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Abstract: Invertebrates show great diversity in their responses to neural damage. Numerous inver-
tebrate phyla, including gastropods, can replace all or a portion of their nervous systems. Aplysia
species have been utilized extensively in toxicology, ecology, and neuroscience because their neuro-
logical systems react to bodily harm by releasing trophic substances that can stimulate non-neural
tissue regeneration and induce changes in the nervous system. This study aims to assess the putative
role of hemocytes of Aplysia depilans (Gmelin, 1791) by analyzing the presence of Toll-like receptor 2,
inducible nitric oxide synthetase, and, in particular, vimentin and α-tubulin, molecules potentially
implicated in the process of neural regeneration. The results demonstrate that all the aforementioned
proteins are present in hemocytes, suggesting their role in the defense response and their possible
contribution to the neuronal regeneration process of this gastropod. These data provide deeper
insight into the internal defense system of this mollusk.

Keywords: internal defense system; invertebrates; blood cells; mollusca; gastropod

Key Contribution: Presence of neuronal molecules in the hemocytes and their putative role in the
neuronal regeneration process of Aplysia depilans, using samples of integument.

1. Introduction

Physical injuries and neurodegenerative diseases often result in irreversible damage
and the loss of function of the central nervous system (CNS) [1]. Repair of CNS injuries
varies significantly in the animal kingdom [2]. At one extreme are amniotic vertebrates
(reptile, bird, and mammal groups), which have a minimal capacity for neuronal replace-
ment and, thus, neuronal regeneration; at the other extreme, animals such as planarians
(flatworms) and colonial tunicates can repair the entire CNS after a significant injury. These
differences can be attributed to the abundance of multipotent or pluripotent stem cells and
undifferentiated precursors in the cell population [3].

The replacement of all or part of the nervous system has been documented in several
invertebrate phyla, including coelenterates, platyhelminths, annelids, gastropods, and
tunicates. Invertebrates show great diversity in their responses to neural damage. Some of
these may suggest alternative strategies for repair that may apply to different parts of the
complex mammalian nervous system, such as sensory receptor systems, peripheral nerves,
neuromuscular function, or autonomic neural plexuses [4,5].

Invertebrates lack a specific defense system, like jawed vertebrates [6]. However, they
possess an effective innate defense response, which uses biological mechanisms such as
phagocytosis and chemical defenses such as producing oxygen and nitrogen free radicals.
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They also have mechanical–biological barriers such as integument and mucus and can
secrete antibacterial substances [7]. Their internal defense system exploits both cellular
components and humoral factors secreted by the blood cells themselves, such as agglutinins,
cytokine-likes, lectins, antimicrobial peptides, lysins, phenoloxidases, and the metabolites
of the prophenoloxidase cascade [8]. All these components work together with blood cells
to defend the body against pathogens and other foreign substances.

Among invertebrates, adult neurogenesis has been analyzed mainly in arthropods,
several species of insects, and decapod crustaceans [9]. It has been seen that hemocytes play
a crucial role in neuronal regeneration, swiftly migrating to the site of damage, where they
perform a dual role. First, hemocytes help to clear cellular debris and create a conducive en-
vironment for neural regeneration. They phagocytose damaged neural material and release
factors that promote tissue healing. Second, hemocytes exhibit remarkable plasticity by dif-
ferentiating into neural progenitor cells, contributing to the generation of new neurons and
glial cells. This ability of functional adaptation is pivotal in reestablishing functional neural
circuits [10]. The interaction between hemocytes and neural tissue in invertebrates offers
a captivating insight into the regenerative potential of these animals [11,12]. Benton et al.
(2014) showed that hemocytes can invade the neurogenic niche, and their offspring can
differentiate into neurons. This suggests that the brains of crustaceans have “open” niches
populated by blood-borne cells that can differentiate into neural progenitors [13].

