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Abstract: Current knowledge on the fish gut microbiota has largely been obtained from experiments
on laboratory-reared animals. Here, the crucian carp (Carassius auratus) with a mean weight of
159.9 ± 11.4 g (mean ± SD) were collected from their natural habitats (i.e., Wuhu lake and Poyang
lake, China), and the gut microbiota were analysed by using the next-generation sequencing of
16S rRNA gene. We obtained more than 430,000 high-quality reads, which constituted more than
1200 operational taxonomy units (OTUs), revealing extremely diverse microbes in the fish gut.
Proteobacteria, Fusobacteria, Bacteroidetes and Firmicutes were detected as the prominent phyla
(each > 1% of total abundance) within the gut microbiota, regardless of the host habitat or the gut
segment (i.e., foregut vs. hindgut). Although the microbes in the hindgut were more diverse (OTU
number, Shannon and Chao1; One-way Anova, p > 0.05) than in the foregut, the host habitat had
a significant role in shaping the community structures (MRPP, ANOSIM, PERMANOVA, p < 0.01).
Interestingly, we also detected a set of common OTUs, whereby genera Aeromonas and Cetobacterium
might comprise the core gut microbiota of crucian carp.

Keywords: gut microbiota; 16S rRNA; crucian carp; habitat effects

Key Contribution: The present study provided a comprehensive analysis of the gut microbiota of
crucian carp that hatched and developed in natural environments and, more importantly, highlights
a strong habitat effect on the gut microbial community composition.

1. Introduction

A majority of endogenous microbes occur in the digestive tract of the host and facilitate
their host survival in the microbial-rich environment [1,2]. In particular, the previous
studies have suggested that the gut microbiota of fish plays an important role in host
metabolism, immunity, and health maintenance [3–5].

As one of the oldest cultured fish species in China, the crucian carp (Carassius auratus)
constitutes one of the most cultured species in the world. Current knowledge on the gut
microbiota of crucian carp, therefore, has largely been obtained from the experiments on
laboratory-reared individuals [6]. The crucian carp is an omnivorous freshwater teleost fish
native to Europe and Siberia and indigenous to lakes, ponds, and slow-moving rivers [7].
It is still unclear whether the gut microbial community composition can vary with the host
natural habitats.

The constituency of gut microbiota includes members of all three domains of life (i.e.,
Bacteria, Archaea, and Eukarya) as well as viruses. The fish gut microbiota generally consist
of facultative and obligate anaerobes, which are dominated by four phyla of prokaryote
(i.e., Proteobacteria, Fusobacteria, Actinobacteria, and Cyanobacteria) [8]. Moreover, genera
Aeromonas, Bacillus, and Cetobacterium have been widely identified as the predominant
members in fish gut microbiota [9,10]. Conventional techniques, such as culture-dependent
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as well as culture-independent methods have been widely used to investigate the gut
microbial diversity [11]. These conventional techniques-based studies on the gut microbiota,
however, have been largely limited to the clone library analysis of at most a few hundred
sequences per sample, thereby only detecting the most abundant microbial taxa. [12,13].
Understanding the high microbial diversity in the gut is a prerequisite to further identifying
the features with potential benefits to host fish.

In this work, fish were collected from Wuhu lake and Poyang lake (China), which
have been previously identified as the natural habitats for crucian carp. Given the great
distance between these two lakes, we expected to observe significant habitat effects on the
gut microbial communities. Specific aims of this study were (i) to reveal the diversity of
microbes in the fish gut and (ii) to analyze whether the microbial community structures are
host habitats dependent.

