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Abstract: The utility of a functional immune assay for smallmouth bass (Micropterus dolomieu) lym-
phocyte mitogenesis was evaluated. Wild populations in the Potomac River have faced disease and
mortality with immunosuppression from exposure to chemical contaminants a suspected component.
However, a validated set of immune parameters to screen for immunosuppression in wild fish popula-
tions is not available. Prior to use in ecotoxicology studies, ancillary factors influencing the mitogenic
response need to be understood. The assay was field-tested with fish collected from three sites in
West Virginia as part of health assessments occurring in spring (pre-spawn; April–May) and fall
(recrudescence; October–November). Anterior kidney leukocytes were exposed to lipopolysaccharide
(LPS) from E.coli O111:B4 or mitogen-free media and proliferation was measured using imaging
flow cytometry with advanced machine learning to distinguish lymphocytes. An anti-smallmouth
bass IgM monoclonal antibody was used to identify IgM+ lymphocytes. Lymphocyte mitogenesis,
or proliferative responses, varied by site and season and positively and negatively correlated with
factors such as sex, age, tissue parasites, and macrophage aggregates. Background proliferation of
IgM− lymphocytes was negatively correlated to LPS-induced proliferation in both seasons at all sites,
but only in spring for IgM+ lymphocytes. The results demonstrate that many factors, in addition to
chemical contaminants, may influence lymphocyte proliferation.

Keywords: fish; immune responses; mitogenesis; imaging flow cytometry

Key Contribution: The manuscript describes a functional immune assay optimized and validated for
wild smallmouth bass (Micropterus dolomieu). The assay can be integrated into fish health assessments
to investigate immunosuppression. The study demonstrated the importance of evaluating variables
such as sex, age, and parasite load, as well as season and site when utilizing immune indicators in
ecotoxicological studies.

1. Introduction

Globally, there is an increasing trend in the observations of infectious diseases, par-
ticularly in wild populations [1], including smallmouth bass (Micropterus dolomieu) [2–5].
Microorganisms, viruses, and parasites are common causes; however, disease outbreaks in
fish can also be exacerbated by environmental conditions, including temperature changes
and chemical contaminants [6,7]. Environmental factors may directly influence the host
immunocompetence making them more susceptible to pathogens, but also indirectly affect
disease resistance by impacting pathogen presence, concentration, and/or virulence [8,9].
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In addition, environmental factors may act on parasitic diseases directly or indirectly by
affecting intermediate hosts and transmission vectors [10]. When so many factors are
involved, it can be hard to determine underlying risk factors for disease or mortality in
wild fish populations, and validated methods for determining immunomodulation in the
context of many stressors are not established.

There is increasing interest in including fish immune responses in ecotoxicological
studies; however, historically, fish immunotoxicity studies have been conducted in the
laboratory and have focused on the innate immune system [11,12]. To reliably utilize
immune function assays in wild populations, it is necessary to understand the role of factors
other than chemical exposure in modulating responses. Mitogenesis is an indicator of
adaptive immunity and one advantage to the optimized method is the ability to distinguish
responses of immunoglobulin M positive (IgM+) lymphocytes (members of the B-cell
lineage that express IgM on their plasma membrane) from immunoglobulin M negative
(IgM−) lymphocytes (cells of the B-cell lineage that do not express surface IgM or members
of other lymphocyte lineages such as T-cells and natural killer cells). This distinction is
important because commercial markers to label leukocyte types are not readily available
for most wild fish species including smallmouth bass.

Imaging flow cytometry with advanced machine learning was also used in this study
to ensure lymphocyte proliferation was being measured. Imaging flow cytometry combines
attributes of standard flow cytometry (statistical power, fluorescent intensity, and speed)
with the abilities of fluorescence microscopy (detailed imagery, spatial distribution of
fluorescent signals, and morphological features) to rapidly analyze and generate a collection
of multicolor images for individual cells in suspension [13–16]. Multiple applications of
imaging flow cytometry have been established for various species; however, methods
for investigating piscine leukocytes with imaging flow cytometry are limited to studies
primarily addressing phagocytosis [17–21] and our previous studies addressing mitogenesis
(without distinguishing lymphocyte populations) and respiratory burst [22,23].

This study describes and tests a functional mitogenesis assay using 5-ethyl-2′-deoxyuridine
(EdU) to detect and measure adaptive immunity in wild smallmouth bass (Micropterus
dolomieu), an economically important sportfish. The anterior kidney was collected from
fish at three field sites where fish health assessments were being conducted. We evaluated
associations of lymphocyte mitogenesis with the season, sex, age, tissue parasite, and
macrophage aggregate density to better understand variables that may influence responses
in immunotoxicological studies.

