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Abstract: I present here a new method that allows the introduction of a discrete auxiliary symmetry
in a theory in such a way that the eigenvalue spectrum of the fermion functional determinant is
made up of complex conjugated pairs. The method implies a particular way of introducing and
integrating over auxiliary fields related to a set of artificial shift symmetries. Gauge fixing the artificial
continuous shift symmetries in the direct and dual sectors leads to the appearance of direct and dual
Becchi–Rouet–Stora–Tyutin (BRST)-type global symmetries and of a symplectic structure over the
field space. Such a method may allow the extension of the applicability of quantum Monte Carlo
methods to some problems plagued by the fermionic sign problem.
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1. Introduction

The P vs. NP problem is known to have significant implications in many areas of science,
including physics, mathematics, and information theory [1]. The main question is as to whether
some specific classes of problems can be efficiently treated via algorithmic methods. In this paper I
present a constructive approach to this problem based essentially on some topological and geometrical
arguments. While researchers speculate about this question [2] and give several interpretations of
possible results, there have been very few attempts to analyze the problem from perspectives other
than purely algorithmic. As shown in [3] the quantum Monte Carlo phase sign problem can be mapped
into a general NP-complete problem. I will follow this paper for a short introduction into the statistical
aspects of the subject. The idea behind Monte Carlo simulations is to replace the direct calculation of
sums of the form

< A >= 1
Z ∑c∈Ω A(c)p(c); Z = ∑c∈Ω p(c) (1)

over a high-dimensional space Ω of configurations {c} with the sum over a set of M configurations
{ci} from Ω according to the distribution p(ci). The average is then calculated as

< A >≈ Ā =
1
M

M

∑
i=1

A(ci) (2)

The statistical error of the above calculation is given by

∆A =
√

VarA(2τA + 1)/M (3)

VarA being the variance of A and τA measuring the autocorrelations of the sequence {A(ci)}.

Condens. Matter 2017, 2, 33; doi:10.3390/condmat2040033 www.mdpi.com/journal/condensedmatter

http://www.mdpi.com/journal/condensedmatter
http://www.mdpi.com
http://dx.doi.org/10.3390/condmat2040033
http://www.mdpi.com/journal/condensedmatter


Condens. Matter 2017, 2, 33 2 of 26

The Monte Carlo approach permits the evaluation of the same average in polynomial time, as
long as τA does not increase faster than polynomial in the number of particles. For physical systems
the sum one needs to calculate changes as follows

< A >= 1
Z Tr[Aexp(−βH)]; Z = Tr(exp(−βH)) (4)

where β is the inverse temperature and Z is the partition function. A Monte Carlo technique can still
be applied to reduce the exponential scaling of the problem, but, as specified in [3], only after the
mapping of the quantum model on a classical one. The nature of this mapping was considered by [3],
and then [4], to be a Taylor expansion.

Z = Tr(exp(−βH)) =
∞

∑
n=0

−βn

n!
Tr(Hn) (5)

=
∞

∑
n=0

∑
i1,...in

−βn

n!
< i1|H|i2 > ... < in|H|i1> (6)

=
∞

∑
n=0

∑
i1,...in

p(i1, ...in) = ∑
c

p(c) (7)

For each order n in the expansion, n sums were inserted over a complete basis set of states {|i >}.
The configurations are sequences of n basis states, and the weight p(c) is associated to the summand
above. The average now becomes

< A >=
1
Z

Tr[Aexp(−βH)] =
1
Z ∑

c
A(c)p(c) (8)

As long as the weight p is positive, a standard Monte Carlo technique can be applied. In fermionic
systems this is not true as negative weights are possible. It is argued in [3] that although a change of the
basis {|i >} that makes the weights always positive is possible, the complexity of the method needed
to find the required transformation must be exponential. Also, the authors of [3] map the sign problem
into a problem that is NP-complete. This is of course correct if one follows the above steps. The main
scope of this paper is to suggest that some assumptions in [3] can be avoided when considering a
different quantization prescription and that a system can be mapped into an NP-complete problem but
still have a polynomial solution if analyzed from the perspective of the quantization of gauge theories.
Similar arguments in favor of the P = NP conjecture in the context of quantum field theories have been
discussed by [5] and [6]. The issue remains unsolved, and this paper makes no claim towards one side
or the other. However, it is interesting to analyze the problem not only via quantum field theories as
done in [5,6] but also in terms of gauge field theories. This attempt is made here. A gauge symmetry
can be seen as a redundancy of the mathematical formulation. As shown by Batalin and Vilkovisky
in [7], if one is willing to lose the explicit visibility of some properties, one can reduce the gauge
symmetry and transform a gauge theory into a non-gauge one. In this paper, I will follow the opposite
path. I construct a theory that has artificial gauge symmetries introduced in such a way that a discrete
symmetry to be associated with an artificial “time reversal” invariance appears. Following [8] the
presence of such a symmetry in a theory permits the avoidance of the sign problem. This construction
is done by using the field–antifield [9,10] quantization of gauge theories with general algebras.