2. Materials and Methods
2.1. Sample Collection

Crucian carps were collected from two lakes (Poyang Lake and Wuhu Lake) in the
Yangtze River basin (Figure 1) by using fishing nets. No specific permissions were required
for the sampling activity, and the present study did not involve any endangered or protected
species. All fish were captured in the lake area, where no artificial food was provided.
Three fish individuals were sampled in each lake (Table 1), and all fish individuals were
managed under the same protocol, which was performed with the approval of the Animal
Care and Use Committee of the Institute of Hydrobiology, Chinese Academy of Sciences
(IHB/ LL/2021006) [12,14]. Briefly, the fish were dissected under sterile conditions. The
harvested gut was aseptically divided into two segments (i.e., foregut and hindgut) as
previously described [15]. The gut contents were carefully collected into a sterile centrifuge
tube, flash frozen at −20 ◦C, and subsequently transported to the laboratory within 6 h.
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Table 1. Biological information of the sampled fish individuals.

Fish ID Sampling Lake Weight/g Body Length/cm

P1 Poyang 167.6 14.2
P2 Poyang 150.2 13.3
P3 Poyang 161.5 13.8
W1 Wuhu Lake 142.0 12.2
W2 Wuhu Lake 168.2 14.4
W3 Wuhu Lake 170.3 14.8

2.2. DNA Isolation

DNA was isolated as described previously with certain modifications [16]. Briefly,
the samples were mixed with 1200 µL lysis buffer (0.50% Sodium Dodecyl Sulfate (SDS);
10.00 mmol/L Tris-HCl, pH 8.0; 10.00 mmol/L EDTA, pH 8.0; 100.00 mmol/L NaCl; and
50 µg/mL RNase A) and stored at 37 ◦C for 1 h, followed by incubation at 55 ◦C for 12 h
after the addition of 6 µL proteinase K (0.10 mg/mL). The lysates were extracted using an
equal volume of phenol/chloroform/isoamyl alcohol (25/24/1, v/v/v) and subsequently
precipitated with a double volume of pure ethanol and one-tenth volume of 3 mol/L NaCl.
After washing with 70% ethanol, the purified DNA was stored at −20 ◦C.

2.3. PCR and Sequencing Methods

The 16S rRNA gene primer set 515f (5′-GTGCCAGCMGCCGCGGTAA-3′)/806r 5′-
GGACTACHVGGGTWTCTAAT-3′) (without barcode) targeting the V4 region of 16S rDNA
was used for PCR amplification because this primer set was available for both bacteria and
archaea [17]. Briefly, the 25 µL PCR reactions were performed in triplicate for each sample
using the following conditions: 1 min at 94 ◦C, 25 cycles of 20 s at 94 ◦C, 25 s at 53 ◦C, and
45 s at 68 ◦C, with a post-amplification extension of 10 min at 68 ◦C. Subsequently, the PCR
products were purified using AGENCOURT® AMPURE® XP, and approximately 10 µL of
the purified DNA was applied as a template for a second PCR amplification. The primer
set 515f/806r (with different barcodes) was used again, and 25 cycles were performed.
The amplicons were visualized on 1% agarose gels stained with ethidium bromide and
followed by quantification using Molecular Probes PicoGreen® on a FLUO star OPTIMA
reader. Approximately 200 ng of amplified DNA from each sample was combined in a
sterile tube and visualized using agarose gel electrophoresis (90 V, 2 h). The purified DNA
was re-quantified using PicoGreen and sequenced on a MiSeq platform (Illumina, San
Diego, CA, USA) at Majorbio Bio-Pharm Technology Co. Ltd., (Shanghai, China) according
to the manufacturer’s protocol. The operational taxonomic units (OTUs) were identified
(97% cut-off) according the method of Zhou et al. [18]. All of the sequences were matched
through the Ribosomal Database Project (RDP) [19].