2. Materials and Methods
2.1. Field Sampling

Wild fish sampling took place in conjunction with ongoing fish health assessment
and monitoring studies at three sites in West Virginia (Figure 1): Cheat River (CH) at Han-
nahsville, WV (39.24525, −79.70781), South Branch of the Potomac River at Petersburg, WV
(SB1) (39.00025,−79.08666) and South Branch of the Potomac River at Moorefield, WV (SB3)
(39.10367, −78.95891). The sites were selected based on proportions of agricultural, devel-
oped, and forested land use and previous health status of smallmouth bass. Smallmouth
bass populations in the South Branch of the Potomac Rivers have undergone large-scale
episodic mortality and disease events of adults since 2002 [2,24]. The SB3 site has been part
of a larger long-term USGS monitoring study to investigate smallmouth bass health issues
in the Chesapeake Bay watershed since 2013. CH was selected as an out-of-basin site with
less surrounding agricultural land use. Fish kills or major health problems have not been
observed at the CH site; however, Aphanomyces invadans, the cause of epizootic ulcerative
syndrome, was identified in two individuals in 2020 [5]. A lower incidence of estrogenic
endocrine disruption or testicular oocytes (intersex) was also observed in the Cheat when
compared to the South Branch Potomac [25].
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Attempts were made to collect 20 adult smallmouth bass from each site by boat elec-
trofishing in spring (April–May) before spawning and fall (October–November) during 
recrudescence of 2019. Captured fish were immediately placed in a live well and trans-
ported to shore to be necropsied on site following a protocol by Blazer, et al. [26] and 
explained more in-depth by Smith, et al. [23]. In short, fish were euthanized, measured 
total length to the nearest mm, weighed to the nearest gm, bled from the caudal vessels, 
and any gross abnormalities were recorded. Anterior kidney tissue was aseptically re-
moved in the field, homogenized into a single cell suspension, transported to the lab on 
ice, and maintained at 4 °C overnight for leukocyte isolations the next day. In the field 
following removal of anterior kidney tissue, remaining tissues which included gills, gon-
ads, liver, spleen, posterior kidney, and any visibly abnormal tissues were removed for 

Figure 1. Fish collection sites at Cheat River near Hannahsville, West Virginia (CH); South Branch
Potomac near Petersburg, West Virginia (SB1); and South Branch Potomac near Moorefield, West
Virginia (SB3) with major land cover in the upstream catchments of study sites.

Land cover data were downloaded from the 2019 National Land Cover Database
at https://www.mrlc.gov/data (accessed on 10 October 2022) and upstream catchments
were generated by manually selecting National Hydrography Dataset Plus (NHD+) Catch-
ments upstream of each site along NHD flowlines at https://www.horizon-systems.com/
NHDPlus/NHDPlusV2_data.php (accessed on 10 October 2022). Summaries of land cover
were generated using a zonal histogram tool (ArcMap; version 10.6) and are presented as
percent. Land cover in the upstream catchments of the three sites were primarily forested
with low-developed land use; however, the South Branch sites (SB1 and SB3) had more
agricultural lands than the Cheat River (CH) site (Figure 1).

Attempts were made to collect 20 adult smallmouth bass from each of the three sites
by boat electrofishing in spring (April–May) before spawning and fall (October–November)
during recrudescence of 2019. Captured fish were immediately placed in a live well and
transported to shore to be necropsied on site following a protocol by Blazer, et al. [26] and
explained more in-depth by Smith, et al. [23]. In short, fish were euthanized, measured total
length to the nearest mm, weighed to the nearest gm, bled from the caudal vessels, and
any gross abnormalities were recorded. Anterior kidney tissue was aseptically removed
in the field, homogenized into a single cell suspension, transported to the lab on ice, and
maintained at 4 ◦C overnight for leukocyte isolations the next day. In the field following
removal of anterior kidney tissue, remaining tissues which included gills, gonads, liver,
spleen, posterior kidney, and any visibly abnormal tissues were removed for histology and

https://www.mrlc.gov/data
https://www.horizon-systems.com/NHDPlus/NHDPlusV2_data.php
https://www.horizon-systems.com/NHDPlus/NHDPlusV2_data.php
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preserved (in Z-fix™; Anatech LTD, Battle Creek, MI, USA). Gonads were examined to
confirm sex. Lapilli otoliths were collected for age analyses [26].

2.2. Laboratory Analyses
2.2.1. Estimating Disease Indicators with Histology

Tissues fixed for histological analyses were routinely processed, embedded into paraf-
fin, sectioned at 5 µm, and stained with hematoxylin and eosin [27]. Parasites in liver,
spleen, and posterior kidney and splenic macrophage aggregates (MA) were counted.
Parasites were counted in 3 fields of view at 4× and the number per sq mm was calculated.
MA was counted in 5 fields of view at 10× and the number per sq mm was calculated.
Parasite and MA density were calculated using the area of the field of view (FOV) at each
magnification. Parasites or MA not fully in the FOV were not counted.

2.2.2. Leukocyte Isolations

Anterior kidney leukocytes were isolated following a procedure modified from Sharp,
et al. [28]. Isolated leukocytes were utilized for a full suite of immune functional assays
including two for innate immunity [23] in addition to the mitogenesis assay to investigate
multiple aspects of the immune response at the same time. Briefly, homogenized anterior
kidney samples were washed three times and then layered on top of a 32 percent density
gradient (Percoll®; Sigma-Aldrich, St. Louis, MO, USA) concentration in Hank’s Balanced
Salt Solution (MP Biomedicals, Irvine, CA, USA) for leukocyte separation. A density
gradient specifically for lymphocyte separation was not chosen as other leukocytes (i.e.,
granulocytes) were needed for innate immune function assays being performed on the
same fish detailed in Smith, et al. [23]. All functional immune assays were performed with
the same set of isolated cells. Isolated leukocytes were counted, total number of viable
leukocytes were determined using an automated cell counter (Countess™ II; ThermoFisher,
Waltham, MA, USA), and leukocytes were resuspended at 2 × 107 cells mL−1 in culture
medium (Leibovitz’s L-15 medium containing 290 µg mL−1 L-glutamine, 100 U ml−1

penicillin, 100 µg mL−1 streptomycin, and 5 percent fetal bovine serum, FBS; L-15/5% P/S).

