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Abstract: Cadmium (Cd) is a non-essential element with sub-lethal effects even at low concentrations.
The persistent nature of Cd and its tendency to bioaccumulate eventually create harmful effects on
water biota, including fish. Cd affects various aspects of hormonal action in fish since it bioaccumu-
lates in the endocrine system and hinders the synthesis, secretion, and metabolic activity of hormones,
causing severe damage along the hypothalamus–pituitary–gonadal axis. Linking reproductive and
developmental impairments in fish with ecologically relevant concentrations of individual metals can
be challenging due to the complexity of aquatic ecosystems. This review deliberated the significant
and novel trends of toxicological difficulties and approaches, including elucidating environmental
sources’ bioavailability and Cd-induced toxic effects in freshwater fish. Both acute and chronic
exposure to Cd can cause a range of adverse effects, such as growth inhibition, impaired reproductive
capacity, endocrine disruption, and developmental abnormalities in freshwater fish, as evidenced
by the present review. These investigations support the concept of Cd as a naturally available pol-
lutant that causes irreversible damage in fish. These findings will help to understand the etiology
of environmental circumstances that pose substantial dangers to fish health and are also crucial
for preventing and treating exposure-related reproductive disturbances in freshwater fish due to
environmental pollution.

Keywords: cadmium; endocrine disruptor; freshwater fish; metallothionein; HPG axis; reproductive
and developmental impairments

Key Contribution: Cadmium has been found to cause cellular-to-organ-level damage in fish. This
review examines the toxicity of cadmium exposure along the hypothalamus–pituitary–gonadal–liver
axis, focusing on the reproductive and developmental alterations in freshwater fish.

1. Introduction

The contamination of the freshwater environment with trace elements discharged
from anthropogenic activities and natural resources has become an eco-environmental
concern over the past few decades [1]. Trace elements refer to any metallic elements that
occur in nature, possess a relatively high density (3.5 to 7 g cm−3), and are toxic even at ppb
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levels [2,3]. Some metals, Cu, Fe, Mn, Co, Zn, and Ni, are essential micro-nutrients required
for various biochemical and physiological functions in biological systems [4,5]. In compari-
son, non-essential metals such as cadmium (Cd), Pb, and Hg with no established biological
processes are known to induce multiple organ damages even at trace concentrations and
are hence considered a burden when they enter the host [5,6]. However, each metal is
recognized to have distinct physicochemical characteristics that bestow toxicological modes
of action [7].

Among the trace elements, Cd is considered one of the most ubiquitous and toxic
chemicals that adversely affect the permanence of freshwater biota [8]. Cadmium occurs
in water or environmental matrices (such as sediment, aerosols, etc.) and accumulates
in aquatic organisms such as mollusks, crustaceans, and fish [9,10]. Fish are the central
community that reflects the quality of aquatic systems by accumulating large amounts
of toxic metals, as they are one of the topmost consumers in the aquatic food chain [11].
Freshwater fish have also become the primary route for transporting Cd along the food
chain due to their significant contribution to the diet of their higher trophic levels and rural
communities [12,13]. The bioaccumulation of freshwater fish organs with Cd led to an
impairment in their feral populations by altering their reproductive and physiological func-
tions [12]. Once absorbed, the Cd is moved by circulation to either a storage location (bones,
liver) or carried further to other organs such as the kidneys, gills, muscles, and gonads [14].
The chronic exposure of fish to Cd can disrupt the natural system and may endanger
the affected fish species. Therefore, hazardous metals in freshwater aquatic systems are
currently a major issue for the sustainability of the ecosystem and living things. Since Cd is
known to have many harmful impacts, such as neurotoxic, genotoxic, and endocrinological
effects on fish, it is essential to monitor its bioaccumulation patterns [15,16].

The exposure of freshwater biota to endocrine-disrupting metals like Cd can have sig-
nificant implications for the population dynamics of affected fish species. Reduced fertility,
skewed sex ratios, and altered reproductive behavior can lead to decreased population
size and genetic diversity, which can have long-term effects on the survival and viability
of a species [17]. Due to the crucial involvement of the endocrine system in regulating
homeostasis and other physiological processes, the study of the effects of such a disruption
may be significant. The stimulation of the endocrine system via the hypothalamicpituitary–
gonadal (HPG) axis has been the center of outstanding research on how animals react to
stressors [18]. In response to a wide range of stressors, including endocrine-disrupting
metals, the hypothalamus pumps releasing factors along this axis, stimulating the produc-
tion of hormones. Emerging research suggests that fish can be a potent biological model
for assessing the hormonal status and viability of aquatic environments. They can be a
powerful species model for examining endocrine signaling pathways related to testicular
function, spermatogenesis, and their interaction with reproductive behavior.

The impact of Cd on the endocrine disruption of freshwater fish is a multifaceted study
dealing with the abnormalities caused by inducing alterations in the normal functioning of
the endocrine system. However, decades-long research dealing with fish health related to
environmental conditions impacted by Cd has revealed an increasing testimonial of altered
developmental effects on the reproductive health of fish along the HPG axis. Surprisingly,
only a few works from the literature address the action and biological consequences of
Cd as an endocrine disruptor in freshwater fish. Hence, this review aimed to accumulate
the significant hormonal changes caused by the bioaccumulation of Cd in the bodies of
freshwater fish from different perspectives. It also elucidates the mechanism of action by
which Cd affects the circuits of the HPG axis in controlling reproductive and developmental
pathways in freshwater fish.