In some groups, such as annelids, the CNS is efficiently and functionally regenerated
following mechanical trauma [14,15], and the attraction of defense cells is a crucial step
in activating an adaptive response leading to axonal sprouting. This might suggest that
optimal regeneration requires microglia/macrophages to initiate CNS regeneration [14].
Another study showed that regeneration in the leech Hirudo medicinalis (Linnaeus, 1758)
happened even when glial cells were destroyed by an intracellular injection of protease [16].
In the leech, it has been suggested that blood cells are essential in facilitating and acceler-
ating the regeneration process. Moreover, circulating blood cells appeared to be able to
infiltrate the injured CNS where, together with microglia, they stimulated reparation [17].
Da Silva suggests that molecules released in the acute phase of injury attract hemocytes,
differentiating these cells into other defense cells or lineages [18,19].

This study aims to evaluate the role of hemocytes of Aplysia depilans (Gmelin, 1791)
through the presence of molecules potentially involved in the neuronal regeneration process
and to suggest a functional adaptation of these cells involved in damage repair.

2. Materials and Methods
2.1. Samples and Tissue Preparation

A. depilans samples from our laboratory histoteca were processed according to standard
light microscopy techniques. Sections 4 µm thick, obtained by rotary microtome (LEICA
2065 Supercut, Nussloch, Germany), were placed on each slide. Then, the slides were
deparaffinized in xylene and rehydrated using graded alcohol solutions ranging from 100%
to 30% alcohol to distilled water.

2.2. Histology

For histomorphological and histochemical evaluation, Mallory trichrome staining (04-
020802, BioOptica Milano S.p.A., Milan, Italy), Alcian Blue/Periodic Acid Schiff (AB/PAS,
04-163802, BioOptica Milano S.p.A., Milan, Italy), and May-Grünwald Giemsa (MGG, 04-
081802, BioOptica Milano S.p.A., Milan, Italy) stainings were used. May-Grünwald Giemsa
is the elective stain for blood cells [20–22]. To obtain photos, an Alexasoft TP3100A CMOS
(Alexasoft; Firenze, Italy) digital camera was used.

2.3. Immunofluorescence

A 2.5% bovine serum albumin (BSA) solution was applied to the slides. Following an
overnight incubation period with primary antibodies against iNOS, TLR2, α-tubulin, and vi-
mentin, the sections were subsequently treated with secondary antibodies and Fluoromount
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(Sigma-Aldrich, St. Louis, MO, USA) was used to mount them to prevent photobleaching.
To validate the specificity of immunolabeling, we performed a negative control procedure,
omitting the primary antibodies during the immunofluorescence reaction. The samples
were examined using a confocal laser scanning microscope equipped with a META module
(Zeiss LSM DUO, Carl Zeiss MicroImaging GmbH, Jena, Germany). Two different types of
lasers were used to examine the fluorescence samples: argon (458 nm) and helium-neon
(543 nm). Zen 2011 (LSM 700 Zeiss software, Oberkochen, Germany) was used to enhance
the pictures. We took as many pictures as we could to prevent photodegradation. The
“Display profile” function of Zen 2011 was used to evaluate fluorescence intensity curves.
Table 1 contains information about the antibodies.

Table 1. Data on the antibodies used in this research.