2.2.3. Mitogenesis

Mitogenesis was evaluated following an EdU-based assay protocol (Click-iT™ Plus
EdU Alexa Fluor® 647 Flow Cytometry Assay Kit, Molecular Probes, Eugene, OR, USA) op-
timized for smallmouth bass [23] with modifications to require fewer isolated leukocytes per
treatment, strengthen/increase fluorochrome signal, and label cells with immunoglobulin
for distinguishing responses of IgM+ and IgM− lymphocytes. The final panel developed
for the mitogenesis assay using smallmouth bass anterior kidney leukocytes included
several fluorochromes to label and detect 1) IgM+ cells (Alexa Fluor® 488; AF488), 2)
G2/mitotic phase (G2/M; two sets of paired chromosomes per cell prior to cell division)
cells (FxCycle™ propidium iodide with RNase; PI/RNase; ThermoFisher, Waltham, MA,
USA), and 3) EdU+ cells (Alexa Fluor® 647; AF647).

Isolated leukocytes in culture medium (L-15/5% P/S) were plated at 25 µL well−1

(5 × 105 cells well−1) in Falcon 384-well tissue culture plates (Corning Cat. No. 353961;
ThermoFisher, Waltham, MA). This format required fewer cells (5 × 105 cells well−1) per
well and allowed more assays to be performed with the total number of isolated cells
relative to the 96-well format (1 × 106 cells well−1) reported previously [23]. Isolated
leukocytes were added to tissue culture plates in duplicate for each treatment (mitogen and
negative controls) and pooled prior to analysis with imaging flow cytometry. A minimum
of 0.2 mL of isolated leukocytes resuspended at 2× 107 cells ml−1 was required to complete
the mitogenesis assay in the 384-well plate format. In some cases when leukocyte yields
were low, mitogenesis was not assessed.

Once plated, leukocytes were treated with either 25 µL well−1 of mitogen or mitogen-
free media (negative control wells). Plates were protected from light for the remainder
of the assay. Treatments included lipopolysaccharide from Escherichia coli O111:B4 (LPS)
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at 100 µg mL−1 (2.5 µg well−1 final concentration) or mitogen-free culture medium as
negative control (L-15/5%). LPS, a bacterial endotoxin, was chosen to mimic a natural
bacterial infection and complement our full suite of functional immune assays which
includes a bactericidal assay [23]. Working solutions of LPS were prepared in L-15/5%.

Plated leukocytes were incubated for 24 h with treatments before adding EdU. This
incubation time was chosen based on previous studies with a BrdU-based mitogenesis assay
in fish [29] and initial kinetics trials in the laboratory (Figure 2) to provide the maximum
SI values.
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Figure 2. Stimulation index (SI) values for different incubation times of leukocytes isolated from
laboratory-reared smallmouth bass (Micropterus dolomieu). Leukocytes were incubated with LPS and
mitogen-free media (negative controls) for 0, 24, and 48 h before adding 5-ethynyl-2′-deoxyuridine
(EdU) to detect cell proliferation. The horizontal line indicates the stimulation index (SI) threshold of
1, the dots represent individual data points, and the number indicates sample size (n).

Adult laboratory-reared smallmouth bass was utilized to do initial exposures for
determining optimal kinetics of the assay. The smallmouth bass were obtained at age-0
from a fish hatchery in Lake Ariel, PA (Shultz’s Fish Hatchery; Lake Ariel, PA, USA) in
November 2016 and were housed indoors at the USGS Eastern Ecological Science Center’s
Leetown Research Laboratory (Kearneysville, WV, USA) in 1287 L circular tanks supplied
with flow-through spring water until sampling in February 2018. Fish were reared on
disease-free fathead minnows (obtained from Anderson Minnows in Lonoke, AR, USA).
Water was heated to 20 ◦C using a heat exchanger located outside the facility for smallmouth
bass while minnows were supplied by water at 13–15 ◦C. Light was provided by natural
and fluorescent light with photoperiod matching natural light cycles. Eight smallmouth
bass were sampled to verify kinetics of optimal proliferative response (0, 24, and 48 h
incubation with mitogens before adding EdU). Fish were necropsied the same as wild
fish above with homogenized anterior kidney tissues being kept at 4 ◦C overnight before
isolating leukocytes the next day.

All incubations occurred at 17 ◦C in a humidified container (open Zip-loc plastic bag
lined with paper towel saturated with deionized water). This temperature was chosen to
provide the closest fit to water temperatures from which wild fish were obtained. Following
the 24 h incubation with mitogens, 12.5 µL well−1 of EdU in unsupplemented L-15 (32 µM)
was added to all wells (6.4 µM well−1 final concentration) and returned to incubate for
18 h. The mitogenic response was measured after 42 h of incubation with LPS.