I partially follow the description by Alfaro and Damgaard [11,12] in order to show the effect
of the quantization of a field theory with fermions, how the change in sign appears, and how one
can relate classical and quantum descriptions in a different way. I also make the connection between
geometry (symmetry) and topology (cohomology) by introducing the Becchi–Rouet–Stora–Tyutin
(BRST), anti-BRST, and dual-(anti)BRST [13] operators associated to the de-Rham cohomology. I define
and use the Hodge star operation [14,15] in this context in order to generate a discrete symmetry. I
make use of the intrinsic symplectic structure of the general field-anti-field functional space in order to
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generate a Kahler structure ([16,17]). I also use the fact that the extension of the field space towards an
even- dimensional space is always possible. The end result is a general quantum field theory free of
the Monte Carlo sign problem and with no apparent exponential growth in complexity.

2. Mathematical Background

2.1. Hodge Star and Hodge Duality

Let (M, g) be a N = 2d-dimensional manifold, for which we can define the ∗ operator in the
following way [18]:

α ∧ ∗β = gp(α, β)dvg; α, β ∈ ∧N (9)

We have also that (∗∗) = 1 on ∧N , which means that ∧N splits into eigenspaces as

∧N = ∧+ + ∧− (10)

where the two eigenspaces correspond to eigenvalues +1 and −1, respectively. A d-form which
belongs to ∧+ is called self-dual whereas if it belongs to the other eigenspace it is called anti-self-dual.
An important remark to be done here is that given a p-vector λ ∈ ∧pV then ∀θ ∈ ∧d−pV there exists a
wedge product such that λ∧ θ ∈ ∧d. The (anti)BRST and dual-(anti)BRST operators are then equivalent
to the operators:

δa, δb : ∧k → ∧k+1 (11)

δ, δ̄ = ∗δa,b∗ : ∧k → ∧k−1 (12)

∆ = δa,b(∗δa,b∗) + (∗δa,b∗)δa,b : ∧k → ∧k (13)

In the context of algebraic geometry these are ordered as follows: the exterior differential, the
coexterior (dual) differential, and the Laplace operator. The exact and co-exact forms are orthogonal.
The Hodge theorem allows the identification of a unique representative for each cohomology class
as belonging to the kernel of the Laplacian defined for the specific complex manifold. If this is put
together with the definition of the Kahler manifold, we obtain extra (discrete) symmetries in the Hodge
structure of the manifold. In the main paper, the dual operators acting on the field space have been
introduced in a general context. For a practical description in the context of field-spaces, see [19].
There, the author starts from a field theory with physical terms and identifies the discrete symmetry
as the one induced by the Hodge-∗ operator in the physical context. In the current approach, the BV
(Batalin–Vilkovisky) formalism generates the usual even-dimensional symplectic space. Dualization of
the BRST–anti-BRST operators in this work is done using the extended symplectic field structure. One
is not supposed to assume physicality of the terms involved.

2.2. Internal Spaces and Duality

The use of internal spaces in order to naturally define duality operations is not new. In fact I
here follow [20] to show that the construction of an internal space is useful in this context and that a
discrete Z2 symmetry can appear. I start by following [20] with an example of even-dimensional (2n)
electrodynamics. Let A be a general (n− 1) form and Fk1...kn its associated field strength:

Fk1...kn = ∂[kn Ak1...kn−1]
(14)

∗ Fk1...kn =
1
n!