Primary Antibody Supplier Catalogue Number Source Dilution

Anti-iNOS
Santa Cruz

Biotechnology, Inc.,
Dallas, TX, USA

sc-7271 Mouse 1:200

Anti-TLR2 Active Motif, La
Hulpe, Belgium 40981 Rabbit 1:100

Anti-α-Tubulin Sigma-Aldrich, Saint
Louis, MO, USA T6793 Mouse 1:200

Anti-Vimentin Sigma-Aldrich, Saint
Louis, MO, USA SAB1305445 Rabbit 1:150

Secondary antibody Supplier Catalogue number Source Dilution

Alexa Fluor 488
Donkey anti-Mouse
IgG FITC conjugated

Molecular Probes,
Invitrogen,
Waltham,

Massachusetts, USA

A-21202 Donkey 1:300

Alexa Fluor 594
Donkey anti-Rabbit

IgG TRITC
conjugated

Molecular Probes,
Invitrogen,
Waltham,

Massachusetts, USA

A-21207 Donkey 1:300

2.4. Cell Sizes

Hemocytes sizes were measured using the software Alexasoft XEntry v1.0 (Alexasoft,
Firenze, Italy) linked to an Alexasoft TP3100A CMOS (Alexasoft, Firenze, Italy) digital
camera. Using the tool “linear distance”, the greatest length of the granular and agranular
cells found in ten sections and twenty fields were measured. Then, using SigmaPlot version
14.0 (Systat Software, San Jose, CA, USA), means and standard deviations of the cell lengths
were calculated.

2.5. Quantitative Analysis

Ten sections and twenty fields were inspected for each sample to gather information
for the quantitative analysis. The cell positivity was assessed using ImageJ software 1.53e
(NIH Software, Bethesda, MD, USA). After converting the image to 8-bit and removing
the background using the “Threshold” filter, the number of cells was calculated using the
“Analyze particles” plugin. The number of hemocytes that tested positive for iNOS, TLR2,
α-tubulin, and vimentin in each field was assessed using SigmaPlot version 14.0 (Systat
Software, San Jose, CA, USA). The mean values and standard deviations (SD) of the data
are displayed.

3. Results

The epidermis of A. depilans appears as a simple monostratified columnar epithelium,
as shown by Mallory staining (Figure 1). Among the epithelial cells, mucipar goblet cells
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with acid secretion are present, as revealed by AB/PAS histochemical staining (Figure 1).
The epidermis rests on a large layer of loose connective tissue (the subcutis) that lays on
a muscular layer. Compact and well-organized epidermal epithelial cells that possess
a nucleus positioned basally are present. There are also solitary sensory cells, mucous
cells, and supporting cells. A thin mucus layer, underlain by subepidermal mucous
cells, covers the epidermis (Figure 1). Muscular fibers and collagen bundles are oriented
orthogonally and randomly within the underlying connective tissue, representing the
subcutis. Numerous hemocytes scattered throughout the subcutis and near the epidermis
are evident. Two populations of hemocytes, distinguishable by size and staining affinity,
were highlighted with MGG staining. Hemocytes appear in blue or pink, some granular
and others with abundant cytoplasmic portions, lacking granularity (Figure 1).
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Figure 1. Integument sections of A. depilans. (A) Mallory trichrome, 20×, scale bar 40 µm. (B) Mallory 
trichrome, 40×, scale bar 20 µm. A simple, monolayered epithelium (E) with columnar epithelial 
cells is evident. Bundles of collagen and muscle fibers (**) are present in the underlying connective 
tissue (subcutis, S). (C) May-Grünwald Giemsa, 40×, scale bar 20 µm. Several granular (hg) and 
agranular hemocytes (ha), also called hyalinocytes, are evident near the epithelium and in the sub-
cutis. (D) Alcian blue/PAS, 40×, scale bar 20 µm. In the columnar epithelium acid-secreting mucous 
cells (*) are present. 

Figure 1. Integument sections of A. depilans. (A) Mallory trichrome, 20×, scale bar 40 µm. (B) Mallory
trichrome, 40×, scale bar 20 µm. A simple, monolayered epithelium (E) with columnar epithelial
cells is evident. Bundles of collagen and muscle fibers (**) are present in the underlying connective
tissue (subcutis, S). (C) May-Grünwald Giemsa, 40×, scale bar 20 µm. Several granular (hg) and
agranular hemocytes (ha), also called hyalinocytes, are evident near the epithelium and in the subcutis.
(D) Alcian blue/PAS, 40×, scale bar 20 µm. In the columnar epithelium acid-secreting mucous cells
(*) are present.