2.2.4. Detection of Surface IgM

Following the 18 h incubation with mitogens and EdU, leukocytes were treated with
an anti-smallmouth bass IgM monoclonal antibody (mAb), previously described [30] to
detect cell surface IgM of B lymphocytes. Prior to use, the anti-smallmouth bass IgM mAb
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was conjugated (using the Lightning-Link® Rapid Alexa Fluor® 488 kit; Expedeon, San
Diego, CA, USA) following the manufacturer’s protocol and stored in the dark at 4 ◦C
for up to 18 months. Plated leukocytes were washed, treated with an IgG isotype control
(25 µg mL−1) and incubated for one hour at room temperature, washed once, and then
treated with the AF488-labeled mAb (10 µg mL−1) for one hour at room temperature. Cells
were washed once before proceeding to cell fixation and the click reaction.

2.2.5. Click Reaction

Following cell surface, IgM labeling, incorporation of EdU/cell proliferation was
detected by AF647 (using the Click-iT® Plus EdU Flow Cytometry Assay Kit; Molecular
Probes, Eugene, OR, USA) with modifications to the manufacturer’s protocol (MP 10633).
First, 25 µL well−1 of saponin-based permeabilization and wash reagent, reaction cocktail,
and fixative were used instead of 100 ul well−1 as in the manufacturer’s protocol. Second,
the saponin-based permeabilization and wash reagent was removed from all wells prior to
adding the reaction cocktail for the click reaction. The original protocol required adding
the reaction cocktail to the saponin wash. Our modification directly exposed the cells to
AF647 and increased the signal strength by eliminating the dilution of reaction cocktail
created by direct addition to the saponin wash.

Following the click reaction, the reaction cocktail was removed and replaced with
saponin-based permeabilization and wash buffer for storage. Plates were stored at 4 ◦C for
up to a week in saponin wash buffer before being analyzed with imaging flow cytometry.
The saponin wash buffer was removed and replaced with propidium iodide (PI)/RNase for
15 min to label G2/M mitotic phase cells before running samples through the imaging flow
cytometer in the PI/Rnase medium. Intensity of PI fluorescence was used to discriminate
cell cycle stage.

2.2.6. Imaging and Data Analyses

Following labeling with all fluorochromes, each sample was pooled (two replicate
wells per treatment for each fish) and analyzed using an imaging flow cytometer (Amnis
FlowSight®; Luminex Corporation, Austin, TX, USA). At least 20,000 events were acquired
for each sample. Excitation was set at 100.0 mV for the 642 laser, 5.00 mV for the 785 laser,
and 5.00 mV for the 488 laser; fluidics were set to minimum flow speed. Raw image
files (.rif) were analyzed using image software with machine learning capabilities (Image
Data Exploration and Analysis Software; IDEAS 6.3; Luminex Corporation, Austin, TX). A
compensation matrix for AF488, PI/RNase, and AF647 was applied to all .rif files creating
compensated image files (.cif) for data analysis.

Primary gating of data analysis files (.daf) isolated individual round cells (R2) that
were in focus (R1) based on brightfield images. After initial gating to determine single cells
in focus, lymphocytes were selected for analysis based on features of brightfield images
(round morphology, low side scatter, nucleus–cytoplasm ratio, nuclear shape) which were
applied to the total population using the machine learning module in the imaging software.
Proliferating lymphocytes were selected based on concurrent fluorescent signals from
PI/RNase (Ch04) indicating they were in the G2/M phase based on intensity of staining
and AF647 (Ch11) indicating they were EdU+. The percentage of IgM+/IgM− lymphocytes
was determined from the proliferating lymphocyte gate based on AF488 (Ch02) fluorescent
positive cells. A template was created containing the primary and secondary gating and
was used to analyze all data to provide consistent analytics across samples (Figure 3).
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Figure 3. Gating strategy for creating batch file analysis template in the image software (IDEAS
6.3). A. Total events/cells (white) in focus were gated as R1 (cyan), B. Out of the R1 population
(cyan), single round events/cells were gated as R2 (green), C. Out of the R2 population, proliferating
cells (cyan) were gated based on concurrent fluorescent signals from PI/RNase (Ch04) indicating
they were in the G2/M phase based on intensity of staining and AF647 (Ch11) indicating they were
EdU+, D. Proliferating lymphocytes were selected (gray) for analysis based on features of brightfield
images (round morphology, low side scatter, nucleus–cytoplasm ratio, nuclear shape) which were
applied to the total population using the machine learning module and distinguished from total
proliferating cells (cyan). Cell diameter (µm) is displayed in the top right corner of each image, E.
AF488 (Ch02) positives show the number of IgM+ proliferating lymphocytes (orange) out of the
proliferating lymphocyte population (gray).