2.4. Statistical Analysis

The OTU table generated through 16S rRNA gene sequencing was further analysed by
the following statistical methods after all samples were rarefied to the same sequence depth
(n = 18,314 sequences) by random subsampling to correct for differences in sequencing
depths: (a) alpha diversity of gut microbial community was estimated by alpha-diversity
indices, they are Number of taxa (OTU number), Shannon indices and Chao1; (b) Un-
weighted pair-group average (UPGMA) clustering analysis based on the Simpson index; (c)
Bray–Curtis distance-based non-metric multidimensional scaling (NMDS) analysis [20];
(d) nonparametric tests including multiple-response permutation procedure (MRPP) [21],
analysis of similarity (ANOSIM) [21], and permutational multivariate analysis of variance
(PERMANOVA) [22] to compare community dissimilarity; (e) Welch’s t-test (confidence
interval method: Welch’s inverted, p < 0.05) for two samples having possibly unequal
variances was performed to identify whether the OTU exhibited significant difference
in abundance between samples [23]; (f) Venn diagram reveals the common OTUs of gut
microbiota. All the statistical analyses were performed in R 3.6.1 [24].
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3. Results
3.1. Characterization of the Gut Microbiota

A total of 436, 552 high-quality reads were obtained from the 12 gut content samples,
with the number of sequences ranging from 18,314 to 64,108 per sample (Table S1). A total
of 1261 OTUs were retrieved, which could be classified into 17 phyla (Table S2). More than
50% of the detected OTUs were assigned to phylum Proteobacteria, followed by Firmicutes
(9.75%), Actinobacteria (7.14%), and Bacteroidetes (6.74%). Only one OTU could not be
classified into any known group and was assigned as ‘Unclassified’.

In terms of relative abundance, only 6 phyla were identified as predominant (each
> 1% of the total abundance): Proteobacteria (43.68%), Firmicutes (34.13%), Fusobacteria
(15.82%), Actinobacteria (2.65%), Bacteroidetes (1.11%), and Acidobacteria (1.08%).

At the genus level (Table S3), Aeromonas occupied 16.99% of the total abundance and
was the most abundant genus in the gut bacterial community, followed by Cetobacterium
(9.76%), Chitinibacter (8.15%), Fusobacterium (6.06%), and Catellibacterium (4.61%). In addi-
tion, Pseudomonas (1.65%), Clostridium XI (1.39%), Clostridium sensu stricto (1.30%), Vibrio
(1.23%), and Serratia (1.09%) were also above the 1% threshold of total abundance.

3.2. Microbial Diversity Varied with Host Habitats

In terms of OTU number, Shannon and Chao 1, the microbiota in the gut samples
collected from Poyang Lake were generally more diverse (One-way ANOVA, p >> 0.05)
than those from Wuhu Lake (Table 2). This habitat effect on microbial diversity, however,
was also influenced by the gut segment, where the microbiota were more diverse (One-way
ANOVA, p >> 0.05) in foregut of the fish from Wuhu Lake (except for Shannon; Table 2).
Moreover, the gut microbiota were more diverse in the hindgut regardless of the host’s
habitat (OTU number, Shannon and Chao1; One-way ANOVA, p > 0.05). Similar trends in
microbial diversity were also observed among the rarefaction curves and the number of
taxa assigned (Figure S1A,B).

In total, we detected 19 dominant OTUs (each > 0.5% of total abundance) (Figure 2),
most of which were abundantly present in the gut of the crucian carp collected from
Poyang Lake. Only two OTUs (OTU_518, Aeromonas and OTU_1491, Cetobacterium) were
significantly different in terms of the relative abundance (Figure 2; p < 0.05) and were more
abundant in the gut of the crucian carp collected in Wuhu Lake.
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Figure 2. Extended error bar plot showing the difference in relative abundance of OTUs between the
gut microbial communities from the fish in different habitats. OTUs overrepresented in the gut of
the crucian carp from Wuhu Lake have a negative difference between relative abundances. OTUs
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relative abundances. Only OTUs occupied more than 0.5% of total abundance are shown. Stars
indicate statistically significant (*—p < 0.05) community structuring. Samples collected from Wuhu
Lake and Poyang Lake are indicated by WH and PY.
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Table 2. Summary of species richness estimators of different fish gut samples.