εk1...k2n Fkn+1...k2n (15)

Given the action, the equation of motion, and the Bianchi identity as

S = −cn

∫
d2nxFk1...kn Fk1...kn (16)
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∂k1 Fk1...kn = 0 (17)

∂k1 ∗ Fk1...kn = 0 (18)

respectively, (cn is a constant, k j is the tensorial index) we can see that at the level of the Bianchi identity
and the equation of motion the dual operation is a symmetry. Nevertheless, in general the second
power of the dual operation has a different structure depending on the dimension of the space:

∗ ∗F =

{
F i f D = 4k− 2
−F i f D = 4k

(19)

As one can see, the dual ∗ is not well defined for the two-dimensional (2D) scalar or for the 4k− 2
dimensional extensions. Its definition has been enlarged [20] by making an internal structure of the
potentials in the theory manifest. One should note that this has been achieved by using a canonical
transformation and that the same can be achieved via BRST. I will enlarge the set of fields (alternatively
the Hilbert space) by giving them an internal structure of the form (α, β). The dual operation is now
defined as

F̃α = εαβ ∗ Fβ, D = 4k (20)

F̃α = σ
αβ
1 ∗ Fβ, D = 4k− 2 (21)

˜̃F = F (22)

with σ
αβ
1 being the first Pauli matrix. In this case self and anti-self dualities are well defined in any

D = 2k dimensional space. One can start with the first order form of the theory:

S =
∫

dDx[Π · Ȧ− 1
2

Π ·Π− 1
2

B · B + A0(∂ ·Π)] (23)

Maxwell’s Gauss constraint can be generalized to precisely be the extended curl (ε∂) =

εk1k2...kD−1 ∂kD−1 . Then
Π = (ε∂) · φ (24)

B = (ε∂) · A (25)

where φ is a ( d
2 − 1)-form potential, A is a generalization of the vector potential, A0 is the general

multiplier that enforces the Gauss constraint, the antisymmetrization of ∂ is defined as

(ε∂) = εk1k2...kD−1 ∂kD−1 (26)

and in general the notation
Φ ·Ψ = Φ[k1...kD−1]

Ψ[k1...kD−1]
(27)

is used to imply antisymmetrization via the brackets. Now, I construct an internal space of potentials
where duality symmetry is manifest (Φ+ and Φ− represent the new field structure). The dual projection
can be defined now as a canonical transformation of the fields in the following way:

A = (Φ+ + Φ−) (28)

Π = η(ε∂)(Φ(+) −Φ(−)) (29)

η = ±1 (30)

The action can be rewritten in terms of these fields as

S =
∫

dDx{η[Φ̇(α)σ
αβ
3 B(β) + Φ̇(α)εαβB(β)]− B(β) · B(β)
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where B(β) = (ε∂ ·Φ(β)) and σ
(αβ)
3 and σ

(αβ)
2 = iε(αβ) are the Pauli marices. We see that the symplectic

part factorizes in two parts: one involving the third Pauli matrix and the other one the second Pauli
matrix. For a dimension D = 4k the first term is the generalization of the 2D chiral bosons. The Z2

symmetry manifests itself in the transformation Φ(±) ←→ Φ(∓). The second term becomes a total
derivative. For D = 2k the first term becomes a total derivative and the second term explicitly shows
the symmetry of SO(2).Although the complete diagonalization of the action in 3D cannot be done
in coordinate space, a dual projection is possible in the momentum space [20]. Let me introduce
a two-basis {êa(k, x), a = 1, 2} with (k, x) being conjugate variables and the orthonormalization
condition given as ∫

dxêa(k, x)êb(k′, x) = δabδ(k, k′) (31)

The vectors in the basis can be chosen to be eigenvectors of the Laplacian, ∇2 = ∂∂, and

∇2 êa(k, x) = −ω2(k)êa(k, x) (32)

The action of ∂ over the êa(k, x) basis is

∂êa(k, x) = ω(k)Mab êb(k, x) (33)

The two previous equations give
M̃M = −I (34)

where M̃ab = Mba. The canonical scalar and its conjugate momentum have the following expansion

Φ(x) =
∫

dkqa(k)êa(k, x) (35)

Π(x) =
∫

dkpa(k)êa(k, x) (36)

where qa and pa are the expansion coefficients. The action appears in this representation as a
two-dimensional oscillator. The phase space is now four-dimensional, representing two degrees
of freedom per mode,

S =
∫

dk{pa q̇a −
1
2

pa pa −
ω2

2
qaqa}. (37)

Now we can introduce the following canonical transformation

pa(k) = ω(k)εab(ϕ
(+)
b − ϕ

(−)
b ) (38)

qa(k) = (ϕ
(+)
a + ϕ

(−)
a ). (39)

The action becomes S = S+ + S− where

S± =
∫

dkω(k)(±q̇aεabqb −ω(k)qaqa). (40)

As expected, this action presents the Z2 symmetry under the transformation ϕα
a → σ

αβ
1 ϕ

β
a .

