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Abstract: As the largest lake in South China, Wanlv Lake is also an important drinking water source
for Guangdong and Hong Kong and is responsible for water supplying of more than 40 million
people in the Guangdong-Hong Kong-Macao Greater Bay Area. The study of fish diversity in Wanlv
Lake can help us to effectively understand the changes and states of its aquatic ecosystem and
provide scientific basis for natural ecological protection, biodiversity, sustainable use and scientific
management of fishery resources. However, research on the lake’s fish is scarce. The high throughput
environmental DNA metabarcoding technology (eDNA technology) of the mitochondrial 12S rRNA
gene sequence was herein used to conduct a preliminary exploration of Wanlv Lake fish diversity.
A total of 10 sampling sites were set up to monitor fish diversity and analyze the composition and
richness of the species. The results revealed a total of 83 genera in 42 families and 17 orders of fish in
the lake, with the highest proportion found in Cypriniformes (38 species), accounting for 45.24% of
the total. Five alien species and eight rare and endangered species were also detected. The proportion
of invasive species was 5.95%, and the combined proportion of rare and endangered species was
9.52%. The results indicated that Wanlv Lake serves as an important drinking water source, and
overall, the condition of fish is satisfactory. However, proactive measures should be implemented to
control the overpopulation of invasive species, as their unchecked proliferation may lead to a decline
in species abundance, particularly among endangered species. This was the first overall assessment
report on fish of the Wanlv Lake via 12S rRNA; the results herein lay a foundation for water quality
assessment of Wanlv Lake as a drinking water source.

Keywords: Wanlv Lake; environmental DNA; fish; drinking water sources; 12S rRNA

Key Contribution: Wanlv Lake is an important source of drinking water for Guangdong, Hong Kong
and Macao, and there are few studies on the status of water quality resources and the status of fish
organisms. We herein firstly reported 83 genera of fish detected in the Lake via eDNA technology.
Among which, five invasive species and eight endangered animals, including some national-level
protected animals, were reported. The analysis of fish diversity and community composition lays
a foundation for the assessment of water quality resources and the protection and management of
the lake.

1. Introduction

Wanlv Lake belongs to the Dongjiang River system and is the largest lake in South
China, with more than 360 green islands, a water area as 370 square kilometers, a storage
capacity of about 13.9 billion cubic meters and an average depth of 30 m. It also serves
as a crucial source of drinking water for the Guangdong-Hong Kong-Macao Greater Bay
Area, supporting more than 40 million people across Guangdong, Hong Kong and Macao.
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Therefore, the ecological and environmental protection, water quality maintenance and sus-
tainable utilization of fishery resources of Wanlv Lake are of great significance. China has
implemented the policy of banning the cultivation of reservoirs in recent years, and the wa-
ter quality and ecological environment of reservoirs around the country have been greatly
improved. But studies on the status of water quality resources and the biological condition
of fish in Wanlv Lake are scarce. Aquatic biological resources are not only an important part
of the aquatic ecosystem but are also the material basis for fisheries development. Fish are
an important embodiment and undertaker of the ecological environment of water bodies,
and fish diversity is a key indicator for monitoring the health of aquatic ecosystems [1].
Fish communities have been widely used as biological indicators to quantify and assess
the degree of degradation and health status of rivers and streams [2]. Accurate assessment
of fish species diversity and community composition is essential for understanding fish
ecology and conservation management [3].

Traditional fisheries resource assessment methods, such as netting, cage fishing and
electric fishing, have been used for routine fisheries monitoring [4], but frequently neces-
sitate the use of invasive sampling techniques, which can be disruptive when studying
biomes [5] and contrary to the original purpose of biodiversity conservation [3]. Moreover,
these methods are often time-consuming, costly, limited in access and environmentally
unfriendly. On the other hand, appearance-based species classification not only requires
professional taxonomic knowledge but is also prone to misclassification. More impor-
tantly, traditional fishery assessment methods may miss essential data needed for fisheries
management in some cases. eDNA has been shown to be a fast and effective tool in fish
monitoring and management for species detection abundance estimation and biodiversity
assessment [6]. The technique can simultaneously identify multiple fish species from a
single water sample and estimate the relative abundance of fish species based on sequence
counts [7]. Moreover, it is more sensitive than traditional survey methods [8]. Therefore,
eDNA metabarcoding has a high application value in the monitoring of lakes, rivers, reser-
voirs and other water areas. Non-invasive, accurate, effective and environmentally friendly
eDNA metabarcoding methods have been increasingly used to investigate environmental
resources in recent years [4].