Fish
Habitats

Gut
Segment

Total Sequences
Passed Quality

Check

Number of
Taxa (OTU
Number)

Shannon Chao1

Wuhu lake Foregut 88,401 214.3 ± 43.0 2.1 ± 0.2 285.8 ± 33.0
Wuhu lake Hindgut 91,029 216.0 ± 58.3 2.6 ± 0.5 306.1 ± 83.2

Poyang lake Foregut 110,828 197.3 ± 77.8 2.9 ± 1.0 267.1 ± 77.1
Poyang lake Hindgut 146,294 280.3 ± 188.3 3.0 ± 0.8 318.5 ± 193.3

3.3. Microbial Community Dissimilarity between Gut Content Samples

The UPGMA clustering showed that the gut microbial communities clustered into two
groups according to the host habitats (Figure 3A). This trend in community dissimilarity
was also observed by the NMDS (Figure 3C) and was estimated by the significance test
based on the Jaccard distance (Table 3; MRPP, ANOSIM and PERMANOVA, p < 0.01).
Furthermore, the microbial community dissimilarity between the foregut and the hindgut
of crucian carp was not significant (Table 3). Similar trends were also observed when the
dissimilarity analysis and correlation were performed between the foregut and hindgut of
each fish individual (Table S4).

We also detected substantial variation on community composition (Figure 3B). As one
of the most abundant phyla, Proteobacteria, respectively, represent 67.00% and 45.80% of
total abundance of gut microbiota in terms of host habitats. Fusobacteria accounted for
25.90% of the total abundance in samples from Wuhu Lake, while they only occupied 9.20%
of the total abundance for Poyang Lake. Interestingly, Firmicutes was more abundant in
the gut of the crucian carp in Poyang Lake than (i.e., 27.50% vs. 3.00%). Similar trends
between host habitats (Poyang Lake vs. Wuhu Lake) were also observed for Bacteroidetes
(2.40% vs. 1.60%), Actinobacteria (5.00% vs. 0.40%), Cyanobacteria/Chloroplast (2.40% vs.
0.03%), and Acidobacteria (2.40% vs. 0.03%).
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Figure 3. The community composition and dissimilarity analysis. (A) UPGMA clustering of 16S rRNA
gene based on Simpson similarity index reveals that the gut content samples cluster by sampling
location. WH_F and WH_H, respectively, indicate the microbial community in the foregut and
hindgut of crucian carps from Wuhu Lake. PY_F and PY_H, respectively, indicate the microbial
community in the foregut and hindgut of crucian carps from Poyang Lake. (B) Histogram on the
end of each branch shows the gut microbial community structure on phylum level, and the relative
abundance of each phylum is shown. (C) NMDS plot showing the gut microbial communities
clustered according to the host habitats. Pairwise community distances were determined using the
Bray–Curtis method.
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Table 3. Dissimilarity test showing the differences in gut microbiota between host’s habitat and
between gut segments.

Jaccard Distance-Based Test Bray–Curtis Distance-Based Test

WH vs. PY
(Host

Habitat)

Foregut vs.
Hindgut

(Gut Segment)

WH vs. PY
(Host

Habitat)

Foregut vs.
Hindgut

(Gut Segment)

MRPP
Delta 0.840 0.895 0.745 0.825

P 0.005 0.246 0.008 0.252

ANOSIM
R 0.585 0.113 0.585 0.113
P 0.007 0.152 0.002 0.151

PERMANOVA
F 2.507 1.123 3.481 1.231
P 0.008 0.272 0.004 0.218

Abbreviations: WH, Wuhu Lake; PY, Poyang Lake.