Stimulation index (SI) values were used to compare mitogen-treated with untreated/
negative control cells collected from the same fish. The values represent the fold change
in response versus controls; they are a ratio of fluorescent positive cells in treated wells
divided by fluorescent positive cells in the negative control wells. Statistics were calculated
with various software packages (in R version 3.6.1 [31] using tidyverse [32], ggpubr [33],
cowplot [34], reshape [35], gsubfn [36], ggpmisc [37], ggthemes [38], lattice [39], plotrix [40],
and FSA [41] packages). This research aimed to analyze differences in immune function
among categorical variables such as site, season, and sex and correlations with continuous
variables such as age, parasites, and macrophage aggregates to validate its use in future fish
health studies. Nonparametric tests were chosen because sample sizes were small (<30),
data were not normally distributed, and data could not easily be transformed. Analyses
were considered statistically significant when p ≤ 0.05. Dunn’s [42] Kruskal–Wallis test
was used for multiple comparisons of sites for each season and p-values were adjusted
with the Holm method [43,44]. Wilcoxon rank-sum test was used for comparisons among
seasons and sex for each site. Spearman rank correlation was used to measure the degree of
association between lymphocyte mitogenesis and continuous variables such as age, tissue
parasites, and macrophage aggregates. Covariates such as land use were not included in
the analysis because there were not enough observations to perform Spearman correlations.
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3. Results
3.1. Mitogenesis Stimulation Indices

When data from all sites and seasons were analyzed, mean SI values varied for both
lymphocyte subpopulations (0.71–1.21 for IgM+ and 0.96–1.34 for IgM−. SI varied among
sites in the spring for both IgM+ (p = 0.03) and IgM−lymphocytes (p < 0.01; Figure 4A,B).
For both lymphocyte subpopulations in the spring, SI was lowest at SB3. The proliferation
of IgM+ lymphocytes isolated from CH and SB1 was not significantly different but was
higher than in SB3 fish (p = 0.04 and p = 0.05, respectively). IgM− lymphocytes isolated
from CH fish responded greater than SB3 fish (p < 0.01) while SB1 was intermediate. There
were no significant site differences observed in the fall (Figure 4). Seasonal differences were
also observed at CH and SB1 (Figure 4C,D). SI values for IgM+ lymphocytes at CH were
greater in spring than in fall (p < 0.01). SI values for IgM− lymphocytes at SB1 were greater
in the fall than in spring (p = 0.02).
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Figure 4. Stimulation indices (SI) for IgM+ (left column) and IgM− (right column) lymphocytes
isolated from anterior kidney of smallmouth bass (Micropterus dolomieu) collected at the Cheat River
(CH), South Branch Potomac near Petersburg (SB1), and South Branch Potomac near Moorefield (SB3),
West Virginia after exposure to LPS. Site comparisons (A,B) were made using Dunn’s Kruskal–Wallis
multiple comparison test, and p-values were adjusted with the Holm method. Seasonal comparisons
(C,D) were made using Wilcoxon rank-sum test. Asterisks indicate significant differences between
groups (* = p < 0.05, ** = p < 0.01). Superscripts represent significant differences between sites. The
horizontal line at 1 indicates the stimulation index (SI) threshold, the dots represent outlying data
points (>1.5 times the interquartile range), and the number at 0 indicates sample size (n). Median
(line in box) and interquartile range (box) are displayed with the vertical lines indicating highest and
lowest values within 1.5 times above and below the interquartile range.
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There was a great deal of individual variation in SI for both lymphocyte subpopu-
lations (0.16–2.51 for IgM+ and 0.32–4.36 for IgM−). Some individuals had stimulation
indices of at least a two-fold change above background cell proliferation (negative controls),
particularly in the fall (Figure 5).
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Figure 5. Stimulation indices for IgM+ (A) and IgM− (B) lymphocytes after exposure to LPS for
individual smallmouth bass (Micropterus dolomieu) during spring (yellow) and fall (blue) for all
sampling sites. The horizontal line at 1 indicates the stimulation index threshold.

3.2. Background Cell Proliferation

Background proliferation is the replication (intensity of AF647 or EdU incorporation)
of anterior kidney lymphocytes when not treated with an immunostimulant (negative
controls). It indicates the level of lymphocyte proliferation based on field conditions at
the time of collection. Background proliferation varied individually within each site and
among sites for both IgM+ and IgM− lymphocytes (Figure 6).

Background proliferation for IgM− lymphocytes was high (>50%) for the majority of
fish while low (<5%) for most IgM+ lymphocytes. The percentage of IgM+ background
proliferation was higher in spring than fall at all sites (p < 0.001) and highest in fish from
SB3 (x = 7.04%) when compared to the other sites (CH x = 3.17%; SB1 x = 2.29%; p ≤ 0.05).
There were no differences in IgM+ background proliferation between sites in the fall (SB3
x = 1.20%; SB1 x = 0.73%; CH x = 1.01%). IgM- background proliferation was similar among
sites during spring (SB3 x = 57.6%; SB1 x = 56.2%; CH x = 59.6%) but trended higher in the
fall at SB3 (x = 67.3%) when compared to CH (x = 57.8%) and SB1 (x = 54.9%); however,
this was only significant when compared to SB1 (p = 0.04).
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Figure 6. Background proliferation responses of IgM− (red) and IgM+ (blue) lymphocytes for
individual smallmouth bass (Micropterus dolomieu) collected from Cheat River (A), South Branch at
Petersburg, WV (B), and South Branch at Moorefield, WV (C). The vertical line separates samples
collected in spring (left) and fall (right). The graphs on the right are zoomed in to show the percentages
for IgM+ lymphocytes (blue).