Based on the May-Grünwald Giemsa staining, two hemocyte populations, granu-
lar hemocytes (hg) and agranular hyalinocytes (ha), were distinguished by size and the
presence of granules (Figure 2).
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Figure 2. Different types of hemocytes in the integument of A. depilans, May-Grünwald Giemsa, 100×,
scale bar 10 µm. (A,B) Hemocyte with blue granules (mean cell length: 18.34 ± 1.91). (C) Hemocyte
without granules (hyalinocyte) (mean cell length: 10.15 ± 0.41).

Immunohistochemically, our results show colocalization of TLR2 and iNOS (Figure 3),
vimentin and iNOS (Figure 4), and vimentin and α-tubulin (Figure 5) in hemocytes. Not all
hemocytes show co-localization of immunoreactivity signal. A high cross-reactivity was
found, as shown by the “display profile” function of the confocal microscope (Figures 3–5).
Zen was also used to recreate the 2.5D graphical reconstruction. This program can directly
translate the fluorescence intensity of each position into the height of the histogram and
the scale bar color difference. This was performed to further confirm the immunoreactivity
of hemocytes to vimentin and α-tubulin (Figure 6).

Quantitative analysis revealed a similar number of hemocytes immunoreactive to
TLR2, iNOS, α-tubulin, and vimentin (Table 2).

Table 2. Quantitative analysis data (n = 3) *.

No. of Hemocytes per Slide

iNOS+ 347.83 ± 47.92

TLR2+ 387.32 ± 40.87

iNOS+TLR2+ 227.36 ± 25.36

Vimentin+ 325.28 ± 37.47

iNOS+Vimentin+ 233.47 ± 28.28

α-Tubulin+ 352.67 ± 38.11

α-Tubulin+Vimentin+ 216.30 ± 16.58
* Number of specimens utilized.



Fishes 2024, 9, 32 6 of 16Fishes 2024, 9, 32 6 of 16 
 

 

 
Figure 3. Immunofluorescence on integument sections of A. depilans. Hemocytes immunoreactive 
for iNOS (green) and TLR2 (red) are evident (arrows). Some hemocytes bind only iNOS antibody. 
Yellow color shows the overlapping (presence) of both antibodies, indicating the colocalization of 
the iNOS (green) and TLR2 (red). 

Figure 3. Immunofluorescence on integument sections of A. depilans. Hemocytes immunoreactive for
iNOS (green) and TLR2 (red) are evident (arrows). Some hemocytes bind only iNOS antibody. Yellow
color shows the overlapping (presence) of both antibodies, indicating the colocalization of the iNOS
(green) and TLR2 (red).
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Figure 4. Immunofluorescence on integument section of A. depilans. Hemocytes immunoreactive for
iNOS (green) and vimentin (red) are evident (arrows). Some hemocytes bind only iNOS. Yellow color
shows the overlapping (presence) of both antibodies indicating the colocalization of the iNOS (green)
and vimentin (red).
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Figure 5. Immunofluorescence on integument section of A. depilans. Hemocytes (arrows) are immu-
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Figure 5. Immunofluorescence on integument section of A. depilans. Hemocytes (arrows) are im-
munoreactive for α-tubulin (green) and vimentin (red). Yellow color shows the overlapping (presence)
of both antibodies indicating the colocalization of the tubulin (green) and vimentin (red).
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4. Discussion

A. depilans, commonly named sea hare, is a gastropod mollusk in the Aplysiidae family.
Its integument covers the entire soft tissue surface, including the head, foot, body, mantle,
and external visceral surfaces [23]. The roles of the integument are to provide a protec-
tive barrier and facilitate respiration, locomotion, nutrient absorption, osmoregulation,
the secretion of substances, and reproduction [24]. Mucus, defense materials, and shell
components are typical secretions. Our histologic results showed that the epidermis of the
sea hare is composed of a simple columnar or cuboidal epithelium. There were individual
sensory cells, support cells, and mucous cells. The epidermis is covered with a thin layer of
mucus supported by subepidermal mucous cells. According to previous investigations,
vascular channels are distributed, and muscle fibers and collagen bundles are randomly and
orthogonally arranged inside the dermis [25,26]. No true dermis exists, as in vertebrates,
but a loose connective tissue representing the subcutis [27]. Several studies have identified
hemocytes by histochemical techniques using May-Grünwald Giemsa, distinguishing dif-
ferent types of hemocytes based on size and the presence of granules [28–34]. We previously
identified two populations of hemocytes in A. depilans, distinguished into granular and
agranular (also called hyalinocytes), based on size and granulations, stained pink and
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blue [35]. Following these studies, we identified two types of hemocytes, larger granular,
with granules in blue, as reported by Yu et al. (2016) [28], and smaller hyalinocytes in pink.

