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Abstract: Autism is a complex alteration in children’s developing nervous system that manifests in
behavioral patterns that do not match those of typical subjects. Moreover, starting at puberty, these
children may encounter problems regarding social interaction related to sexual encounters. As studies
are scarce, we used the valproate model of autism in the zebrafish to contribute to the knowledge
related to sexual behavior in this disorder. Young zebrafish were reproduced, embryos collected, and
organized in groups of control or treated with valproic acid, as the autism model. Sexual behavior
was recorded in fish from these embryos as they became sexually active. The results show that
the zebrafish’s sexual behavior is organized into appetitive, preconsummatory, and consummatory
behaviors, as in other vertebrates. In the autism model, the patterns of sexual behavior are present
but with significant modifications. The behavior of males was the most affected, while in females, the
most affected parameter was oviposition. These results show that, in the autism model of zebrafish,
sexual behavior is not suppressed, but it seems that critical changes occur in the neuroendocrine
system that reduces reproductive success. Furthermore, the enriched environment was beneficial in
maintaining the consummatory behaviors of females and males with autism-like behaviors.

Keywords: ASD; VPA; autistic; reproduction; sex; fertility; appetitive behavior; preconsummatory
behavior; consummatory behavior

Key Contribution: The sexual behavior of the zebrafish is organized into appetitive, preconsum-
matory, and consummatory behaviors. The display patterns of sexual behavior have distinctive
movements for females and males. In the autism model, males exhibit significant modifications in
their patterns of sexual behavior, while oviposition in females was the most affected parameter. The
subjects escape the autism effect when living in an enriched environment.

1. Introduction

The study of sexual behavior in animals has been relevant within the worldwide
literature produced for decades. Notwithstanding, it continues to be a current topic
considering the special significance it has for sex and the reproduction of animals per se,
but also for supporting some related knowledge in humans. A realm of different behavioral
strategies is now described for different species, although some animals are becoming
meaningful for science in which the behavioral repertoire is still poorly known. That is
the case of the zebrafish, which is consolidating as a promising species for the study of
several physiological and behavioral processes, and is now also an appropriate model to
investigate the underlying causes of human disorders and diseases, such as the autism
spectrum disorder (ASD) or autism in brief.

Autism is a complex alteration in the developing nervous system of children. Such
neurodevelopmental modifications appear early in infants and are manifested as behav-
ioral patterns that do not match those of typical girls or boys, of serious concern due to
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their significant prevalence worldwide. The two domains of autistic behaviors are social
and communicative difficulties as well as restricted and repetitive movements [1,2]. Al-
though most studies focus on children [3–5], autism is a condition that remains for life;
consequently, when reaching puberty, these individuals are faced with their emerging
sexual behavior. Reports indicate that subjects in the spectrum, particularly those with
high-functioning ASD, can show the corresponding sexual displays during puberty. Fur-
thermore, although they experience sexual arousal, there are gender differences showing
problems regarding social interaction and physical contact, which result in increased soli-
tary sexual activities [6–8] or even sexual victimization [9]. Despite this sensitive situation,
knowledge of appropriate interventions is scarce.

The fact is that sex and reproduction are topics poorly understood in humans with
autism, and as it occurs with other topics, studies from animal models are of extreme
importance to understand such biological processes. In a previous study, we used the
postnatal-treated valproate model of autism in rats to quantify the well-known sexual
behavior of males [10–12]. We observed that males in this autism model executed all
behavioral parameters of sexual behavior, although the quantification revealed significant
differences compared to the control subjects. In brief, we reported decreased motivational
states and a reduced potency for penile erection and ejaculation [13]. As far as we know,
this was the first report addressing sexual behavior in an animal model of autism, but just
in males. Now, as the zebrafish is today an expanding model of autism [14], we decided
to use this fish species (Danio rerio) to further describe their sexual behavior, as reported
elsewhere [15], and to contribute with knowledge related to autism.

In the zebrafish, pheromones are the main attractants to stimulate the first congre-
gate of adult females and males [16]. Such chemicals also regulate female intrasexual
competition and allow for males to stimulate females for the production and spawn of
viable eggs [17,18]. Mating behavior occurs mainly at dawn in the wild or after the first
illumination period in laboratory conditions [19,20], displaying specific patterns reported
by females and males during sexual interaction [15]. However, the environment can modify
the wild zebrafish’s reproductive and social behaviors [19]. In this study, we identified sex-
ual behavior in two tank conditions, namely plain and enriched environments. Although
enriched environments do not match those observed in wild conditions, using tanks with
different environments in the laboratory reveals significant effects on behavior and brain
organization [21]. Considering the number of reports showing the beneficial effects of
enriched environments, from fishes to mammals, here we also sought to describe whether
sexual behavior differs between plain and enriched conditions.