In the spring, when all sites were combined there was a negative correlation between
unstimulated background cell proliferation and LPS-stimulated mitogenesis responses of
IgM+ lymphocytes (r = −0.41; p = 0.005) and IgM− lymphocytes (r = −0.61; p < 0.0001).
In the fall, this relationship was not significant for IgM+ lymphocytes but was significant
(r = −0.61; p < 0.0001) for the IgM− population. When individual sites were analyzed,
there were significant negative correlations during spring and fall for IgM− cells from all
sites. For IgM+ lymphocytes, significant correlations were not noted at any site in the fall
and only at CH and SB1 in the spring (Table 1). The unstimulated background proliferation
suggests activation of lymphocytes was already occurring in the wild fish.
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Table 1. Correlations between unstimulated background mitogenesis and LPS-stimulated mitogenesis.
Spearman correlation method. Only significant results (p ≤ 0.05) displayed.

Treatment Cell Type Season Site r p Value

LPS IgM+ Spring CH −0.68 0.006
LPS IgM+ Spring SB1 −0.55 0.026
LPS IgM− Spring CH −0.67 0.007
LPS IgM− Spring SB1 −0.69 0.003
LPS IgM− Spring SB3 −0.64 0.015
LPS IgM− Fall CH −0.69 0.019
LPS IgM− Fall SB1 −0.58 0.009
LPS IgM− Fall SB3 −0.75 0.012

3.3. Age and Morphometric Characteristics

Lengths and weights were not significantly different among sites, but age did vary
(Table 2). Smallmouth bass sampled from CH were significantly older (x = 8.03) than
smallmouth bass collected from either of the South Branch sites (SB1 x = 3.85; SB3 x = 3.90;
p < 0.001). The sex distribution of males to females at the CH site varied with more males
(n = 31) than females (n = 8; chi-square test with Bonferroni post hoc correction, p = 0.018)
being collected. The sex distribution of males to females sampled from the South Branch
sites did not differ from expected (1:1).

Table 2. Mean (±standard error) age and morphometric data (n = sample size, mm = millimeter,
gm = grams) for adult smallmouth bass (Micropterus dolomieu) collected from the Cheat River (CH),
South Branch Petersburg (SB1), and South Branch Moorefield (SB3) sites for spring and fall, 2019. Site
comparisons made using Dunn’s Kruskal–Wallis multiple comparison test and p-values adjusted
with the Holm method. Superscripts represent significant differences between sites.

Site Females
(n)

Length
(mm)

Weight
(gm)

Age
(yr) Males (n) Length

(mm)
Weight

(gm)
Age
(yr)

Spring
CH 2 274 ± 8 229 ± 34 7.0 ± 1.0 a 18 333 ± 11 477 ± 51 8.1 ± 0.4 a

SB1 7 281 ± 15 317 ± 53 3.1 ± 0.4 b 13 309 ± 13 438 ± 62 3.4 ± 0.4 b

SB3 14 318 ± 17 493 ± 84 3.9 ± 0.4 b 6 358 ± 37 627 ± 153 3.8 ± 0.8 b

Fall
CH 6 275 ± 25 287 ± 103 8.0 ± 1.4 a 13 280 ± 13 283 ± 51 8.2 ± 0.7 a

SB1 11 290 ± 9 316 ± 30 4.2 ± 0.3 b 9 289 ± 11 314 ± 36 4.7 ± 0.5 b

SB3 3 318 ± 81 548 ± 366 4.7 ± 2.2 a,b 8 262 ± 23 308 ± 98 3.5 ± 0.7 b

3.4. Age and Mitogenesis

When combining data from all sites, age was not correlated to mitogenesis. The only
age-related correlations with mitogenesis were at SB3 for IgM− lymphocytes during spring.
Unstimulated background proliferation of IgM− lymphocytes increased with age (p = 0.017;
Figure 7A) and LPS-stimulated mitogenesis decreased with age (p = 0.043; Figure 7B). The
data suggest these cells were proliferating prior to mitogen stimulation, and additional
cells were not recruited to proliferate. Age was not associated with mitogenesis at the other
two sites.
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Figure 7. Mitogenesis responses of IgM− lymphocytes relative to age. Data were collected in spring
2019 from smallmouth bass (Micropterus dolomieu) sampled at a site on the South Branch of the
Potomac River in Moorefield, WV (SB3) for (A). unstimulated background mitogenesis and (B). LPS
stimulated mitogenesis. The horizontal line at 1 represents the stimulation index threshold. Data
below this line mean proliferation after stimulation did not exceed the negative controls (unstimulated
background mitogenesis).

3.5. Sex and Mitogenesis

Mitogenesis did not significantly differ among sexes at any of the sites for any season
or lymphocyte subpopulation; however, the low sample size could be a factor. At the CH
site the median female IgM− response was at or above the SI threshold while the median
for males was below the SI threshold, particularly for fall samples (Figure 8A). The same
sex differences were not seen for the IgM+ response (Figure 8B). No comparisons were
made in the spring since data from only one female was available.
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Figure 8. Fall 2019 mitogenesis responses of IgM− (A) and IgM+ (B) lymphocytes in response
to LPS stimulation for smallmouth bass (Micropterus dolomieu) females (F) and males (M) at the
Cheat River site. The horizontal line at 1 indicates the stimulation index (SI) threshold, the dots
represent individual data points, and the number indicates sample size (n). Median (line in box) and
interquartile range (box) are displayed with the vertical lines indicating highest and lowest values
within 1.5 times above and below the interquartile range.