An increasing number of studies have shown that the amount of eDNA is not only
related to the presence of a species but also to its abundance [9,10]. Previous studies
have confirmed a positive correlation between eDNA and biomass in various aquatic
environments [11], including ponds, lakes, rivers, streams and oceans [10,12,13]. eDNA
metabarcoding can rapidly and accurately detect the range and quantity distribution of
certain endangered species. In some instance, eDNA detection may be more sensitive than
traditional methods for assessing the range and quantity distribution of these species. For
sensitive ecological environments such as nature reserves and wetlands, eDNA can also
realize non-destructive monitoring, reduce the interference of sample collection on the
ecological environment and provide reliable data support for subsequent field investigation
and protection. The eDNA approach has been employed in studying the reproductive
migration of fish [14,15], monitoring spatiotemporal changes in fish communities in both
freshwater and marine systems [16–21] and conducting lake fish surveys. These applica-
tions provide crucial information for local biodiversity conservation and invasive species
management [22–24].

The 12S genetic markers have higher species coverage and detection than Cyt b and
COI [25]. For example, Zhang et al. compared 22 pairs of universal primers of bony
fish with the Silico PCR method and used them in the PCR amplification of river water
samples in Beijing, and found that primers in the 12S rRNA segment could monitor fish
diversity better than primers in other gene segments [3]. In addition, Shu et al. also
confirmed the above views [26]. Therefore, we herein used the short sequence of 12S rRNA
gene as a marker for fish species in Wanlv Lake, and the high throughput metabarcoding
technology was used to conduct a preliminary exploration of fish diversity composition.
The study represents the first comprehensive assessment report on the fish of Wanlv Lake
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using 12S rRNA, providing essential data support for biodiversity conservation in the lake.
Additionally, it offers a valuable reference for the resource survey of other aquatic species.

2. Materials and Methods
2.1. Sampling Locations and Environmental DNA Sample Collection

A total of 10 sites were surveyed across the Wanlv Lake in October 2022 (Figure 1).
A total of 1 L of near-surface water samples was collected at each site using a sterile
water collector. Three replicate samples were collected, stored in sterile plastic bottles
and transported back to the laboratory. The water sample was vacuum-filtered using a
nitrate fiber filter membrane with a diameter of 47 mm and an aperture of 0.45 µm [27].
Each filter membrane filters the water sample from one sampling point (three replicates
of one sampling point were used for filtration using three membranes) and filters the
corresponding negative control at the same time. After filtration, they are respectively
loaded into sterile frozen storage tubes. The filter membrane was stored in a 2 mL sterilized
centrifuge tube and frozen at −80 ◦C until DNA extraction.
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2.2. DNA Extraction and PCR Amplification