2. Sources of Cadmium Contamination in Aquatic Systems

Cadmium is relatively minor in the Earth’s crust, with concentrations ranging from
0.1 to 0.5 ppm, but it can be found in small amounts in zinc, lead, and copper ores [19,20].
Natural Cd emissions to the aquatic biota can result from volcanic eruptions (60%), for-
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est fires, sea salt aerosol formation, the weathering of rocks, or other biological factors
(Figure 1). Refined Cd is being used in the manufacturing of electrodes in batteries (83%),
the production of Cd-containing pigments (8%), electroplating and coatings (7%), plastic
stabilizers (1.2%), nonferrous alloys, solar devices, and other applications (0.8%) [21,22].
With historical and current activities, water systems near these Cd-emitting industries
have revealed a significant increase in Cd levels in the water (<1.0 to 77 µg/L), sediment,
and aquatic organisms [19]. The aquaculture project for fish farming installed in part of
a disused mining pool showed the accumulation of Cd in the tissues of the freshwater
species Barbonymus schwanenfeldii, Cyclocheilicthys apogon, Hampala microlepidota, Hemibagrus
nemurus, Mystacoleucus marginatus, and Oreochromis niloticus [23,24].
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In freshwater ecosystems, Cd can exist as a hydrated ion or as ionic compounds with
other inorganic or organic substances [25]; while soluble forms (sulfate and chloride salts
of Cd) may migrate in water [26], Cd is relatively immobile in insoluble complexes [27].
Cd is a serious global environmental pollutant and has the potential to alter higher trophic
levels for centuries. Freshwater fish could be susceptible to Cd exposure and subsequent
toxicity through dietary and waterborne exposure [28–30]. The negative impact of chronic
Cd exposure (3 to 6 months) was reported in channel catfish, Ictalurus punctatus, with a
reduced survival rate and altered growth patterns [30]. Similarly, another study using
rainbow trout, Oncorhynchus mykiss, showed that prolonged exposure to Cd reduced the
accumulation rate of Ca in gills, which is possibly a result of a blockage of Ca channels by
cytosolic Cd [31]. The WHO recommended levels of Cd in environmental matrixes range
from 0.01 to 1 mg/kg in soil and 3 µg/L in water, so partitioning the accumulation of Cd
between the sediment and water is a key element in determining its availability to aquatic
organisms. The pathways of Cd uptake and accumulation can vary depending on the
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species present and their feeding habits. For example, predatory fish feed on smaller fish
that have accumulated higher levels of Cd in their tissues than herbivorous fish that do not
consume other fish [32]. Cadmium concentrations in benthic macroinvertebrates and fish
tissues were highly linked, indicating metal transfer via a feeding mechanism (Figure 1).
As a result, fish that live in contaminated waters collect Cd in their tissues [33].

3. Bioaccumulation of Cadmium in Freshwater Fish

The tendency of trace elements to enter and alter a biological system is referred to
as bioavailability [34]. Even though bioaccumulation and bioavailability are distinctly
discussed in direct and indirect exposures, both processes are interdependent in natural sys-
tems [35]. Fish bioaccumulate essential nutrients regularly, including proteins, lipids, fats,
amino acids, trace vitamins, and minerals [36]. Many harmful trace elements accumulate
in freshwater biota through bioconcentration, which can eventually threaten freshwater
fish and those who consume them [37].

As a hazardous metal, Cd may serve as a stress inducer in fish, which may impart
toxicity to the aquatic ecosystem even at a very low concentration [38]. Fish absorb Cd
through direct contact with a polluted medium or through the intake of food contaminated
with Cd (Figure 1). Different fish species living in the same habitat may acquire varying
quantities of Cd in their tissues due to differences in their living and dietary patterns.
According to studies, Serranochromis thumbergi, a predatory fish, has shown the least
accumulation of Cd in their tissues, which can be due to the inverse correlation of metal
concentration with the trophic level. Since fish gills are constantly exposed to Cd ions in
their aquatic environment, their metal intake significantly differs from that of terrestrial
species [39]. Gills are considered the primary entrance site for the penetration of dissolved
Cd metals into the body of freshwater fish. Generally, Cd uptake could occur through
passive transport, the process by which metal ions enter a fish’s body through diffusion.
Cd can also enter through carrier-mediated transport, which involves the binding of metal
ions to specific proteins on the surface of chloride cells in the gills.

In contrast, the Cd ions linked to any chemical compounds are devoured by intestinal
endocytosis [40]. Cadmium that is absorbed across the gills or intestinal walls is circulated,
attached to the transport proteins, and transported to various tissues throughout the
body [41]. A few immunochemical studies revealed that the dietary uptake of Cd by
rainbow trout via the gut could accumulate in the chloride cells of the gills via calcium
channels, thereby stimulating metallothionein (MT) expression [42]. The gastrointestinal
tract facilitates Cd absorption in fish, and a modest proportion of Cd available in a dissolved
form may be assimilated directly through contact with the skin [43]. Dietary Cd intake
had a considerable influence on gastrointestinal Cd absorption and disposal in the gut
(particularly pyloric caeca) and non-gut tissues (liver, gills, and kidney) of fish [44].