3.6. Tissue Parasites and Mitogenesis

The prevalence of spleen parasites, primarily trematodes, varied by the site for spring
(p < 0.01) and fall (p = 0.02). There were no significant differences in parasite prevalence
between SB1 and SB3 for spring or fall. Spleen parasites at CH were more prevalent than
both SB1 and SB3 in spring (p = 0.02 and p = 0.02, respectively), and fall (p = 0.03 and
p = 0.04, respectively). There were no significant differences in parasite prevalence between
seasons at any of the sites. Significant correlations between the number of parasites in
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spleen tissue per square mm and mitogenesis were seen in fish collected from the CH and
SB3 sites (Table 3).

Table 3. Correlations between tissue parasites in spleen and lymphocyte mitogenesis for smallmouth
bass (Micropterus dolomieu) collected from the Cheat River (CH) and South Branch Moorefield (SB3)
sites. No significant correlations were observed at the South Branch Petersburg (SB1) site.

Treatment Tissue Parasites Cell Type Season Site r p Value

Unstimulated Spleen IgM− Fall SB3 −0.68 0.030
LPS Spleen IgM+ Spring CH −0.51 0.054
LPS Spleen IgM+ Fall CH 0.62 0.041

Increased splenic parasites were negatively correlated with unstimulated background
response of IgM- lymphocytes at the SB3 site and associated with decreased IgM+ lympho-
cyte responses in spring and fall at the CH site. No significant correlations with parasites
and LPS-stimulated mitogenesis were observed at SB1 or SB3. No significant correlations
were found between parasites and unstimulated background proliferation at CH or SB1.

3.7. Macrophage Aggregates and Mitogenesis

The prevalence of spleen macrophage aggregates varied by the site for spring (p < 0.01)
and fall (p = 0.04). There were no significant differences in macrophage aggregate prevalence
between SB1 and SB3 for either season. Spleen macrophage aggregates at CH were more
prevalent than both SB1 and SB3 in the spring (p = 0.02 and p = 0.02, respectively), and more
prevalent than SB3 in the fall (p = 0.02). There were no significant differences in macrophage
aggregates between seasons at any of the sites. Positive and negative correlations were seen
between the prevalence of macrophage aggregates in spleen tissue and LPS-stimulated
mitogenesis in the fall and varied based on lymphocyte subpopulation and sampling site
(Table 4). Most of the correlations were with IgM− lymphocytes. There were no correlations
between mitogenesis and splenic macrophage aggregates for fish from SB1.

Table 4. Correlations between splenic macrophage aggregates and lymphocyte mitogenesis for
smallmouth bass (Micropterus dolomieu) collected from the Cheat River (CH) and South Branch
Moorefield site (SB3). No significant correlations were observed at the South Branch Petersburg
site (SB1).

Treatment Cell Type Season Site r p Value

Unstimulated IgM− Fall CH −0.62 0.040
LPS IgM+ Fall CH 0.89 <0.001
LPS IgM− Fall CH 0.62 0.043
LPS IgM− Fall SB3 −0.72 0.018

4. Discussion

Results from employing the mitogenesis assay at three West Virginia sites revealed
differences in LPS-stimulated and unstimulated background proliferation between sites,
seasons, and lymphocyte subpopulations with effects from age, sex, parasites in liver and
spleen tissue, and splenic macrophage aggregates (MA). The LPS-stimulated proliferation
of smallmouth bass collected in spring showed greater site differences compared to the fall.
These differences were likely in part due to differences in physiology (spawning versus
recrudescence), climatic factors such as rainfall (i.e., runoff) affecting chemical exposures,
factors affecting pathogen and parasite densities, or more likely, a combination of factors.
The differences in mitogenesis responses among sites suggest it is important to consider
each site for its unique variables affecting immunity because they may differ even within the
same river system as revealed with the two South Branch Potomac River sites (SB1 and SB3).
Smallmouth bass collected from these sites showed some overlap in their responses but
also had noticeable differences. Notably, background proliferation of IgM+ lymphocytes
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was significantly higher at SB3. The high background proliferation suggests activation of
lymphocytes at SB3 more than SB1, and although fish movement between the two South
Branch sites could be a limitation, these sites were chosen to be as independent as possible
within a particular system.

Background proliferation for both IgM+ and IgM− lymphocytes in the spring and
IgM− lymphocytes in the fall were negatively correlated to LPS-induced proliferation, indi-
cating a relationship exists where increases in background proliferation are associated with
less stimulation to mitogens in the laboratory. SB3, our site with the highest background
proliferation in spring, also had the lowest stimulated proliferation response in spring.
Increases in background proliferation could be an indicator of prior exposure to infectious
agents, parasites, or other stressors.