To control contamination during DNA extraction, a blank filter was included in
each set of extracts and all eDNA extracts were stored at −20 ◦C. The DNeasy Blood
and Tissue kit from QIAGEN was utilized for eDNA preparation [27], and the “Teleo02”
primer pair was employed for PCR amplification. The forward primer sequence was
5′-AAACTCGTGCCAGCCACC-3′, and the reverse primer sequence was 5′-GGGTATCTA
ATCCCAGTTTG-3′ [28], targeting fragments with a length ranging from 129 bp to 209 bp.
The total amplification system was set as 25 µL including 5 × reaction buffer 5 µL,
5 × GC buffer 5 µL, dNTP (2.5 mM) 2 µL, 1 µL each of upstream and downstream primers,
DNA template 2 µL, ddH2O 8.75 µL and Q5 DNA Polymerase 0.25 µL. The amplification
conditions were set as follows: pre-denaturation at 98 ◦C for 2 min, denaturation at 98 ◦C
for 15 s, annealing at 55 ◦C for 30 s, extension at 72 ◦C for 30 s and a final extension at
72 ◦C for 5 min; the total number of cycles was set at 30. The average length of the final
amplification was 180 bp. Each PCR blank uses 1 µL ddH2O as a template to ensure that
there is no contamination during the PCR process. PCR products were detected with 2%
agarose gel electrophoresis and purified using a DNA purification kit (magnetic Vazyme
VAHTSTM DNA Clean Beads). Since no target DNA was amplified from the negative
control, no further analysis of the negative control was performed.

The PCR products were quantified with fluorescence using the Quant-I T Pico Green
dsDNA Assay Kit and a Microplate reader (Bio-Tek Instruments, Inc., Winooski, VT, USA,
FLx800). Sequencing library construction was performed using the NEB Next Fast DNA
Library Prep Set for Ion Torrent 114 kit (E6270) [1]. The quality of the constructed libraries
was assessed by gel electrophoresis and quantified using the Quant-I T Pico Green dsDNA
Assay Kit on a Promega Quant I Fluor fluorescence quantification system.

2.3. High throughput Sequencing and Bioinformatics Analysis

The Illumina Mi Seq sequencer (Illumina Guangzhou Ruijie Biological Technology
Co., LTD, Guangzhou, China) [29] for double-end (Paired-end) sequencing of community
DNA fragments was used [30]. The raw data was saved in FASTQ format. The quality
of the original reads was assessed using FastQC method [31] with the tails of low quality
(Phred score < 20 by default) pruned. QIIME2 dada2 software was used to remove primers,
splicing, quality filtering, de-weighting, de-chimerism, clustering and other steps of the
original sequencing data [32,33]. The fastq_filter module was used to control the quality of
the splicing sequence. The cluster_size module was used to cluster high-quality sequences
at 97% similarity level [34]. The OTUs were then classified with NCBI GenBank database
via BLAST [35]. Only the Operational Taxonomic Units (OTUs) with BLAST results show-
ing ≥97% similarity were used for further analysis. To avoid sequencing errors, annotated
sequences with less than 0.3% of read counts in each sample were discarded [18,36]. The
bar histogram was plotted using the bar function in the basic package in Rv3.5.3 [37].

2.4. Fish Abundance and Biodiversity Analysis

The intra-community diversity (α diversity) and inter-community diversity (β di-
versity) were used for the evaluation of the community structure of fish in Wanlv Lake.
The Shannon, Simpson and Chao1 indices [38–40] were calculated to determine the level
of alpha diversity. QIIME2 software was used to conduct non-metric multidimensional
scaling analysis (NMDS) to characterize the spatial and temporal distribution pattern of
fish community structure. Stress coefficient was used to measure the reliability of NMDS
results, and principal coordinates analysis (PcoA) was used to test the differences in fish
community structure.
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3. Results
3.1. High throughput Sequencing Results

After removing primer fragments and conducting OTU clustering, the quantity of
clean sequence data for each sample was counted and the length distribution of high-quality
sequences in all samples is analyzed, as shown in Table 1, Figure 2.

Table 1. Statistical table of Wanlv Lake samples’ sequence data.