Fish adsorb dissolved Cd in its free ionic form, which is indirectly attained via
diet when Cd is ingested into organisms of lower trophic positions [20,45]. Distinct Cd
forms influence the effect of Cd on aquatic organisms, each with a toxicity range and
bio-concentration factors. The free divalent ion (Cd2+) will be the dominant and most
bio-available toxic form in well-aerated freshwater bodies containing low carbon contents
(Figure 2) [12]. Exposure to this form stimulates the production of a small, cysteine-rich,
low-molecular-weight metal-binding protein MT in the liver that binds to metals such as
Cd [46]. It reduces toxicity by limiting its availability to cells and tissues [47,48]. Long-term
exposure to Cd causes chronic toxicity and may result in larval mortality and pathophys-
iological effects in fish such as Heteropneustes fossilis [49], such as stunted and decreased
developmental rates in juvenile channel catfish [30]. Temporary growth reduction, repro-
ductive endocrine disruption, and incomplete embryo development have been observed in
juvenile Colossoma macropomum and Oreochromis mossambicus [50,51].
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4. Metallothionein as a Cadmium Detoxifier

The production of MT is a well-known metabolic detoxification mechanism for trace
elements, and it has been well documented that exposure to Cd can induce the expression
of MT [52]. A study demonstrated a positive correlation between Cd accumulation and
MT induction in the tissues (liver > kidney > gills > brain) of freshwater catfish, Clarias
gariepinus, exposed to waterborne Cd [53]. The toxic effects are partially a function of the
amount of free Cd2+ relative to MT-bound Cd (MT-Cd), which is available to interact with
cellular components such as enzymes. Because Cd exposure causes MT induction, MT levels
can be employed as a biomarker for acute waterborne Cd contamination. MT induction was
reported in various tissues of juvenile rainbow trout, with the liver showing the highest
levels, followed by the kidney and gills. Negligible amounts were found in the brain and
muscles (Figure 2) [54]. Another study showed higher concentrations of MT in the posterior
kidney of Oncorhynchus kisutch, suggesting its association with excretory functions [55].

MT plays a crucial role in the liver’s dealing with elevated levels of Cd. Following
absorption, Cd detoxification occurs so that Cd is bound to albumin and transported to
the liver, where it binds to MT [56]. The MT-Cd complex is then transported to lysosomes,
where Cd is released, and free ions are excreted into the tubular fluid before eventually
being eliminated in the urine (Figure 2). This process is essential for protecting the liver from
Cd’s toxic effects and preventing Cd accumulation in the body [57]. Cadmium binds to MT,
which serves as a protective mechanism against the harmful effects of Cd by sequestering
the metal and preventing it from interacting with other proteins like enzymes, resulting in
cellular protection. Metallothionein is also important in regulating the levels of zinc and
copper, which are essential for normal cellular function. A few studies indicated that Cd
may compete with other metals (Zn and Cu) for binding sites on MT and non-MT proteins
in the tissues of rainbow trout that were exposed to Cd and a mixture (Cd + Zn + Cu)
through water and food sources. Despite Cd levels remaining lower than the MT binding
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capacity in both exposure groups, the metallic mixture exceeded the MT binding capacity
in all tissues of Cd-exposed fish [54,58].

5. Cadmium as an Endocrine Disruptor in Freshwater Fish

Fish with a high concentration of Cd in their tissues may exhibit modest endocrine
changes that impede reproduction [51]. In toxicity studies, several reproductive and
developmental biomarkers have been employed, including:

1. Enzymatic activity: Changes in the activity of certain enzymes can indicate the
presence of toxic substances in the fish body. For example, Cd burden in fish can affect
the activity of enzymes involved in steroid hormone synthesis or detoxification.

2. Pituitary gonadotropins: alterations in gonadotropin levels can indicate a disrup-
tion of the HPG axis, leading to downstream effects on reproductive development
and function.

3. Steroid hormones: changes in hormone levels can lead to developmental abnormali-
ties, reproductive dysfunction, or other adverse effects.

4. Growth abnormalities: exposure to toxic substances can impair normal growth and
development in fish, causing deformities or other abnormalities that can have adverse
effects on survival and reproductive success (Table 1) [59].

5. Vitellogenin: This yolk precursor protein, produced by the liver in response to estrogen
stimulation, shows elevated levels of vitellogenin in male fish exposed to estrogenic
compounds. This can indicate feminizing effects and a disruption in reproductive
function (Figure 3) (Table 2).

6. Gonadal structures: an examination of gonadal tissues can reveal abnormalities such
as atrophy, hypertrophy, or intersex characteristics, indicating possible exposure to
endocrine-disrupting compounds.
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Cadmium can cause premature and delayed hatching, deformed larval development,
and mortality in newly hatched larvae (Figure 3). Indeed, these developmental alterations
during the embryonic stage decrease the number and quality of progeny [60,61]. However,
these factors, evaluated over a specific period, provide insights into the reproductive dam-
age that can be affected by environmentally relevant concentrations during reproductive
phases. So, the analysis of biomarkers must be assessed to determine the potential impacts
of environmental contaminants on fish populations and ecosystems.