This is a particular example. However, the field-anti-field prescription used in the main paper
practically has a similar role and is defined in general. It generates a symplectic even-dimensional field
space suitable for quantization. It also defines an analogues for the Hodge-∗ operators.

2.3. Kahler Manifolds

Kahler manifolds are particularly interesting for the current problem. In general having a
differential manifold M and a tensor of type (1, 1) J such that ∀p ∈ M, J2

p = −1, the tensor J
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will give a structure toM with the property that the eigenvalues of it will be of the form ±i. This
means that Jp is an even-dimensional matrix andM is an even manifold. From the same definition it
follows that Jp can divide the complexified tangent space at p in two disjoint vector subspaces

TpMC = TpM+ ⊕ TpM− (41)

TpM± = {Z ∈ TpMC|JpZ = ±iZ} (42)

One can introduce two projection operators of the form

P± : TpMC → TpM± (43)

P± =
1
2
(1± i Jp) (44)

which will decompose Z as Z = Z+ + Z−. This construction will generate a holomorphic and an
antiholomorphic sector: Z± = P±Z ∈ TpM±, TpM+ being the holomorphic sector. A complex
manifold appears when demanding that given two intersecting charts (Ui, γi) and (Uj, γj), the map
ψij = γjφ

−1
i from γi(Ui ∩Uj) to γj(Ui ∩Uj) is holomorphic. Here γi and γj are chart homeomorphisms

and ψij is the transition map. In this case the complex structure is given independently from the chart by

Jp =

(
0 1
−1 0

)
∀p ∈ M (45)

In the complex case there is a unique chart-independent decomposition in holomorphic and
antiholomorphic parts. This means we can now choose as a local basis for those subspaces the vector
( δ

δzµ , δ
δz̄µ ) where (zµ, z̄µ) are the complex coordinates, such that the complex structure becomes

Jp =

(
i1 0
0 −i1

)
∀p ∈ M (46)

If we add a Riemannian metric g to the complex manifold and demand that the metric satisfies
gp(JpX, JpY) = gp(X, Y), ∀p ∈ M, and X, Y ∈ TpM, then the metric is called Hermitian andM is
called a Hermitian manifold. A complex manifold always admits a Hermitian metric. Using the base
vectors of the complexified TpMC we can always write the metric locally as

g = gµν̄dzµ ⊗ dz̄ν + gµ̄νdz̄µ ⊗ dzν (47)

If we have a Hermitian manifold (M, g) with g Hermitian metric and a fundamental 2-tensor Ω
whose action on vectors X and Y ∈ TpM is

Ωp(X, Y) = gp(JpX, Y) (48)

then we call Ωp(X, Y) a Kahler form. With this definition, the Kahler form has some very useful
properties. Firstly, it is antisymmetric

Ω(X, Y) = g(J2X, JY) = −g(X, JY) = −Ω(Y, X) (49)

Then it is invariant under the action of the complex structure

Ω(JX, JY) = Ω(X, Y) (50)

and under complexification
Ωµν = igµν = 0 (51)
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Ωµ̄ν̄ = igµ̄ν̄ = 0 (52)

Ωµν̄ = −Ων̄µ = igµν̄ (53)

thus leading to
Ω = igµν̄dzµ ∧ dz̄ν (54)

A Kahler manifold is a Hermitian manifold (M, g), whose Kahler form Ω is closed (dΩ = 0). g is
called a Kahler metric. The closing condition defines a differential equation for the metric.

dΩ = (δ + δ̄)igµν̄dzµ ∧ dz̄ν = (55)

i
2
(δλgµν̄dzλ ∧ dzµ ∧ dz̄ν) +

i
2
(δλ̄gµν̄ − δν̄gµλ̄)dz̄λ ∧ dzµ ∧ dz̄ν = 0 (56)

This leads to the relations
δgµν̄

δzλ
=

δgλν̄

δzµ (57)

δgµν̄

δz̄λ
=

δgµλ̄

δz̄ν
(58)

The solution of the above equation takes the form

gµν̄ = δµδν̄Ki (59)

on a chart Ui included in the manifoldM. Ki is called Kahler potential.

Ki : Ui → R (60)

Ki = K∗i (61)

The Kahler form can be locally expressed in terms of the Kahler potential as

Ω = iδδ̄Ki (62)

The definition given above is the most general one. In the main paper this method will be used
for the specific case of the quantum Monte Carlo phase sign problem.