2. Materials and Methods
2.1. Subjects

Young adult zebrafish (100 days old Danio rerio) were obtained from the colony of
our institute, which was standardized with subjects from an aquarium store. They were
maintained in large-size tanks (20 L) with temperature-controlled water (26 ◦C) and with
water appropriately treated for zebrafish maintenance. Females (n = 6) and males (n = 18)
were introduced in the same tank but separated by a mesh and were fed twice a day with
TetraPro Tropical Crisps (Spectrum Brands, Inc., Middleton, WI, USA). The fish room
underwent a light–dark cycle of 14–10 h, respectively (lights on at 08:00 h). Animals were
maintained in these conditions until they reached 180 days of age; then, they were used for
embryo collection.

2.2. Embryo Collection

A group of 2 females and 3 males were placed above the first mesh-like floor of a lab-
made double-bottom tank (40 L). This swimming area was enriched with several artificial
plants, and the mesh floor was covered with marbles. Subjects were placed in the tank
during the afternoon (about 16:00 h) and removed the next day (about 11:00 h). Embryos
were collected from the second bottom and transferred to cell culture plates of 6 wells
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(15 embryos per well; Thermo Fisher Scientific Inc., Waltham, MA, USA). Wells for control
(Ctrl) embryos were filled with water from the reproduction tank, while experimental
embryos were immersed in a solution of Valproic Acid Sodium Salt (VPA) dissolved in
water from the reproduction tank (48 µM; Sigma-Aldrich, Naucalpan, Mexico). Ctrl and
VPA embryos were maintained in the wells for 48 h.

2.3. Larval Rearing and Environment Conditions

Following the period in the culture wells, Ctrl and VPA embryos were transferred to
hatch tanks (small-size tanks, 1 L). Two hatch tanks were used, one with a plain environment
(PL) and one with an enriched environment (EE). Hence, four groups were organized,
namely Ctrl and VPA in a plain environment and Ctrl and VPA in an enriched environment.
Hatch occurred in these tanks, and larvae were fed with Artemia starting on the 6th day
post-fertilization (dpf). At 30 dpf, they were moved to medium-size tanks (5 L). At 90 dpf,
they were moved to large-size tanks (20 L), and these tanks had a middle mesh to keep
females and males separated. The observational study of sexual behavior was initiated
when animals reached 180 dpf. Subjects developed from the VPA-treated embryos were
considered as a model of ASD as described elsewhere [14,22]. Tanks with the PL condition
had just water, while those with the EE condition were assembled with a complex of
artificial aquarium plants that were changed twice a week (Figure 1).
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Figure 1. Environment conditions. The image shows the lab-designed hatch tanks. The two tanks on
the left are those with EE environments, and the two on the right are those with the PL environments.
Tank dividers were opaque. Larger tanks had a similar arrangement.

2.4. Sexual Behavior Recording

Medium-size tanks were used as arenas to test sexual behavior every three days. Each
tank had a slightly enriched environment with marbles on the bottom and a single plant
inside. One female and one male were placed in the tank the afternoon before the test
(about 16:00 hrs), but a middle mesh separated them. Control and VPA subjects were paired
with intact mature subjects. The next day, when lights came on in the fish room (08:00 hrs),
the mesh was removed, and behavioral recording started for 30 min (cameras were Sony
Handycam HDR-CX675 and HDR-CX440; Sony Mexico, Mexico City, Mexico). Behavior
was recorded, and the focal–animal sampling method was used as described elsewhere [23].
Three tests (n = 10 per group) selected subjects displaying sexual-related behaviors while
excluding animals with very low or no behavior from the study. The fourth test was from
selected sexually active animals (n = 6 per group), and data recorded in this test were
analyzed in Section 3.

2.5. Statistics

Results of the total time and frequency of behaviors that occurred in the 30 min tests are
presented as means ± SEM. Statistics and graphs were obtained using Prism 9.5 software
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(GraphPad, San Diego, CA, USA). Behavioral parameters were analyzed by an unpaired
t-test comparing control and VPA subjects’ data. Significance was inferred when p < 0.05.