The involvement of various endocrine pathways in reproduction and development
during Cd exposure in fish has been studied [62,63]. However, the mechanisms underlying
these effects are not fully understood. Previous studies indicate that Cd can impact gene
transcription and interfere with the normal functioning of fish hormones, such as estrogen,
testosterone, and thyroid hormones [64]. The exposure of fish to Cd triggered biological
responses involving oxidative damage in intracellular molecules by generating ROS in
cells (Figure 4) [65–67]. Cadmium has been shown to interfere with gonadal development
and steroidogenesis. This interference can be caused by the release of cell membrane
receptors, triggered by the activation of the protein kinase C signal pathway. In vitro
experimental studies on Cd toxicity show that it impedes LH and FSH binding to receptors
and alters steroid production in ovarian cells [68]. The regulation of steroidogenic acute
regulatory protein production through activating the xenoestrogen receptor in the ovary of
the largemouth bass, Micropterus salmoides, was also reported [69]. However, further studies
are needed to comprehend how transcriptional factors interact with Cd2+ to regulate the
activity of steroidogenic genes. The regulatory action of FSH on gonadal steroid hormone
synthesis has been altered when the Cd interferes with calcium ions (Ca+2). Cadmium can
directly influence gene transcription by substituting zinc (Zn2+) in the DNA-binding zinc-
finger domain. It particularly changes the P450 side-chain cleavage (P450 scc) gene activity
by turning on a cis-acting element in the promoter (regulatory) region [70]. The receptor of
estrogen, which serves as a transcription factor and is ligand-dependent, typically mediates
the impact of estrogens. The expression of the estrogen receptor gene in the liver of
rainbow trout can be increased by estrogens [71]. It has been reported that Cd reduces the
transcription factor’s binding with DNA, suppressing the estrogen receptor’s biological
activity in rainbow trout [72].

The combined effect of Cd coupled with estradiol (E2) on the expression of multiple
genes involved in juvenile rainbow trout fish reproduction was assessed using a relative
reverse transcription PCR methodology. Cadmium decreased vitellogenin and both rtERα
isoforms’ (rtERαS, rtERαL) mRNA levels in the liver in response to E2 in a dose-dependent
manner. However, in fish brain tissue, the treatments with Cd alone reduced the expression
of rtERαL and showed a significant enhancement in the expression of salmon GnRH
genes [62]. These outcomes support the notion that Cd acts as an endocrine disruptor by
inhibiting estrogen-stimulated genes in the liver and having a central impact on GnRH
in the brain. Cadmium has been found to suppress gonadal development during the
pre-reproductive season and impair protein synthesis in adult fish ovaries [73]. In vitro
and in vivo experiments linked to Cd2+-induced developmental defects, early hatching,
growth retardation, increased mortality, and testicular hormone imbalance in the embryos
of various fish species, including Rhamdia quelen [74], Ide, Leuciscus idus [75], and rainbow
trout [76,77]. During the exposure of the eggs and larvae of Medaka, Oryzias latipes, to
0.1–1 ppm of Cd, the eggs showed more accumulation than the larvae [78].

Cadmium in larvae is readily transported into different organs or tissues. In contrast,
most of the Cd in eggs is found in the chorion and is rarely carried into the embryos
due to its resistance to Cd. However, their hatchability and survival rate decreased, and
noticeable changes in their behavior, such as erratic swimming and a loss of equilibrium,
were observed. However, the Japanese medaka raised from eggs exposed to 0–10 mg/L
of Cd for two weeks and re-exposed to Cd at the adult stage did not exhibit significant
changes in their reproductive capacity, except for some alterations in male steroid and vitel-
logenin levels [78]. Similarly, there were no changes in gonadosomatic indexes, estrogen
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receptors, or vitellogenin. At the same time, steroid hormone secretion was considerably
decreased in both sexes of Japanese medaka subjected to Cd (0–10 ppb) for an exposure
period of 7 weeks [79]. With findings from multiple experimental examinations, it can be
postulated that the impacts of Cd toxicity on reproductive and developmental outcomes
(Tables 1 and 2) are more pronounced in the hypothalamic–hypophyseal–gonadal axis.
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5.1. Reproductive Effects of Cadmium in Freshwater Fish

The reproductive toxicity of trace elements frequently depends on the degree, duration,
and mode of exposure, the distribution and accumulation patterns in tissues, and the rate
of depuration. The toxicokinetics of Cd in fish are additionally influenced by biological
parameters, such as nutritional conditions, age, species, and sex [80]. Cadmium is known
as an endocrine disruptor and is regarded as a metallo-estrogen due to its various effects on
the hormones and enzymes involved in reproduction. This endocrine disruptor activity can
be studied through the HPG axis due to its importance and control over the reproduction
of fish. The bioaccumulation of Cd in fish disrupts endocrine mechanisms in producing
hormones’ active synthesis, discharge, and metabolism. Acute exposure to sublethal Cd
concentrations influences alterations in endocrine status and carbohydrate metabolism
in O. niloticus [81]. Research on in vitro and in vivo studies investigating the impact of
Cd toxicity on freshwater fish has observed that salmonids are more sensitive to Cd [82].
Several studies suggest that even modest levels of Cd exposure disrupt the action of sex
hormones in both the male and female reproductive systems of fish. Cd interferes with
the biogenesis of androgens, estrogens, and progesterone in both in vivo and in vitro tests,
which is associated with impaired sex differentiation and gametogenesis [83].

On the other hand, it can potentially bind both the estrogen and androgen receptors.
Different frameworks of the HPG axis can be used as biomarkers to evaluate the level and
operation of the disruption caused [84]. The survival efficacy of the offspring produced is
also affected due to the consequences of Cd toxicity on sex hormones. A study on rainbow
trout suggested that Cd acts as an endocrine disruptor, directly impacting estrogen receptor
activity and further affecting several estrogens signaling pathways, causing deformities in
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egg development in gonads and disordered yolk formation [85]. In O. niloticus, exposure
to 143.78 and 161.15 g/L Cd concentrations for 30 and 60 days reportedly deteriorated
the amount of spermatocyte, thus forming immature spermatids [86]. A study evaluated
1 mg/g of Cd with several testicular irregularities in the Sertoli and Leydig cells of red
tilapia, eliciting abnormal offspring [73].