Sample Input Merged Filtered Non-Chimeric Non-Singleton

1 96,862 81,288 79,538 74,130 73,979
2 91,078 69,598 67,006 60,969 60,803
3 90,951 82,293 81,000 79,009 78,910
4 110,313 91,375 88,325 78,244 77,857
5 85,417 80,750 78,125 76,399 76,362
6 92,474 81,288 80,103 77,798 77,744
7 91,385 65,884 64,406 51,212 50,643
8 93,885 73,837 72,519 65,531 65,264
9 85,852 82,070 80,476 76,691 76,516
10 98,233 95,671 92,226 84,840 84,460

Note: The sample column in the table is the sample name; the Input column is the original data volume; the
merged column is the number of sequences after splicing, the amount of valid sequences; the filtered column is the
amount of data after removing low quality sequences; the Non-chimeric column is the amount of sequences after
removing chimeras, the amount of high quality sequences; the Non-singleton column is the amount of sequences
after removing singletons.
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3.2. Wanlv Lake eDNA Species Annotation

The identified taxonomy results via BLAST to the NCBI GenBank database were
statistically analyzed to show the annotation of species as shown in Table 2. It can intu-
itively compare the OTUs of different samples and the difference of classification status
identification results.
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Table 2. Statistical table of the annotated results of species taxonomy in Wanlv Lake.

Sampling Site Class Order Family Genus Species Unclassified

1 5 0 17 14 29 644
2 4 0 13 11 30 933
3 5 0 8 14 31 823
4 4 1 16 27 48 1146
5 3 0 10 19 41 2187
6 1 0 13 18 51 1302
7 2 0 10 10 42 538
8 7 1 17 35 53 2977
9 3 3 9 17 29 2445

10 4 4 7 23 26 1127

3.3. Fish Distribution in Wanlv Lake

The composition of the top twenty dominant species at each locality at the taxonomic
level of order, family and genus were plotted as separate histograms (Figure 3a–c). At the
genus level, the results showed that sampling sites 1, 2, 3, 7, 8, 9 and 10 had the largest pro-
portion of the genus Ctenopharyngodon, with site 7 having the largest proportion; meanwhile,
sampling sites 4, 5 and 6 had a large proportion of the genus Cirrhinus, with site 4 having
the largest proportion (Figure 3a). At the family level, the results showed that sampling
sites 1, 2, 3 and 4 had large proportions of the number of the family Lutjanidae, while the
remaining sampling site had a large proportion of the family Cyprinidae (Figure 3b). At
the genus level, the results showed that the Perciformes were the dominant species group
at sampling sites 1, 2, 3 and 4, while the Cypriniformes were the dominant species group at
the remaining sites (Figure 3c).

1 

 

     

(a)  (b)  (c) 

 
Figure 3. Histogram of fish species composition at the order, family, and genus levels in Wanlv Lake
((a) genus level; (b) family level; (c) order level).

3.4. Analysis of Alpha Diversity of Fish in Wanlv Lake
3.4.1. Alpha Diversity Indexes

The Chaol index analysis for fish at each sampling site in Wanlv Lake showed that the
lowest number of OTUs (1002.53) was observed at site 5 and the highest number of OTUs
(1201.55) was observed at site 10; the Shannon index analysis showed that the highest
community diversity was observed at site 10, while the lowest was found at site 6, which
was consistent with the trend of Simpson’s index. Other community diversities of different
sites were among the region of the highest and lowest distribution (Table 3). The results
indicate that the diversity of fish communities varied among the different sampling sites.
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Table 3. Fish alpha diversity index for Lake Wanlv.

Sampling Site Chao 1 Shannon Simpson

1 1013.34 6.73 0.93
2 1007.79 6.94 0.67
3 1152.89 6.48 0.96
4 1189.63 6.89 0.82
5 1002.53 6.93 0.71
6 1201.55 5.78 0.98
7 1031.51 6.79 0.92
8 1005.41 6.83 0.89
9 1163.61 6.46 0.97
10 1013.34 7.03 0.61

Note: The Sampling site column in the table was the sample name. The subsequent columns correspond to the
alpha diversity index calculated for each sample at the same sequencing depth. Chao l indices characterized
richness, and Shannon and Simpson indices characterized diversity.

3.4.2. Species Accumulation Curve Analysis

The number of OTUs observed tends to stabilize as the sequencing depth increases,
indicating that the number of eDNA samples is sufficient to reflect the fish diversity of
Wanlv Lake. The species accumulation curves of the Wanlv Lake eDNA samples are shown
in Figure 4.
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the blue shading reflects the confidence interval of the curve. The results reflect the rate of increase in
new species observed when the sample size is continuously expanded over the course of sampling
the sample population.

