2 and 1000 g/m2 of the macroalgae G. birdiae); T2000: (100 shrimp/m2 and 2000 g/m2

of the macroalgae G. birdiae).

Treatments Temperature (◦C) pH DO (mg/L) Turbidity (NTU) Transparency (cm) Salinity

T0 29.7 ± 0.5 8.35 ± 0.1 4.4 ± 0.2 160.1 a ± 69.9 25.0 ± 2.2 35.0 ± 0.9
T500 29.6 ± 0.4 8.33 ± 0.1 4.4 ± 0.1 152.6 a ± 63.8 25.5 ± 2.4 35.6 ± 0.8

T1000 29.6 ± 0.6 8.27 ± 0.2 4.5 ± 0.3 116.8 b ± 45.9 28.5 ± 3.1 35.2 ± 1.3
T2000 29.4 ± 0.3 8.28 ± 0.1 4.3 ± 0.2 108.9 b ± 59.1 30.7 ± 3.5 35.8 ± 0.9

Different letters indicate a significant difference between treatments according to the Tukey test (p < 0.05).

The shrimp biomass increased in all treatments, and the final mean individual biomass
for each treatment was 7.5 ± 0.6 g (T0), 7.6 ± 0.3 g (T500), 5.9 ± 1.5 g (T1000), and
7.5± 0.5 g (T2000), with the daily growth rates of 8.1, 8.2, 8.0, and 8.1% per day, respectively
(Figure 1A). No significant differences were observed in the survival of L. vannamei between
treatments. These results show that the macroalgae did not compromise the growth of
the shrimp. The mean survival in the monoculture (89%) was similar to that observed
in the culture systems with macroalgae (86% in T500, 93% in T1000, and 89% in T2000
(Figure 1B). The mean values of the FCR also showed no difference between the treatments
T0 (1.5 ± 0.2), T500 (1.5 ± 0.2), T1000 (1.9 ± 0.3), and T2000 (1.5 ± 0.2) (Figure 1C). No
significant differences in the final total biomass of the shrimp were found between the
mean values, which were: 665 ± 82, 651 ± 70, 524 ± 91, and 666 ± 73 g/m2 in T0, T500,
T1000, and T2000, respectively (Figure 1D). The results show that the integration with the
macroalgae did not affect the final productivity of L. vannamei.

Raposo et al. [32] evaluated the performance of L. vannamei in a multitrophic culture
system integrated with macroalgae and observed no significant differences in the biomass
gained by the shrimp in the monoculture and in the polyculture with G. birdiae, but they
observed a significant gain in the biomass of L. vannamei when in polyculture with the
macroalgae Ulva fasciata. The shrimp in the previous study showed no remnants of G.
birdiae in the digestive tract and the feces. The absence of macroalgae in the digestive tract is
perhaps due to the cylindrical and hard stalks of the G. birdiae, which inhibits consumption
by the shrimp. Hence, Ulva fasciata has more potential than G. birdiae to contribute to
the growth of L. vannamei. Fourooghifard et al. [33] evaluated the integrated culture of L.
vannamei with the macroalgae Gracilaria corticata for 45 days and found the that shrimp
growth and survival were significantly higher in the polyculture with G. corticata when
compared to the shrimp monoculture. The positive results for the biomass gains and the
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survival of L. vannamei in the polyculture observed by Fourooghifard et al. [33] may be
related to the density of the shrimp (25 and 50 shrimp/m2) and the cultivation time; the
present study used 100 shrimp/m2 and a cultivation time of 90 days. The cultivation of
shrimp at higher densities provides more nutrients for the macroalgae and increases the
amount of particulate matter in the suspension, which ultimately increases the turbidity.
The high turbidity reduces the solar radiation necessary for photosynthesis, and the excess
of particulate material deposits on the plant structures of the macroalgae compromises
photosynthetic activity and, consequently, the growth of G. birdiae.
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Figure 1. Mean (±SD) of daily growth rate—DGR (A), survival (B), feed conversion ratio—FCR
(C), and final total biomass (D) of L. vannamei. T0: shrimp monoculture (100 shrimp/m2); T500:
100 shrimp/m2 and 500 g/m2 of G. birdiae; T1000: 100 shrimp/m2 and 1000 g/m2 of G. birdiae; T2000:
100 shrimp/m2 and 2000 g/m2 of G. birdiae. No significant differences were found according to
ANOVA followed by the Tukey test (p > 0.05).