The administration of Cd in the male Juvenile tilapia’s diet led to the percolation of
blood, decreased sperm motility, and fibrosis in the lobular walls [73]. Chronic Cd exposure
through dissolved Cd and food intake induced testicular damage in O. niloticus [86].
An experiment conducted on pejerrey fish, Odontesthes bonariensis, by exposing them to
Cd for about 14 days resulted in morphological damage to the gonadal organs, i.e., a
truncation of spermatic lobules, fibrotic testis–ovarian structures, and pyknotic cells [87].
The probability of Cd exposure can cause toxic effects by intensifying sperm quality due
to decreased cell motility and larval mortality in Prochilodus magdalenae [63]. It can also
affect sperm maturation in the common snook, Centropomus undecimalis [88]. An in vitro
study conducted with sperm cells of zebrafish, Danio rerio, showed substantial alterations
in the motility rate, the curvilinear motion of sperm, and DNA integrity (Figure 4) when
exposed to different Cd concentrations [89]. A similar disruption resulted from pejerrey
fish being exposed to 0.25 µg/L of CdCl2, adversely affecting sperm quality, fertilization
rate, hatching probability, and mortality percentage [90].

The fish common carp, Cyprinus carpio, collected from Cd-polluted zones showed
significantly lower testosterone production than in unpolluted riverine zones [91]. In vitro
studies on rainbow trout exposed to CdCl2 toxicity showed that it induced a testicular
steroidogenic imbalance [92]. In contrast, sub-chronic Cd exposure showed decreased go-
nadal hormonal secretion in male Medaka [79]. A Cd concentration of even 5 and 10 µg/L
was proven to be harmful to zebrafish sperm cells. Lower spermatozoa movement affects
these species’ fertility rate, lowering their longevity. The mentioned concentrations of Cd,
5 and 10 µg/L, led to a decrease in the plasma membrane integrity. This is essential in
maintaining the membrane’s selective permeability, thereby affecting the metabolism of
the spermatozoa [89]. Increased DNA damage may also lead to an increased chance of
mutation among offspring (Figure 4). The accumulation and influence of Cd also affect the
gonadal structure and, thereby, the reproductive function [93]. A 1 mg/g Cd dosage fed
to red tilapia caused structural degradation of the spermatogenic elements and decreased
sperm number and motility [73]. An earlier study showed that Puntius sarana was sus-
ceptible to a 20 mg/L Cd dose. This experiment was conducted over 30 days, and the
after-effects concluded testicular injury [94]. Males of Pimephales promelas exposed to a
concentration of 50 mg/L showed a decreased rate of spawning and fertility [95]. Variations
in the male secondary sexual characteristics, including fewer nuptial tubercles, were also
detected in the study at a concentration of 25 mg/L. Research also observed testicular
changes in Gymnotus carapo, with the appearance of necrotic areas and germ cell reduction
at a dosage of 5 M. A dosage of 20 M induced a further decrease in the germ cell number
and was followed by the complete absence of the cells at a dosage of 40 M. This dosage of
40 M might also be capable of causing irreparable damage to the testes due to the cellular
changes brought about by the Cd toxicity. Furthermore, germ cell genesis and maturation
are affected by Cd vulnerability. Spermatocyte alteration at dosages of 20 and 30 M was
also detected in the study [96].

Cadmium may collectively have disruptive effects on the production of gonadal
steroids by modulating either the hypothalamus–pituitary axis or the gonadal cells’ capacity
to stimulate androgen production [64]. A higher Cd exposure induces dysfunctional
ovarian growth, spawning errors, and the detachment of the follicular membrane from
the underlying ooplasm. In comparison, exposure to a low dosage of Cd minimizes the
breeding egg count and hatchability percentages and increases fry abnormalities. Juveniles
of red tilapia fed with different doses of Cd were found to have altered gonadal structure,
ovarian maturation, reproduction, and developmental parameters (Figure 3). A Cd dosage
of 1 mg/g changed the assembly of the ovaries by bringing about the deformity in the
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ova. The follicle walls were dissociated from the ova along with a greater vacuole count,
eventually risking the offspring growth rate of red Tilapia [71]. A study analyzed the
destructive effects of minimal concentrations of Cd exposure, specifically 0.1, 1, 10, and
100 µg/L, on the HPG axis in R. quelen females. It found no considerable changes in the
plasma levels of testosterone, estradiol, hepatic, and gonadosomatic indexes after exposure,
as reported in reference [84]. The accumulation of Cd in the ovaries induces the stimulation
of estrogen receptors. However, the expression of vitellogenin was markedly reduced in O.
niloticus when exposed to Cd at concentrations of 70.32 and 143.78 µg/L for 30 days and at
143.78 µg/L for 60 days, respectively [86]. Varying effects on sex-related gene expression
in gonads were observed, along with ovarian injuries and down-regulated vitellogenin
expression in the ovaries. On further examination of the maternal transfer of the Cd metal,
the results revealed the passing of the accumulated metal onto the eggs but not the fry.