3.5. Analysis of Beta Diversity of Fish in Wanlv Lake

With the Bray–Curtis distance matrix, the similarity or difference in fish species compo-
sition between samples was compared based on sequence abundance at each sampling site.
For this, six sampling sites with many dominant fish species were selected. Sampling sites
1, 3 and 6 had similar fish species diversity, while sampling sites 2, 4 and 5 had different
fish composition from other sampling sites. PCoA (Figure 5a) and NMDS (Figure 5b)
analyses showed that there were certain differences and similarity in the composition of
fish community at different sampling sites.
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3.6. Analysis of Fish Diversity in Wanlv Lake

A total of 36 species of fish were detected in Wanlv Lake based on eDNA, belonging
to 6 orders, 15 families and 36 genera (Table 4, Table S1 Supplemental Material). In terms
of the composition of the fish fauna, at the order level, the order of Cypriniformes had
the highest number of species, with 20 species, accounting for 55.56% of the total number
of fish species, which was followed by Perciformes order with 10 species, accounting
for 27.78%, and Siluriformes order with 3 species, accounting for 8.33%. Other orders
including Synbranchiformes, Clupeiformes and Myctophiformes, had the lowest number
of species, each including only one species, accounting for 2.78%, respectively (Figure 6a).
At the family level, Cyprinidae family had the highest number of species with 20 species,
accounting for 55.56% of the total number of species, which was followed by Carangidae
family and Siluridae family with 2 species each, accounting for 5.56%, and other families
including Synbranchidae, Percichthyidae, Serranidae, etc., having only 1 species each,
accounting for 2.78%, respectively (Figure 6b). A heatmap of species distribution between
sampling sites provides a more direct view of the number and dominant fish distribution
at each site (Figure 7).

Table 4. List of fish species in Wanlv Lake.

Serial Number Order Family Species

1 Synbranchiformes Synbranchidae Monopterus albus
2 Perciformes Percichthyidae Siniperca chuatsi
3 Serranidae Epinephelus
4 Cichlidae Oreochromis
5 Gobiidae Rhinogobius filamentosus
6 Carangidae Decapterus
7 Carangidae Trachurus japonicus
8 Percidae Acerina cernua
9 Gerreidae Gerres decacanthus
10 Sciaenidae Larimichthys crocea
11 Lobotidae Lobotes surinamensis
12 Clupeiformes Clupeidae Clupanodon thrissa
13 Cypriniformes Cyprinidae Megalobrama terminalis
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Table 4. Cont.

Serial Number Order Family Species

14 Cyprinidae Culte alburnus
15 Cyprinidae Opsariichthys bidens
16 Cyprinidae Acrossocheilus fasciatus
17 Cyprinidae Xenocypris davidi
18 Cyprinidae Metzia lineata
19 Cyprinidae Rhodeus spinalis

20 Cyprinidae Hypophthalmichthys
molitrix

21 Cyprinidae Squaliobarbus curriculus
22 Cyprinidae Cyprinus carpio
23 Cyprinidae Hemiculter leucisculus
24 Cyprinidae Ptychidio jordani
25 Cyprinidae Cirrhina molitorella
26 Cyprinidae Ctenopharyngodon idella
27 Cyprinidae Sinocyclocheilus

28 Cyprinidae Hypophthalmichthys
molitrix

29 Cyprinidae Sarcocheilichthys parvus
30 Cyprinidae Microphysogobio
31 Cyprinidae Carassius auratus
32 Cyprinidae Osteochilus salsburyi
33 Siluriformes Siluridae Silurus asotus
34 Plotosidae Plotosus
35 Siluridae Hypostomus plecostomus
36 Myctophiformes Myctophidae Stenobrachius leucopsarus
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29  Cyprinidae Sarcocheilichthys parvus 
30  Cyprinidae Microphysogobio  
31  Cyprinidae Carassius auratus  
32  Cyprinidae Osteochilus salsburyi 
33 Siluriformes Siluridae Silurus asotus 
34  Plotosidae Plotosus 
35  Siluridae Hypostomus plecostomus 
36 Myctophiformes Myctophidae Stenobrachius leucopsarus 
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4. Discussion
4.1. Status of Fish Diversity in Lake Wanlv