The mean values of the G. birdiae initial biomass in T500, T1000, and T2000 were 500,
1000, and 2000 g, respectively, while at the end of the cultivation, the mean values were
397, 1177, and 2057 g, respectively (Figure 2). A significant difference in the G. birdiae
biomass was only observed between days 30 and 90 in T500. The values of the macroalgae
biomass stability from the beginning to the end of the experiment were probably related
to the high turbidity values of the culture systems. High values of turbidity in the culture
environment affect primary producers by limiting light absorption and, consequently,
hindering the growth of marine macroalgae [33]. Marinho-Soriano et al. [34] concluded
that the high concentration of fine particulate matter suspended in the effluent of a shrimp
culture system contributed to the deposition of a thin layer of particulate material on
the macroalgae, blocking the incident light and affecting its growth. Oliveira et al. [25]
evaluated G. birdiae growth at different depths and concluded that turbidity and light
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penetration influenced the growth of this species. Nelson et al. [35] also reported that
macroalgae grown in effluent channels with high turbidity showed low growth rates. These
studies corroborate the results obtained in the present work, which show that turbidity is a
relevant factor in the productivity of marine macroalgae.
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Figure 2. Mean (±SD) of G. birdiae wet biomass throughout the experimental period of 90 days. T500:
100 shrimp/m2 and 500 g/m2 of G. birdiae; T1000: 100 shrimp/m2 and 1000 g/m2 of G. birdiae; T2000:
100 shrimp/m2 and 2000 g/m2 of G. birdiae. Different letters indicate a significant difference between
sampling periods according to the Tukey test (p < 0.05).

No significant increase in the G. birdiae biomass was shown during the cultivation
period. Therefore, the macroalgae provide no economic gains for the producer. Thus, there
would be no economic advantages in using G. birdiae in an integrated multitrophic system
with L. vannamei at a high density and conditions of high water turbidity.

At 30 days, water from the monoculture (T0) and the treatment with the lower density
of macroalgae (T500) showed significantly higher TN concentrations than those observed
in the treatment with a higher density of G. birdiae (T2000), while T1000 did not differ
significantly from the other treatments. The mean TN values on day 30 were 3.8, 3.5, 2.5,
and 1.7 mg/L in T0, T500, T1000, and T2000, respectively. The same occurred on day 45,
with T0 showing TN values that were significantly higher (2.7 mg/L) than those found
in T2000 (1.4 mg/L). However, after day 60, no significant differences were observed
between treatments (Figure 3). These results show that during the first 45 days of the
experiment, there was a reduction in nitrogen in the treatments with macroalgae, probably
due to the absorption of nutrients by G. birdiae. After this period, there was no significant
difference in the nitrogen consumption or the production between treatments, perhaps
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because of the increase in the shrimp biomass and the stabilization of the macroalgae
biomass, compromising the absorption of the excess available nutrients.
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Figure 3. Mean (±SD) of total nitrogen throughout the experimental period of 90 days. T0:
shrimp monoculture (100 shrimp/m2); T500: 100 shrimp/m2 and 500 g/m2 of G. birdiae; T1000:
100 shrimp/m2 and 1000 g/m2 of G. birdiae; T2000: 100 shrimp/m2 and 2000 g/m2 of G. birdiae.
Different letters indicate a significant difference between treatments according to the Tukey test
(p < 0.05).

On day 45 the monoculture treatment (T0) and the treatment with lower macroalgae
density (T500) showed significantly higher TP concentrations when compared to the treat-
ment with the highest density of G. birdiae (T2000). The mean TP concentration values in
this period were 1.9, 1.8, 1.5, and 0.9 mg/L for T0, T500, T1000, and T2000, respectively. On
day 60 of the experiment, T0 showed significantly higher concentrations of TP (2.9 mg/L)
when compared to the TP concentration in the treatment with higher macroalgae density
(T2000) (1.3 mg/L). In the same period, no difference was shown between T500 and T1000,
with means of 2.5 and 2.2 mg/L, respectively. No significant differences were observed
between the treatments after day 75 (Figure 4). The turbidity of the culture systems was
probably from biological debris as well as the microalgae and other bacteria.

The absorption efficiency of the macroalgae was limited until day 60 of the cultivation
for TN and from day 75 for TP, probably due to the increase in feed intake for the shrimp,
which was rich in nitrogen and phosphorus, and the accumulation of these nutrients in
plant tissue. Macroalgae have a high nutrient absorption rate in the first hours of exposure;
the rate decreases as the nutrients accumulate in their tissues [27]. G. birdiae appeared to
reduce TN and TP in the culture system, and more so at the end of the experiment, but no
significant difference in these concentrations was shown between the treatment with no
macroalgae and the polyculture treatments. This is perhaps due to the small increase in
macroalgae biomass being insufficient to assimilate nutrients from the higher feed input
that were proportional to the shrimp biomass.
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4. Conclusions

The growth and survival of L. vannamei marine shrimp are not affected in the integrated
system with G. birdiae. However, a high density of L. vannamei during a complete shrimp
production cycle can provide a large amount of particulate matter in the water column,
increasing turbidity and consequently limiting the increase in G. birdiae biomass in the
culture system and the ability to remove nutrients.
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