3.4. Identification of a Common Gut Microbiota

The Venn diagram showed that a total of 73 OTUs were shared by different host
habitats, as well as the different gut segments (Figure 4A). By plotting the ranked abun-
dance of OTUs according to the occurrence, we found that the 73 common OTUs was
extremely abundant (Figure 4B) and represented 59.40% of the total abundance. The
RDP classifier analysis revealed that the 73 common OTUs comprised the 33 genera from
phyla Proteobacteria, Firmicutes, Fusobacteria, Cyanobacteria/Chloroplast, Bacterioidetes,
and Actinobacteria (Table S5). Aeromonas was the most abundant in the shared microbial
community, followed by Fusobacterium and Cetobacterium (Table S5).
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4. Discussion

The gut is a major organ for fish interacting with the external environment [25].
The dense bacterial community in the fish gut has been confirmed as helpful for the
host in maintaining gut integrity, in strengthening immunity system, and in contributing
to digestive processes [26,27]. The gut microbiota of fish contains a diverse and vast
population of microorganisms [28]. To develop an effective strategy for promoting and
sustaining the health of cultured species, we should first understand the gut microbiota of
fish in natural environments [10].

The present study provided an appropriate opportunity to estimate the high microbial
diversity in the gut of crucian carp and, more importantly, defined the common OTUs
that are shared by the crucian carps [29–32]. The gut microbiota of the crucian carp is
numerically dominated by phyla Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria
regardless of differences in host habitats and differences in dietary conditions [29,32]. The
relative abundances of these dominant phyla, however, can vary with the changes in
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dietary condition, probiotics, and environmental chemical compoment [2,10,32]. Moreover,
these bacterial phyla have also been detected within other teleost fish gut as the dominant
groups [3,15,33], suggesting that these specific bacterial phyla are especially well adapted
for the environment within the gut. In particular, Proteobacteria were the most dominant
phyla in the gut microbiota of the crucian carp [29], and were also abundantly present
in the gut of the crucian carps that living in the Dongting Lake [30]. Nevertheless, the
Proteobacteria seems likely to be absent or occupy very low abundance in the gut of
cultured fish individuals or mammals [34–38].

By using the high-throughput sequencing technologies, we detected that the gut
microbiota significantly varied with the host’s habitat. Indeed, the host habitat effects
on gut microbiota were not unique to crucian carp and have also been observed in grass
carp and zebrafish [30,36]. Furthermore, a study on the freshwater fishes in the Dongting
Lake also revealed important effects of host habitats on the fish gut microbiota [30]. More
importantly, the host habitat effect on gut microbiota has also been observed between
the different artificial aquaculture systems [31]. The causes of these observed variations
on gut microbiota remain unknown as they could include the different characteristics
in the respective local environment such as water chemistry, diet composition, and the
spectra of infectious microorganisms/viruses [9,32]. Further studies on these possible
factors (including water microbiome, gut content analysis, etc.) would contribute to a better
understanding of gut microbiome modulation.

Collaborating with the results in the present study, this was likely to constitute an
important inference that the host habitats may play a more significant role in governing
gut microbiota than fish species under the specific context. Moreover, the variations in gut
microbial communities were more significant among the foregut samples than between the
hindgut samples, suggesting that the reaction of gut microbiota in response to the changes
in host habitat varies throughout the gut.

5. Conclusions

Given the potentially high biodiversity, it is important to apply next-generation se-
quencing technology to assess the gut microbial community composition in the fish that
inhabit natural environments. The results are helpful for researchers investigating aspects
of nutrition metabolism that could be influenced by the gut microbiota of crucian carp. In
addition, our findings underscore the need to identify the selective pressures governing
microbial community assembly within the gut of fish. Further study on the gut microbiota
of crucian carp should be focused on the assembling process that governs the gut microbial
community composition.
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//www.mdpi.com/article/10.3390/fishes8070369/s1, Figure S1: Microbial complexity based on
rarefaction curves and taxonomic assignment results of the pooled sequences; Table S1: Bacterial
diversity indices in each intestinal sample; Table S2: Microbial community composition at phylum
level; Table S3: The microbial community composition on genus level.; Table S4: The Bray–Curtis dis-
tance and correlation (R2) between the foregut and hindgut microbial community in each individual
fish; Table S5: Classification of the common OTUs.
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