3. Results
3.1. Sexual Behavior

Male and female zebrafish displayed behaviors organized in the sequence groups
previously defined for other species, i.e., appetitive, preconsummatory, and consummatory
behaviors [24]. In brief, appetitive behavior includes approaching the mating partner to
be near each other; preconsummatory behavior includes escort and halt by females and
touch and encircle by males; and consummatory behavior includes guide and oviposition
by females and zigzag and quiver by males (Figure 2 and Table 1).
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consummatory behaviors. See Table 1 for behavioral descriptions.

Table 1. Definition of parameters for the zebrafish sexual behavior.

Appetitive Behaviors

Female
Approach

Swimming toward the male

Male
Approach

Swimming toward the female and alongside the female

Preconsummatory Behaviors

Female
Escort

Swimming alongside the male and staying still while courted
Halt

Vertical swimming in front of the male with stay-still periods

Male
Touch

Physical contact with the female
Encircle

Swimming around the female

Consummatory Behaviors

Female
Guide

Recurrent swimming to the same spot in the tank
Oviposition

Laying eggs into the water

Male
Zigzag

Whipping the tail alongside the female while swimming in sharp turns
Quiver

Vibration of the tail close to the female side
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The latency to start each behavior did not display significant differences among the
groups. Nevertheless, this parameter revealed that males execute the whole behavioral
sequence in about 200 s (about 3 min) after initiating sexual behavior, while females use
more time to execute consummatory behaviors (Figure 3).
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behaviors were the last executed in all four groups during interplay. Data show the mean ± SEM.

3.2. Appetitive Behavior
Approach

The beginning of a sexual encounter by female and male zebrafish triggered appetitive
behavior, i.e., swimming near each other. Both sexes displayed the behavior in an approach–
withdrawn pattern, and we quantified the frequency of approach behavior and the seconds
each subject stayed near before withdrawing. Ctrl data in the PL environment show that
females execute the behavior with a higher frequency than males and males do with a
higher duration than females. VPA had no effect in PL females, but the values were inverted
in males. The EE condition did not affect female behavior, while the males’ EE environment
supported the duration parameter to remain at the Ctrl level (Figure 4).
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Figure 4. Appetitive behavior. The graph shows how often the female (a) and male (b) approached
each other (frequency), and how long they stayed near each other before withdrawing (duration).
Data show the mean ± SEM. * = p < 0.05.
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3.3. Preconsummatory Behaviors
3.3.1. Female Escort and Halt

For the PL environment, data show that females execute a similar escort behavior in
Ctrl and VPA subjects, while the EE environment significantly increased its frequency. The
halt behavior demonstrated a decreased frequency in VPA females in the PL environment,
and the EE environment prevented such a decrease (Figure 5).
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Figure 5. Female preconsummatory behaviors. The graph shows how many times the female escort
(a) and halt (b) the male (frequency), and how long such behaviors were displayed for (duration).
Data show the mean ± SEM. * = p < 0.05.

3.3.2. Male Touch and Encircle

The frequency of the touch behavior was significantly increased in VPA-treated males
in both PL and EE environments, while its duration was unvarying. In the PL environment,
the frequency of the encircle behavior increased while its duration decreased. Notwith-
standing, changes in the encircle behavior were prevented in males of the EE environment
(Figure 6).

3.4. Consummatory Behaviors
3.4.1. Female Guide and Oviposition

The data showed that the guide behavior is similar in Ctrl and VPA subjects in both
PL and EE environments, while the EE environment prevented a significant duration.
Additionally, oviposition in the PL environment was significantly reduced in terms of
frequency and duration, while the EE environment prevented this effect in the frequency
parameter (Figure 7).
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Figure 6. Male preconsummatory behaviors. The graph shows how many times the male touched (a)
and encircled (b) the female (frequency) and how long he displayed such behaviors for (duration).
Data show the mean ± SEM. * = p < 0.05; ** = p < 0.01.
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Figure 7. Female consummatory behaviors. The graph shows how many times the female guided the
male (a) and displayed oviposition (b) (frequency), and how long she displayed such behaviors for
(duration). Data show the mean ± SEM. * = p < 0.05; ** = p < 0.01.

3.4.2. Male Zigzag and Quiver

Zigzag and quiver behaviors had a similar result, i.e., the frequency was increased
in the PL environment, while the duration was decreased; however, both changes were
prevented in the EE environment (Figure 8).
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Figure 8. Zigzag and quiver behaviors in males. The graph shows how many times the male executed
the zigzag (a) and quiver (b) behaviors (frequency), and how long he displayed such behaviors for
(duration). Data show the mean ± SEM. * = p < 0.05; ** = p < 0.01.