Cadmium toxicity could also alter different parameters related to the reproductive axis.
Tilapia zillii exhibited deterioration in the oocyte’s granulosa, restricting oocyte maturation
and enhancing ovarian atresia due to Cd toxicity [97]. In goldfish, a Cd dose of 10 mg/g
ceased ovarian development at the vacuolization stage, resulting in the termination of
the ovulation process in the females [29]. Similar results were observed in an experiment
executed for a female Prussian carp, Carassius gibelio, with a 4.0 mg/L dose of Cd [98].
Another study reported an alteration in the ovaries when subjected to concentrations of
50, 100, and 200 µg/L for 60 days (the dosages were higher than the environmentally
relevant concentration of 5 µg/L of Cd) [84]. Several experimental data indicated that Cd’s
negative impact on gonadal development might be due to fluctuations in steroid hormonal
production and expressions of sex-related genes (Tables 1 and 2).

Table 1. Reported reproductive effects of cadmium in freshwater fish.

Fish Species
Features of Fish Cadmium

Concentration
Time of

Exposure Effects References
Stage Length Weight

Carassius
auratus

Sperm and
egg NA NA 10 mg/g NS Discontinuation

of ovulation [29]

Danio rerio Reproductive
phase NS NS 5–10 µg/L 10 min

Sperm motility
affected and

disintegration
of the plasma

membrane

[89]

Gymnotus
carapo

Sexually
matured NS NS 5–40 M 24–96 Reduced germ

cells [96]

Oreochromis
niloticus 2-month-old 12.38 ± 0.92 cm 58.80 ± 13.84 g 70.32–143.78 µg/L 30 and

60 days

Altered effects
on sex-related

gene
expression and

deformed
follicle

[86]

Pimephales
promelas

Sexually
matured NS NS 50 mg/L 21 days

Reduced
fertility and
spawning

[95]

Oreochromis sp.
(Red tilapia)

Sexually
matured 8.2 ± 2.5 cm 38.3 ± 2.5 g 1 mg/g NS

Decreased
sperm motility
and deformed

ova

[73]

Rhamdia quelen Adult 20.0 ± 4.4 cm 70.5 ± 38.0 g >100 µg/L NS

Increased
hepatic

vitellogenin
expression

[84]
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Table 1. Cont.

Fish Species
Features of Fish Cadmium

Concentration
Time of

Exposure Effects References
Stage Length Weight

Carassius
auratus fingerlings NS 6 ± 1.2 g 0.5 g 14 days

Pronounced
release of AST,
ALT, Cortisol,
and glucose

concentrations

[17]

Danio rerio 7 weeks old NS NS 20 µg/L 48 days

Reduced
gonadosomatic

index and 17
β-estradiol and

vitellogenin
concentrations

in plasma

[18]

Siganus
rivulatus 8–14 months 19.8 ± 1.9 cm NS NS NS

Alterations in
the levels of
testosterone,
β-estradiol,

and
progesterone

hormones

[83]

Colossoma
macropomum NS NS NS 0.6, 1.2 and

1.8 mg/L NS

Increased SOD
enzyme

activity and
LPO levels in
sperm cells.

Impairment of
fertilization

and hatching
rate of the
oocytes.

[50]

Odontesthes
bonariensis Adult 14.82 ± 0.56 cm 41.17 ± 6.51 g 0.25 µg/L 14 days

Decreased
follicle-

stimulating
hormone
transcript
levels and
showed

structural
damages in
spermatic

lobules,
fibrosis, testis,

and ova

[87]

Tilapia zilli Adult 11.5–22.8 cm 32–235.4 g 0.57 ± 0.11 µg/g
wet wt. Annual

Increased
atresia,

degenerative
and necrotic

changes in the
oocytes, and
conversion of

ovarian to
testicular cells.

[97]

Carassius gibelio
B. Adult 23.25 ± 0.49 cm 204.65 ± 12.58 g 0.4 or 4.0 mg/L 3–5 months

Decreased GSI,
impaired LH

secretion
during

exposure, and
stimulation of

spawning

[98]
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Table 1. Cont.

Fish Species
Features of Fish Cadmium

Concentration
Time of

Exposure Effects References
Stage Length Weight

Danio rerio Embryo NS NS NS 72 h

Inhibition of
Estradiol

induction of
Aromatase-B in

radial glial
cells

[99]

Pimephales
promelas

12 months
old NS NS 5 µg/L 21 days

Impaired
gametogenesis,

reduced
steroid levels

and
vitellogenesis,
and delayed
oogenesis.

[100]

Note: NA—not applicable; NS—not specified.

Table 2. Reported developmental effects of cadmium in freshwater fish.

Fish Species
Features of Fish Cadmium

Concentration
Time of

Exposure Effects References
Stage Length Weight

Danio rerio
6 days post-
fertilization

larvae
NS NS 10 µg/L 3 days Deformed

larvae [101]

Danio rerio Embryo NA NA
Environmentally

relevant
concentration

24 to 72 h
post

fertilization

Alterations in
optomotor

responses in
the treated
larvae of all

ages

[8]

Gymnotus
carapo

Sexually
matured 36.8 ± 6.0 cm 205.8 ± 59.9 g 5–40 M 24–96 h

Damaged
germ cell
genesis

[96]

Odontesthes
bonariensis

Sexually
matured NS NS 0.25–2.5 µg/L NS

Reduced
hatching,

embryo, and
larvae

survival

[90]

Oreochromis
niloticus 2-month-old 12.38 ± 0.92 cm 58.80 ± 13.84 g 143.78–161.15 g/L 30 and 60

days
Premature
spermatid [86]

Prochilodus
magdalenae

Two-year-
old NS 282.3 ± 40.8 g 0.0025–2.5 ppm NS

Low fertility
and decreased

egg
production

[63]

Oplegnathus
fasciatus Fingerlings NS 5.5 ± 0.06 g 162 mg/kg NS Reduced

growth rate [14]

Carassius
auratus Fingerlings NS 6 ± 1.2 g 0.5 g 14 days

Dilation in
sinusoids and

unusual
Kupffer cells

occurs

[17]

Ictalurus
punctatus

Fertilization
to

6-month-old
fingerlings

NS NS NS 3 months

Increased
metallothionein

gene
expression in

heat-shock
proteins in the

liver

[30]
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Table 2. Cont.