Aplysia species have been used extensively in toxicology, ecology, and neuroscience
because of their bioactive molecules and chemical defenses. In neuroscience, these mollusks
have been an important model organism for studying the functions of neurons due to the
ease of identifying their nerve cells based on their location, size, and electrophysiological
properties [36,37]. The nervous system of gastropods responds to body injury by releasing
trophic factors that can promote non-neural tissue repair and cause changes in the nervous
system. Despite their wide presence in ecosystems and their relevance as model animals,
their internal defense system has only been studied to a limited extent. Our goal was to
evaluate the role of hemocytes in neuronal regeneration in this gastropod.

Consistent with previous studies [35], hemocytes show a co-localization of immunore-
activity signals for TLR2 and iNOS. In previous studies, we demonstrated that the presence
of different molecules may be related to a different cellular function [35,38]. In this study,
not all hemocytes colocalized for the antibodies tested, suggesting a diversification between
phagocytic hemocytes that bind TLR2 and cytotoxic hemocytes presenting only iNOS.

In the CNS, nitric oxide (NO) has been implicated both as a mediator of neurotoxicity
and as a neuromodulator. The presence of both constitutive NO synthase (cNOS) and in-
ducible NO synthase (iNOS) in neurons suggests that NO has several functions in the brain
and supports the possibility that iNOS plays a role in neuronal damage and inflammation
as a result of brain microglia activation and cytokine production [39]. Franchini et al. (1995)
identified an immunoreactive nitric oxide synthetase (NOS)-like protein in Viviparus ater
(De Cristofori & Jan, 1832) hemocytes [40]. Zahoor et al. showed increased NO levels
in B. glabrata hemocytes affected by the parasite Schistosoma mansoni (Sambon, 1907) [41].
Hemocytes from resistant snails had a significantly greater increase in NO production 5 h
after contact with the parasite [42]. NO is involved in numerous cell signaling events and,
depending on the cellular environment, can promote cell survival or cell death. NO has
been implicated in many other biological functions, including development and neuro-
transmission, immune response, feeding behavior, chemosensory activation, olfaction, and
stress response. Also, iNOS is present in epithelial cells, where it is involved in tissue repair,
as reported by previous studies [43–46]. Our investigation on confocal microscopy reveals
that hemocytes of A. depilans are reactive to iNOS, indicating the neuro-immunomodulator
role it plays in the internal defense mechanism of this gastropod.