The mitogenic response to LPS varied significantly among individual fish at each
site and often was not above the unstimulated background proliferation. This result may
suggest lymphocytes were already primed in the field and activated to a level where they
could not be stimulated any greater by LPS exposure. The LPS-stimulated SI values in
this study may seem low but they are comparable to values for brown bullhead (Ameiurus
nebulosus; obtained from South Creek in Aurora, North Carolina, USA and acclimated to
laboratory conditions in West Virginia, USA before sampling) anterior kidney leukocytes
using the same method for mitogen stimulation [45] and brook trout (Salvelinus fontinalis;
obtained from a hatchery and held in a laboratory in Nova Scotia, Canada before sampling)
anterior kidney leukocytes when treated with 200 or 500 µg mL−1 LPS [46]. Daly, et al. [46]
saw an increase in average SI values to 1.8 but only after adding 5% brook trout plasma
and extending incubation time with 200 µg mL−1 LPS to 8 days. Average SI values for LPS-
stimulated peripheral blood lymphocytes from channel catfish (Ictalurus punctatus) held
in a laboratory in Texas, USA were higher (2.5–5.4 depending on the cell culture medium
supplementation with arginine and/or glutamine); however, they were using peripheral
blood lymphocytes and a greater concentration of LPS (500 mg mL−1 vs. µg mL−1 [47]. It
is possible further refinement of the assay could increase the response.

Parasite ratings of liver and spleen tissues and splenic MA ratings were integrated
into the analyses to illustrate the application of this new method for detecting immune
responses in wild fish. Parasite prevalence was highest at CH compared to the other two
sites and the fish from this site were also the oldest. The majority of parasites in the spleen
were trematodes. Trematodes have been shown to decrease the proliferative lymphocyte
response [48,49] and modulate IgM antibody transcription/production [50–52]. Specifically,
trematodes were associated with increased IgM production in roach (Rutilus rutilus) from
multiple lakes in central Finland [51] and increased transcription of IgM in heart and gills
of the Pacific bluefin tuna (Thunnus orientalis) sampled from commercial-sized sea cages
in Japan [52]. In addition to the high prevalence of trematodes, CH also had the highest
LPS-stimulated proliferation of IgM+ lymphocytes which were positively and negatively
(depending on the season) correlated with parasite prevalence. The mixed correlations
(positive and negative) illustrate the complexities of the immune response and emphasize
the need for ancillary data. For instance, depending on the season and likely other factors
not measured here such as the stage of infection, the prevalence of intermediate hosts at the
site, etc., the increase in trematodes in the field either increased background lymphocyte
proliferation and consequently likely decreased the stimulation potential of lymphocytes
or primed the IgM+ lymphocytes to respond greater to mitogen stimulation. Host immune
response to parasite infection depends on factors such as virulence, type, location, and load,
so considering the type of parasite and virulence in future assessments of mitogenesis in
wild fish will help interpret results and associations further.

Splenic macrophage aggregates are important to consider in terms of host mitoge-
nesis responses because they can be used as an indicator of exposure to environmen-
tal stress [53–55]. They have also been shown to be associated with varied immune re-
sponses [56–58]. Deciphering associations between splenic MA and mitogenesis should
be easier in future studies when combined with results from the respiratory burst assay.
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The respiratory burst assay is part of the full suite of immune function assays adapted
for smallmouth bass, which measures reactive oxygen species in phagocytic cells as an
indicator of oxidative and environmental stress [23].

It is important to note that the usefulness of in vitro functional immune assays is de-
bated when considered alone to assess immunocompetence due to a lack of standardization
and questionable ability to distinguish immunotoxicants from non-immunotoxicants [59,60].
Our results also suggest that using individual functional immune assays, especially in
wild fish, may only be valid when considered in context with other collected data such
as indicators of disease such as a parasite and macrophage aggregate prevalence in tis-
sues. However, the lymphocyte mitogenesis assay adapted for smallmouth bass was not
intended to be used solely as a measure of immunocompetence but to be incorporated into
comprehensive fish health assessments where other endpoints were also collected. The
purpose is to use the lymphocyte mitogenesis assay as one of many tools or biomarkers for
assessing the health of smallmouth bass in the wild and identifying environmental stressors
leading to adverse effects. When used in this way, in vitro immune function assays can
improve the ability to effectively investigate mechanisms or modes of action through which
environmental stressors may modulate the immune response. This assay, together with
other immune function assays, and cellular and molecular endpoints could help to identify
sublethal effects, identify impacted sites to inform management and direct more in-depth
monitoring and assessment.

5. Conclusions

The functional mitogenesis assay described in this manuscript uses 5-ethynl-2′-deoxyuridine
(EdU) to detect proliferation and imaging flow cytometry with advanced machine learning
plus an anti-smallmouth bass mAb to distinguish IgM+ and IgM- lymphocytes. It provides
information on the background level of lymphocyte proliferation and the ability of those
same lymphocytes to stimulate when exposed to LPS. This method can add valuable
information on the adaptive immune status during wild fish health assessments and
studies of smallmouth bass. This study is limited to smallmouth bass, but the assay could
provide valuable information for other species after optimization. Our analysis emphasizes
the importance of including other factors, such as season, site, age, sex, tissue parasite, and
macrophage aggregate indicators when designing and planning ecotoxicological studies
with immune indicators. A more advanced statistical model with a larger sample size at
more sites will be needed to fully understand the potential predictors and covariates of the
immune response, but that goes beyond the scope of this paper.
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