Aquatic biological resources can reflect the health of aquatic ecosystem, providing the
material basis for fisheries development. Fish diversity serves as a biological indicator to
quantify and assess the water’s ecological environment [1]. The Wanlv Lake is the largest
lake in South China and serves as an important drinking water source for the Guangdong-
Hong Kong-Macao Greater Bay Area, providing water to more than 40 million people. The
assessment of water ecological quality is, therefore, of great significance. However, research
on the lake is scarce. We herein firstly reported the fish diversity of the lake via 12S rRNA
to quantify and assess water ecological environment and fisheries development.

In this study, a total of 17 orders, 42 families and 83 genera were detected by eDNA
metabarcoding technology in Wanlv Lake. Due to sequence limitation (the Illumina Mi Seq
sequencer we use has a short sequencing time and fast speed, but the disadvantage is that
the length of the sequenced fragments is short, so some specific species and genera may not
be identified in the sequencing process) [41,42] and the lack of accurate species information
of GenBank database [43], as well as the limitation of the sequencing read length, some
specific species and genera cannot be identified. Therefore, not all feature sequences can
be annotated at the species and genus level during the actual analysis, which were then
ranged to the unclassified database.

Dongjiang River is one of the three major rivers in the Pearl River system of South
China, with the Wanlv Lake belonging to a tributary of the middle reaches. Relevant
literature has mentioned that the Pterygoplichthys spp. has established a self-sustaining
species group in the Pearl River, including Amazon Sailfin Catfish and Vermiculated Sailfin
Catfish (P. disjunctivus), as well as the hybrids of these two species [44]. The detection of
these three species can provide evidence that the fish have spread along the river system.

Most species monitored in Wanlv Lake were Cypriniformes, and the dominant species
were Ctenopharyngodon and Cirrhinus. Five exotic species were monitored, including
pterygoplichthys spp., Oreochromis mossambicus, Clarias gariepinus, Ictalurus punctatus and
Gambusia affinis. Gratifyingly, eight rare and endangered species were detected, including
Acipenser sinensis, Anguilla japonica, Cranoglanis bouderius, Ptychidio macrops, Pseudorasbora
elongate, Squalidus minor, Gymnocypris potanini and Sinocyclocheilus. According to the Red
List of Vertebrates classification of endangerment, there are three vulnerable species, includ-
ing Acipenser sinensis, Cranoglanis bouderius and Pseudorasbora elongata. Among them, the
Acipenser sinensis is a national Class I protected wild animal in China and assessed as criti-
cally endangered on the IUCN Red List of Threatened Species (IUCN) [45]. Furthermore,
there were five endangered species, namely Sinocyclocheilus, Ptychidio macrops, Squalidus
minor, Gymnocypris potanini and Anguilla japonica. while the Sinocyclocheilus and Anguilla
japonica are Class II protected wild animals.

4.2. Analysis of Alpha and Beta Diversity of Fish in Wanlv Lake

Chao1 index is used to estimate the number of OTUs in a community, which can reflect
the total number of species in an ecosystem [2]. In this study, the Chao1 index ranges from
1002.53 to 1201.55, respectively, with large differences among samples, especially in sites
5 and 6. The S6 station is close to the east Longfeng Island, near the Wanlv Lake Moon
Bay tourist area, close to the shore, and the water depth is shallower than other stations.
The chlorophyll concentration is higher than the far bank station and the composition of
fish species is slightly different from other stations. It may be due to the differences in
sampling sites. The Shannon and Simpson indices were used to estimate biodiversity in
samples and commonly used to quantitatively describe biodiversity within an area [39,40].
In this study, the Shannon and Simpson indexes ranged from 5.78 to 7.03 and from 0.61 to
0.98, respectively, with similar distribution ranges and trends. The results showed that the
number of species at each site was similar, with no significant differences observed.