Fish Species
Features of Fish Cadmium

Concentration
Time of

Exposure Effects References
Stage Length Weight

Trematomus
hansoni Adult 21.2–24.6 cm 130–159 g 0.89 µM 5 days

Increased
metallothionein

gene
transcription

[52]

Ide Leuciscus
idus

21 days post-
hatching NS NS 100 µg/L NS

Reduced
embryonic

survival
[75]

Oncorhynchus
mykiss

Embryos
and larvae NA NS 0.5–8.0 µg/L 96 h

Induced geno–
cytotoxicity

disturbs
cardio-

respiratory
system

activity and
negatively

impacts fish
development
at early life

stages.

[77]

Danio rerio Embryo NA NA 30 µM 1–3 days post
fertilization

Increased
mortality rate
and delayed

hatching

[102]

Gasterosteus
aculeatus Adult 40.40 ± 0.49 mm 955.80 ± 55.13 mg 1 ppb 15, 60, and

120 days

Reduced germ
cell quality,
decreased

hatching rate,
and increased
mortality rate.

[103]

Oryzias
javanicus

Newly
spawned

eggs
NS NS 0.01–0.10 ppm NS

Failure in
embryo

development
[104]

Cyprinus carpio
L. Adult NS 768.50 g 0.5 mg/L NS Reduced body

weight gain [64]

Danio rerio

Adult
(120 days

post
fertilization)

NS NS 1 µmol/L NS

Malformations
in the

produced
offspring

[105]

Channa
marulius and

Hepteroneustes
fossillis

Juveniles
and smaller

adults
NS NS 0–10 mg/L 96 h

Respiratory
strategy and
adaptation to

low-ionic-
strength

environments

[82]

Note: NA—not applicable; NS—not specified.

5.2. Developmental Effects of Cadmium on Freshwater Fish

Freshwater fish exposed to Cd have exhibited significant impairment in reproductive
capacity as well as retardation in overall growth and development. The fundamental
consequence is due to the structural and functional failure of the fish gonads, in addition to
the annihilation of the reproductive development system [51,61,86]. According to reports,
Cd negatively affects fish in two ways: either it directly inhibits the gene expression and
secretion of the endocrine hormone concerning the HPG axis, or it may affect sex hormone
synthesis, thereby reducing the survival efficacy of the offspring produced [99,100]. The
exposure of Silurus soldatovi to a dosage of 10 µg/L of Cd reportedly reduced the larval
survival rate, thereby supporting the concept of Cd as an environmental pollutant that
causes embryotoxicity in fish [106]. A study suggested a disordered yolk production
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abnormality in egg development in rainbow trout gonads because Cd exposure results in
the suppression of estrogen receptor gene expression [85]. Cadmium exposure into the
reproductive tissue interferes with gonadal differentiation [107].

A study on their growth rate, survival rate, locomotor activity, and sensory activi-
ties indicated that zebrafish embryos exposed to Cd exhibited delayed hatching and a
higher mortality rate [102]. Another toxicity assessment analysis of zebrafish showed
abnormalities in embryonic development, producing offspring with varying extents of
deformity (Table 1) [18,105,108]. Embryonic abnormalities account for impairments in
the olfactory placode and defects in the head where the subdivisions of the brain are not
well defined, therefore ultimately targeting neurogenesis [109,110]. Further, in the case
of Gasterosteus aculeatus, exposure to 1 ppb of Cd for about 15, 60, and 120 days reduced
both the egg and the sperm quality [103]. A review of G. carapo revealed varying outcomes
concerning varying administered Cd dosages. A treatment with a Cd concentration of 20 M
for 24 h led to a reduction in male germ cells. A concentration of 40 M of Cd treatment
leads to a complete lack of germ cells. After 96 h of exposure at all Cd concentrations,
the germ cells had a critical impairment [96]. Advanced-stage embryos of O. bonariensis
were studied, where an analysis with 0.25 and 2.5 µg/L of Cd showed a decrease in the
hatching rate by 20%, and the mortality rate in both the embryonic and larval stages was
increased (Tables 1 and 2) [90]. Under 4–10 mg/L Cd conditions, the observed germ cells
were disrupted at a post-meiotic stage in Labeo bata [111].