3. Quantization Prescriptions

The idea of quantization has a vast history. Originally, physical variables have been promoted
to operators with specific commutation rules. These encoded the first quantizations ever performed.
They were followed by the second quantization prescriptions and the anti-commutators needed for
the description of fermionic particles. Finally, path integral quantization brought a completely new
perspective on the procedure of quantization. While a classical theory is described by an action
functional and a minimization prescription, a path-integral quantization is constructed as a functional
integral of the complex exponentiated action functional

exp(iS[.]) : C → A (63)

where C is the configuration space and A is the resulting space. This definition is very formal.
In practical situations, the measure of the path integral is not always defined in the standard way.
The configuration spaces are in general not even manifolds. Sometimes, in order to obtain pertinent
results, a so-called “cohomological integration” is necessary. When the theory we want to quantize has
redundancies (gauge symmetries) one relies on two possible approaches. When the gauge algebra is
closed, a BRST quantization procedure can be implemented. In general however, the gauge algebra
does not close. In this case an alternative method developed initially by Batalin and Vilkovisky is used.
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The algebra of the operators of the gauge symmetry can in general be defined as

δl Ri
α

δφj Rj
β − (−1)εαεβ

δl Ri
β

δφj Rj
α = 2Ri

γTγ
αβ(−1)εα − 4yjE

ji
αβ(−1)εi (−1)εα (64)

where yj = 0 represents the equation of motion, E and T represent coefficients, R represents the (gauge)
symmetry transformation operators, and ε encodes the Grassmann parity of the associated field. One
can also define the BRST transformations of the original fields as δφi = Ri

α[φ]cα i.e., one can define the
BRST symmetry transformations via R[φ] and the associated ghost field cα unambiguously. This is why,
when no confusion is possible, the terms Ri

α, R[φi, c, ...] or the BRST transformation rule δφA = RA[φB]

will be used alternatively as formal definitions.
If E = 0 the algebra is closed and the nilpotency of the BRST operator is naively verified. Imposing

nilpotency on the fields φi we get

0 = δ2φi = Ri
αδcα +

δl Ri
αcα

δφj Rj
βcβ (65)

If we choose now
δcγ = Tγ

αβ[φ]c
βcα (66)

the nilpotency condition on the “physical” sector is satisfied and we obtain (considering E = 0)

δl Ri
αcα

δφj Rj
βcβ + Ri

γTγ
αβcβcα = 0 (67)

Also, using Jacobi identity one can easily show that δ2cγ = 0. It will be seen later how this can
be generalized for the case of BRST-anti-BRST transformations. If the algebra depends on the last
term, i.e., E is not zero, we have an open algebra and an non-nilpotent BRST transformation acting on
the initial fields. The gauge fixed action constructed in the naive way would not be BRST-invariant
off-shell. In order to solve this problem, one has to introduce an artificial shift symmetry and to move
the non-nilpotency from the transformation rules of the original fields to the transformation rules of
the collective fields. One certainly trivial way of enlarging the field space is by introducing two fields
Al and Bl such that

δAl = Bl

δBl = 0
(68)

Obviously as the initial action does not depend on Al , one can shift it with no practical effect.
This shift would be a local symmetry and the fields Bl would be the associated ghost-fields. It is
precisely this idea that allows the redefinition of the field structure as will be seen further on. While it
is certainly possible to move undesirable aspects of the theory to the collective sector, it is also possible
to transfer desirable properties to the field structure while keeping the well-behaved properties inside.
Moreover, if there are more symmetries, then the interplay between them at the level of the BRST
(–anti-BRST–dual-(anti)-BRST) introduces the additional freedoms that I am using in order to avoid
the sign problem practically permanently.

As one can see by now, the quantization prescription is not always trivial. One must specify
what quantization means in the framework of path integrals. Essentially, the special way in which the
functional integration is performed assures the correct quantization of a classical theory. Moreover,
the theory, defined by an action functional, is by no means unique. It is well known that different
representations can be chosen but in general in physics this amounts to the construction of effective
low-energy theories. This does not always have to happen in this way. The chosen field structure can
be designed such that it maps a complexity class into another.