PCoA and NMDS analysis showed that there were significant differences between
sites 2 and 4, possibly because the river at site 2 came from the tributaries of Xinfengjiang
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Reservoir, while sampling point 4 was formed by the confluence of other tributaries;
therefore, different geographical locations resulted in the local changes of plants and
plankton, which further resulted in different distribution of fish.

4.3. Monitoring and Protection of Invasive Species in Wanv Lake

The invasion of non-native species is considered one of the major threats to global
ecosystem functions and services [46], as these species are known for being highly com-
petitive and often result in changes to habitat or resource use by local residents [47]. The
abundance of exotic fish sequences from this survey suggests that Gambusia affinis were
likely to have formed stable populations in Wanlv Lake. Meanwhile, others, including
O. mossambicus, C. gariepinus and I. punctatus, were likely to be occasional species resulting
from farm escapes or release activities [48]. Exotic fish will crowd out the living envi-
ronment of indigenous fish, affecting the survival and reproduction of other species [29].
G. affinis prey on zooplankton in large numbers [46], causing phytoplankton to proliferate
and leading to a decline in water quality. However, a review of the data revealed that the
water quality of Wanlv Lake was at Class I standard year-round, indicating that the number
of G. affinis was low. Nonetheless, due to their competitive impact on native species [49,50]
and their high attack frequency and feeding rate [50], G. affinis may affect the survival and
reproduction of other species, potentially leading to the extinction of native species. There-
fore, continuous monitoring of G. affinis over time is advisable. The relevant departments
should enhance the management of aquaculture to prevent and control the invasion of
alien species, reduce the incidence of aquaculture escapes and actively promote awareness
of the ecological harm caused by alien species to enhance the public’s understanding of
ecological security.

4.4. eDNA Method Can Be Used as the First Choice for Long-Term Monitoring of Important
Water Sources

In the context of global change, the decline of biodiversity is one of the major challenges
facing humanity in the 21st century [51], and fish diversity as an important component of
biodiversity is also in recession [52,53], as the decline of fish diversity is also threatening
aquatic ecosystem functions, fisheries economies and human livelihoods [54]. Therefore,
biodiversity monitoring is becoming more and more important [55]. In addition, protecting
ecosystems from the degradation caused by invasive species can help protect species at
risk and in critical habitats.

DNA metabarcoding is a suitable tool for the analysis and monitoring of large scale
pooled samples, as it is capable of generating and detecting millions of DNA reads, thus
allowing simultaneous species identification and analysis [34]. In addition, compared
with traditional biological monitoring methods, uncaught fish can be found in traditional
monitoring with high sensitivity, and can be used for rare and endangered species or
invasive species research or early warning [56,57]. The fish we tested this time included
some endangered and rare species, such as G. affinis. From the results of the investigation
of Wanlv Lake, it is clear that environmental DNA metabarcoding has the potential to
contribute to the study of biodiversity and ecosystem function. Therefore, environmental
DNA metabarcoding technology can be used as the first choice for long-term monitoring of
the ecosystem of Wanlv Lake.

5. Conclusions

In this study, the preliminary monitoring of Wanlv Lake using eDNA technology
showed that there were 83 species of fish, including 5 exotic species and 8 endangered
species. The fish, as the core of aquatic ecosystem, not only play an important role in the
ecosystem but also reflect the environmental status of the aquatic ecosystem, which is
crucial for the material cycle, energy flow, self-regulation and stability of the ecosystem.
Therefore, the conservation and rational use of the aquatic biological resources of Wanlv
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Lake is of great significance in promoting the high-quality development of fisheries and
maintaining ecological security.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fishes9030086/s1, Table S1: Fish detection at each sampling point
in Wanlv Lake based on eDNA metabarcoding technology.
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