Cadmium has been proven to be a potent agent responsible for reproductive and
developmental abnormalities in fish. However, the effects may vary from species to species
regarding their susceptibility and acquired Cd dosage. There are impacts on both females
and their offspring. For females, a reduced fecundity rate has been reported, whereas off-
spring have shown a decreased rate of gamete development [112]. A study on P. magdalenae
eggs resulted in a lower fertility rate and deceased eggs with 0.0025 and 2.5 ppm of CdCl2,
respectively [63]. The authors studied multiple parameters of Oryzias javanicus, such as
premature hatching, life span of the juvenile, and embryonic development [104], where the
tropical fish were exposed to Cd. At a 0.01–0.10 ppm exposure, embryonic development
was restrained with a 10–37.5% mortality rate. However, at a 0.01–0.05 ppm exposure,
premature hatching decreased by up to 20%. Another study on red sea bream, Pagrus
major, again observed a lower hatchability rate at more than a 0.8 mg/L concentration.
The mortality rate was greater, and unusual morphological changes were observed at
more than a 0.4 mg/L concentration [113]. Several in vitro and in vivo studies have shown
Cd-induced alterations in the steroidogenesis, oocyte maturation, growth retardation, in-
creased mortality rate, premature hatching, and abnormal embryonic development in fish
like common carp. An incubation with Cd minimized the swellings of common carp eggs
at a 5–50 mg/dm3 concentration [114], and in some cases, craniofacial anomalies and yolk
sac deformities were observed [60]. Ide embryos were considered and subjected to Cd,
which gave numerous results. The hatching process was retarded compared to the control
groups, wherein the larvae body size significantly dropped and induced a mortality rate of
up to 50% [75]. In zebrafish, defective embryos were reported at increasing concentrations,
i.e., 3.3, 6.7, and 13.3 µM. The same experiment also calculated the hatching period, which
showed no or delayed hatching [115]. Similarly, 6 days post fertilization, zebrafish exposed
to 25 and 125 µg/L of Cd showed detrimental effects, with reduced opercular bone growth
and skeletal malformation during larval development [101].

6. Research Gaps and Future Research Directions

The complexity of aquatic ecosystems can make our understanding of the biogeochem-
istry of pollutants such as Cd more challenging [116]. Furthermore, due to the fluctuation
in the levels and types of pollutants over time, the consequences of Cd accumulation and
its biomagnification on each trophic level have become more diverse and complex [117].
Although numerous studies have focused on understanding the bioaccumulation pat-
terns of Cd and its toxicity as an oxidative stressor in various tissues of freshwater fish
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species [118–122], there is limited information available on its impacts on endocrine disrup-
tion. As Cd is highly bioavailable to aquatic animals in freshwater, including fish, it readily
accumulates in various tissues, including those related to reproduction and endocrine
functions [123]. To substantiate the hypothesis that Cd in aquatic habitats harms fish’s
reproductive and developmental health, the current review has compiled data from recent
research investigations. Most of the literature has focused on various networks of endocrine
disruption caused by Cd at the gonad level, as well as the assessment of chromosomal
structural abnormalities and modifications in the gonadsomatic index (GSI), gametogenesis,
steroidogenesis, and vitellogenesis (Table 2) [68,69,86].

A few investigations have strongly evidenced the role of the HPG axis in the repro-
ductive impairments in fish brought on by Cd exposure. The release of pituitary LH or
hypothalamic GnRH may be affected by Cd through altering brain neurotransmission [64].
Trace elements found in the aquatic biota can synergistically or antagonistically impact
fish reproduction and development [124]. The studies involving the wild fish population
attempt to distinguish the interactive roles of multiple trace elements and the effect of
different concentrations of an individual trace element on the endocrine system [10,59,105].
Therefore, future environmental toxicology studies should employ holistic in vitro and
in vivo analyses of fish health related to multiple trace elements. Studies evidencing Cd
exposure at low-level and environmentally relevant concentrations are limited. Thus, the
toxic effects of ecologically relevant doses of Cd on fish reproductive-endocrine systems
and their mechanism of action on multiple sites along the reproductive axis should be the
primary concern of researchers. Emerging studies will thoroughly explore the control of
neuroendocrine function during metal-induced disruption of reproductive activities in fish.
Therefore, broad research is needed to understand the mechanisms behind Cd’s actions as
an endocrine disruptor.

However, the correlation of reproductive abnormalities in wild fish with an ecolog-
ically pertinent amount of Cd is challenging to show. Some trace elements, like Cd, are
found to be available in natural water systems, which in turn cause a noxious impact on
wild fish populations [125]. The concentration of Cd absorption and its accumulation into
tissues/organs depend on the fish’s physiological, ecological, chemical, and physical condi-
tions [126]. So, thorough investigations are needed, particularly on commercially important
and threatened freshwater fish under various contaminated circumstances. Merely com-
prehending the interdependence between water quality parameters and Cd concentration
in fish, along with the presence of other metals and their synergistic effects with Cd, is
inadequate to bridge the knowledge gaps between Cd accumulation in fish and its potential
ecological consequences. Likewise, an in-depth comprehension of the species-level seasonal
shifts of Cd absorption by fish living in their native habitats aids in safeguarding them
from impending threats. The present review contains strong evidence that demonstrates
the serious implications caused by the chronic exposure of Cd on the development and
reproduction of fish.

7. Conclusions

The present review examined reports concerned with the endocrine-disrupting ac-
tivity of Cd, which impacts various signaling pathways crucial to the development and
reproduction of freshwater fish. This comprehensive analysis of Cd exposure’s endocrine
effects has revealed a greater research gap to fill. Since Cd has evolved to be a vital part of
our ecosystem and livelihood, stopping its production or utilization in the decades ahead
is impossible. Due to increased industrialization, the widespread dispersal of Cd and its
destructive effects pose serious issues for higher tropic levels, as there will be more possi-
bilities for accidental or incidental exposure of Cd to freshwater living beings. So, there is a
need for more research investigations that characterize the mechanisms of reproductive
endocrine disruption, its mode of action, and alterations caused at different levels of Cd
exposure in fish to interpret toxicological solutions referring to fish health and diseases.
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