Toll-like receptors (TLRs) have been recognized as key players in the innate immune
response, implicated in recognizing a wide range of bacterial, fungal, and viral molecular
patterns [47]. In many invertebrates, TLRs have been linked to pathogen detection and the
subsequent production of immune effectors by activating nuclear factor k-activated B cell
(NF-kB) signaling [48]. Genomic studies have also revealed that some invertebrates possess
a vast repertoire of TLRs, as in the sea urchin S. purpuratus [49]. However, a similar number
of membrane-bound receptors have been found in other deuterostomes and protostomes,
including the Pacific oyster C. gigas [50]. In previous studies, we evaluated TLR2 presence
in several metazoans: mollusks bivalves Polititapes aureus (Gmelin, 1791), Cerastoderma
glaucum (Bruguière, 1789) [51], and Mytilus galloprovincialis (Lamarck, 1819) [52]; annelida
Lumbricus terrestris (Linnaeus, 1758) [38]; protochordate tunicate Styela plicata (Lesuer,
1823) [53]; chordates cyclostomes Eptatretus cirrhatus (Forster, 1801) [54]; chondrichthyes
Scyliorhinus canicula (Linnaeus, 1758) [55]; chordates osteichthyes Carassius auratus auratus
(Linnaeus, 1758) [56], Polypterus senegalus (Cuvier, 1829), Lepisosteus oculatus (Winchell,
1864), Clarias batrachus (Linnaeus, 1758) [57], Periophthalmodon schlosseri (Pallas, 1770) [58],
and Danio rerio (Hamilton, 1822) [59]; and in the marine mammal Stenella coeruleoalba
(Meyen, 1833) [60]. TLR can be found in hemocytes more than in other tissues, and its
transcription is significantly upregulated in bacterial and viral infections. It appears that
mollusks maintain a TLR signaling cascade like vertebrates. Single cysteine cluster (scc)
and multiple cysteine cluster (mcc) TLRs, two distinct groups of structurally dissimilar
coexisting receptors, are present in both bivalves and gastropods [61]. However, it is
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recognized that TLRs play a critical role in mediating the molluscan immune response [62].
The mccTLRs have been linked to antibacterial and antiviral responses in the abalone
Haliotis (Linnaeus, 1758) [63], and a TLR of the snail B. glabrata (which was found to be
closely associated with samples resistant to trematode infections S. mansoni) [64].

Tubulin is a dimeric protein that helps to produce microtubules, which are essential
intracellular structures that regulate critical activities such as growth and cell division [65],
and it is highly conserved in metazoans [66]. Tubulin is a component of neurons in
mollusks, as shown by Kaplan et al. (1992) in a study on Doryteuthis pealeii (Lesuer,
1821) [67]. Research by Nejatbakhsh et al. (2011) demonstrated its role in axonal growth
and degeneration in L. stagnalis [68]. Tubulin forms microtubules in the form of subunit
heterodimers of α- and β-tubulin. Tubulin isotypes are shown to be highly conserved
among vertebrates. Interestingly, several cephalopods show these isotypes are comparable
to those in vertebrates, both in structure and function, involved in neuronal growth [69,70].
A study by Moccia et al. (2003) identified, in one of the cytoskeletal mRNAs, the Aplysia
homolog of α1-tubulin [70]. Moreover, the role of α-tubulin in the coelomocytes of L.
terrestris was previously demonstrated [38]. Consistent with the reported data, our results
showed hemocytes immunoreactive to α-tubulin, suggesting a probable involvement of
these cells in neuronal repair mechanisms.

Vimentin has been identified in the cells and tissues of many organs. It has been
described primarily in various cancers and diseases of the immune system in recent
decades [71,72]. Several studies have focused mainly on the role of vimentin in immu-
nity [73,74] and cellular functions [75,76], suggesting that this molecule exerts various
effects on lesions and diseases of the nervous system. It has been demonstrated that vi-
mentin is involved in the promotion/inhibition of axonal regeneration after spinal cord
injury (SCI) in mice [77]. Vimentin is generally found in both gray and white matter in the
spinal cord, and its levels are significantly increased after SCI, suggesting that vimentin
may be involved in the pathogenesis of traumatic spinal cord injury. Early studies found
that silencing vimentin and GFAP (glial fibrillary acidic protein) alleviates the excessive
proliferation of reactive astrocytes and promotes the regeneration of supraspinal axons,
leading to neural circuit reconstruction and locomotor functional rehabilitation [78–80]. In
addition, although vimentin is a mainly intracellular cytoskeletal protein involved in the
regulation of cellular stiffness, cell motility, and cytoplasmic organization, it can also appear
within the extracellular matrix through secretion and on the surface of various cells, often in
association with axonal plasticity, inflammation, and bacterial onset [81]. Vimentin released
from reactive astrocytes and activated macrophages is considered a novel facilitator of
axonal regeneration, and recombinant vimentin exerts neurotrophic effects by promoting
axonal extension after SCI [82]. Recently, the novel functions of vimentin in neural stem
cells (NSCs) were found. It has been shown that vimentin drives proteasomes (molecular
scavengers capable of digesting targeted proteins) to clusters of damaged proteins that
need to be removed for cells to function properly. Mice unable to produce vimentin had
a reduced ability to create new neurons from stem cells at a young age, suggesting that
vimentin is essential for keeping neuronal stem cells spry and productive during aging [83].
In this study, we showed the presence of vimentin in hemocytes; this could indicate a
putative role of these cells in neurogenerative interactions. Cells of the blood lineage are
associated not only with the functions that are usually attributed to them but also with
neuroactive substances that induce other types of cells to differentiate into neural cells.
Another possibility is that cells of the blood lineage are the ones that ultimately differentiate
into neural cells, highlighting an important functional adaptation [10].