4. Discussion

The sexual behavior of the zebrafish recorded in this study follows those reported
previously [15]. Notwithstanding, we propose that future studies should also consider the
organization of behavior in appetitive, preconsummatory, and consummatory behaviors,
as shown in Figure 2 and reported elsewhere [24]. The trace in Figure 2 shows the stream of
patterns that could be useful for a comparative analysis and could also serve to understand
zebrafish sexual behavior from an evolutionary perspective. Hence, when studying the
sexual behavior of zebrafish, we should recognize that its behavior is homologous to those
displayed by other vertebrates. To date, we know that zebrafish is consolidating as a notable
species to understand behavior from molecules, and undoubtedly, its sexual behavior will
reveal further meaningful information.

Social interactions in the zebrafish start right after hatching, and as it occurs in children,
impairment in social behavior is one of the critical domains when modeling autism in
this species [25]. Here, we showed that sexual interactions in the zebrafish VPA model of
autism have some modified parameters but also have parameters that remain unaltered.
The fact that the latency to start each behavior did not show significant differences among
groups suggests that the triggering mechanisms for appetitive, preconsummatory, and
consummatory behaviors depend on stable physiological systems that respond with the
same magnitude no matter the VPA treatment or environmental conditions. We observed
increased latencies for mounts and intromissions in the VPA model in male rats, perhaps
due to a reduced olfactory sensitivity [13]. Although the zebrafish has a complex olfactory
system [26], it seems that the zebrafish relies on both olfactory and visual stimuli for
behavioral responses [27]. In humans, the use of antidepressants or antihypertensive drugs
has side effects on sexual behavior, but as shown in animal models, such drugs have
impacts on behavioral responses but not in the latency to initiate the behavior [28]. In brief,
the afferent–efferent pathways to trigger sexual behavior in female and male zebrafish, as
occurs in other species, seems to be highly resistant to external drugs or environments.

The approach behavior is a similar appetitive display in females and males. However,
females execute the behavior with a higher frequency than males, but males stay close to
females for a more extended period of time (Ctrl in PL environment). These actions suggest
that zebrafish females are very active in stimulating the following preconsummatory
behaviors, also indicating that they pace sexual behavior similarly to that reported for
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female rats [29]. VPA females display the behavior just as control females do; hence, the
motivational aspect of sexual behavior is not modified by the VPA treatment. This result is
equivalent to those reported for girls [30] and female mice [31], indicating that zebrafish
females are also resistant to some external insults leading to autism-related behaviors.
Furthermore, this parameter was also stable in EE females, suggesting that the behavior is
also unvarying in different environmental conditions. Males exhibited a different pattern;
the VPA treatment in PL and EE environments produced a reversal modification of the
approach behavior, i.e., resembling females. Do VPA males acquire a female-like appetitive
behavior? It is known that peacock blenny females are very active during courtship, while
sneaker males display female-like behaviors as a strategy to reproduce [32], and all this
reversal of behavior depends on endocrine changes [33]. Furthermore, these behavioral
modifications have a neuroendocrine basis, as shown in the bluehead wrasses [34]. There
are no reports in the zebrafish of a similar reversal in behavior as a reproductive strategy, but
endocrine-disrupting chemicals [35] or antidepressants [36] affect the courtship behavior.
Thus, the male zebrafish is sensitive to chemicals during development, suggesting that the
valproate insult modifies development and seems to induce the appearance of female-like
behaviors during the appetitive phase of sexual interaction.

The female preconsummatory behavior displayed an increased frequency in the es-
corting behavior of the EE environment and a decreased frequency in the halt behavior of
the PL environment. The constant of such changes is that both occurred in VPA-treated
subjects. Together, these data suggest that VPA females increase their mobility around
males, which could indicate an increase in proceptivity or solicitation behavior as described
for other vertebrates [37,38]. The underlying basis of these behaviors includes changes in
neural and endocrine pathways and aims to increase sexual interactions because they are
associated with the female’s sexual motivation to enhance the motivation of the male [39].
In our study, VPA produced significant changes in both behaviors, suggesting an increase in
female motivation, although further studies are needed to know the effect on the behavioral
responses of the male. On the other hand, regarding consummatory behaviors, oviposition
was the most affected parameter in VPA females. The reduced frequency of egg release
reduced the number of released eggs. It is known that the couple’s body contacts and
postures in consummatory behaviors produce the release of gametes [40]. As the male
executed the proper movements, we suggest that this effect could be due to female posture
and physiological modifications. Posture is a specific parameter that deserves further
research, while physiology could be due to the zinc transporter ZIP9 that has androgen
receptor activity and, when absent, affects the underlying physiology of zebrafish eggs [41].
Thus, detailed research is needed to determine the causes of reduced oviposition in VPA
zebrafish females. What is known is that autism in humans results in reduced reproduc-
tive success [42], and with the reduced oviposition, we found that VPA-treated zebrafish
females reproduce such complications.

Preconsummatory and consummatory behaviors in VPA males showed that the fre-
quency increased while the duration decreased. Considering both parameters, we suggest
that the neural structures that control timing in sexual behavior are affected by the induced
condition in the zebrafish male. Time is essential for sexual behavior and reproduction, and
in male rats this was reported several years ago [43], with the temporal pattern of sexual
behavior then used as a fundamental parameter to comprehend the neuroendocrine basis
of reproduction. In the male rat, we have shown that timing in sexual behavior has a neural
basis in the cerebellum that shows activity in parallel with the executed behavior [44], that
this timing is essential for neuroendocrine processes and the activation of sexual glands [45],
and that the lesion of specific nerves alter that timing in sexual behavior [46,47]. Further-
more, in the VPA male rat, we also showed that males still execute sexual behavior, but the
frequency and duration of the behavior are affected [13], just as for zebrafish VPA males.
Thus, the valproate condition in the zebrafish indicates that sexual behavior is present in
males, but the temporal pattern is altered, perhaps with significant effects on reproductive
success as it occurred in females. Furthermore, a detailed observation showed no physical



Fishes 2023, 8, 156 10 of 13

anomalies in males; thus, the behavioral findings must result from a disorganized neu-
roendocrine system. In brief, the valproate condition does not suppress sexual behavior;
however, it changes the temporal pattern for a proper display, which implies significant
changes in the physiological mechanisms that underlie sexual behavior and reproduction
in the autism model of the male zebrafish. On the other hand, for a long time, different
reports have shown that in humans, the prevalence of autism is significantly higher in boys,
and a recent report further supports this fact [48]. Although several hypotheses are under
study, analyzing genetic, neural, endocrine, and environmental causes, the topic remains
unknown [49]. However, our data show that the VPA treatment’s environmental effect
also had a male tendency regarding sexual behavior. Thus, this zebrafish model of autism
and their sexual responses are an excellent model to analyze the underlying causes of the
higher prevalence of autism in males.

The enriched environment protected several parameters from the effects of the VPA
treatment; the most remarkable benefits were in the consummatory behaviors of females
and males. Thus, it seems that an EE has the potency to maintain the reproductive success
of zebrafish subjects with autism-like behaviors. This situation is similar to those reported
in captive animals [50] or laboratory zebrafish [51]. We suggest that such results depend on
the neural plasticity effect of the EE in several brain nuclei [21,52]. A critical region altered
in autism is the cerebellum. Although very little information is available for zebrafish and
autism [53,54], we have shown alterations of this structure in the rat and mice models of
autism [55,56] and their modifications by sexual experience [44,57]. Data from experience
experiments suggest that the increased sensory stimulation provided by the EE is also
significant in protecting changes in the central structures underlying sexual behavior.
Furthermore, the neurochemistry of specific brain pathways, such as the histamine in
the hypothalamus or androgen receptors in the cerebellum, is also altered in autism and
changes social behavior [55,58], indicating that the EE could also benefit neurochemistry
aspects. Then, our data support several reports (an appropriate review can be found in
reference [59]) showing that enriched environments are preferred by zebrafish and that
the impact is on neural structures and behavior. Here, we suggest that the benefit is for
autism-induced behaviors but could also be for other neurodevelopmental disorders.

5. Conclusion

The zebrafish sexual behavior is organized into appetitive, preconsummatory, and
consummatory behaviors, which are homologous to those displayed by other vertebrates.
In the VPA model of autism, the latency to start such behaviors remains stable in both
sexes; thus, this parameter resists the impact of external drugs or environments. However,
once initiated, the execution of the sexual behavior of males appears deeply affected, while
females are affected mainly in the consummatory parameters. Notwithstanding, subjects
of both sexes escape the autism effect when living in an enriched environment.
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