A 2022 in silico immunomic study by Kron showed, through the use of InterProScan
and OrthoFinder, that the Aplysia californica (J.G. Cooper, 1863) genome encodes orthologs
of all key components of the classical Toll-like receptor (TLR) signaling pathway, includ-
ing TLR2 [84]. In addition, the study showed that this gastropod also preserves many
nucleotide receptors and antiviral receptors that play a crucial role in vertebrate viral
defense. In A. californica, 39 genes with Toll/interleukin-1 (TIR) domains and leucine-
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rich domains (LRRs) characteristic of TLRs were found [84]. Phylogenetic clustering of
the TLR sequences of A. californica, Biomphalaria glabrata (Say, 1818), Crassosteraea gigas
(Thunberg, 1793), Nematostella vectensis (Stephenson, 1935), Drosophila melanogaster (Meigen,
1830), Strongylocentrotus purpuratus (Stimpson, 1857), and humans revealed lineage-specific
trends in the diversification of TLRs [84]. However, a number of free radical-generating
enzymes have also been identified, including three dual oxidases (DUOX) and two associ-
ated assembly factors (DUOXA), seven nitric oxide synthase (NOS), five NADPH oxidase,
and a peroxidase (loc100533347) [84]. A transcriptomics study (2018) demonstrated, via
qPCR, that A. californica expresses genes encoding for iNOS [85]; also via qPCR, the expres-
sion of several genes in A. californica was evaluated using iNOS primers designed via a
primer-BLAST tool (F: CCGCCGCTCTAATACTTA R: TTCATCAAGGAATTATACA) [86].
Bodnarova et al. (2005) demonstrated biochemically that functionally active NOS is ex-
pressed in A. californica, in all its isoforms; they also suggested that Aplysia NOS shares
common enzymatic features with constitutive mammalian and insect NOS [87]. Perlson
et al. (2005), through a proteomics study, showed that the intermediate filaments in Lymnea
stagnalis (Linnaeus, 1758) were mostly homologous to the vertebrate vimentin expressed in
developing neurons or nerve cells following damage [88].

In conclusion, our study on integument samples, a mechanical–biological barrier in
contact with the external environment, where hemocytes may be more reactive, provides
deeper insight into the internal defense system of A. depilans. As reported in the literature,
hemocytes play a key role in the neuronal regeneration of several mollusks and inver-
tebrates. Coherently, our study evaluated the putative neuro-regenerative role of these
cells in A. depilans using vimentin and α-tubulin antibodies. Furthermore, the hemocytes
examined confirmed their role in the defense response presenting TLR2 and iNOS. These
data may suggest the potential involvement of these cells in the neuronal regeneration of
this gastropod, supporting a morpho-functional adaptation of these cells. Although the
antibodies tested in A. depilans have been validated, further studies are necessary to delve
deeper into the data obtained to advance the understanding of the mechanisms of defense,
repair, and neuronal regeneration of mollusks.
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