I start with a general field theory, as described by the action S[φA]. The Batalin-Vilkovisky
quantization prescription enlarges the field-space of the theory by introducing anti-fields (φ∗A) and
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gives a new canonical structure known as the anti-bracket [21]. This is defined considering two
Grassmann functionals F and G as

(F, G) =
δrF

δφA(x)
δlG

δφ∗A(x)
− δrF

δφ∗A(x)
δlG

δφA(x)
(69)

involving alternate functional differentiation with respect to the fields and antifields. r and l
superscripts stand for the right and left derivatives, respectively. I am following here the rules
of [11] for the left and right derivatives. Accordingly,

δl(FG)

δA
=

δl F
δA

G + (−1)εFεA F
δlG
δA

(70)

δr(FG)

δA
= F

δrG
δA

+ (−1)εGεA
δrF
δA

G (71)

which amount to the following relation between left and right derivatives in general

δl F
δA

= (−1)εA(εF+1) δrF
δA

(72)

The antibracket has some important properties: it changes the statistics as

ε[(F, G)] = ε(F) + ε(G) + 1 (73)

and satisfies the following relation

(F, G) = −(−1)(ε(F)+1)(ε(G)+1)(G, F) (74)

where ε is the Grassmann parity operator. Using this structure, the Batalin–Vilkovisky prescription
can be written as

1
2
(W, W) = ih̄∆W (75)

where
∆ = (−1)εA+1 δr

δφA
δr

δφ∗A
(76)

Here, W is called the “quantum action” and is a solution of the above equation. If it can be expanded
in powers of h̄, one obtains:

W = S +
∞

∑
n=0

h̄n Mn (77)

The boundary conditions should make this coincide with the classical action when all antifields
are removed (φ∗A = 0). To the lowest order, one recovers the classical master equation (S, S) = 0.

If one starts with the classical action (containing the usual number of fields) S[φA] the associated
path integral is

Z =
∫
[dφA]exp[

i
h̄

S[φA]] (78)

By performing the transformations φA(x)→ φA(x)− ϕA(x) one constructs an action S[φA − ϕA]

invariant to a local shift symmetry
δφA(x) = Θ(x)
δϕA(x) = Θ(x)

(79)

where Θ(x) is arbitrary. In this way, I constructed another field representation that contains a collective
field ϕA. One can in principle integrate over the collective field if one fixes the introduced gauge
symmetry in the standard BRST manner: adding an BRST-exact term in such a way that the local



Condens. Matter 2017, 2, 33 10 of 26

gauge symmetry is broken. This term must contain a ghost–antighost pair (cA(x), φ∗A(x)) and a
Nakanishi–Lautrup field BA(x). A global BRST symmetry should emerge. The transformation rules of
the fields in this theory will be

δφA(x) = cA(x)

δϕA(x) = cA(x)

δcA(x) = 0

δφ∗A(x) = BA(x)

δBA(x) = 0

(80)

I make no assumptions about the Grassmann parity of the initial fields φA. The ghost numbers of
the new fields will be

gh(cA) = 1; gh(φ∗A) = −1; gh(BA) = 0 (81)

and δ is statistics changing. One can gauge fix the transformed action by adding

− δ[φ∗A ϕA] = (−1)ε(A)+1BA ϕA − φ∗AcA (82)

where ε(A) is the Grassmann parity of the field φA. The partition function is now well defined:

Z =
∫
[dφA][dϕA][dφ∗A][dcA][dBA]

exp[ i
h̄ (S[φA − ϕA]−

∫
dx[(−1)ε(A)BA(x)ϕA(x) + φ∗A(x)cA(x)])]

(83)

The collective field has been gauge fixed to zero. If one integrates out, BA(x) one obtains

Z =
∫
[dφA][dφ∗A][dcA]exp( i

h̄ Sext)

Sext = S[φA]−
∫
[dx]φ∗AcA(x)

(84)

where the ghosts are decoupled. From here δrSext
δφ∗A

= −cA(x) or similarly δlSext
δφ∗A

= cA(x). Substituting
now the field equation of motion for BA(x), we obtain the symmetry transformations

δφA(x) = cA(x)

δcA(x) = 0

δφ∗A(x) = − δl S
δφA(x)

(85)

where the superscripts l and r represent the left and right derivatives, respectively. This symmetry
generates the Schwinger–Dyson equations. Starting from the identity 0 =< δ{φ∗A(x)F[φA]} > and
integrating over the ghosts cA and the antighosts φ∗A the Ward identity becomes

<
δl F

δφA(x)
+ (

i
h̄
)

δlS
δφA(x)

F[φA] >= 0 (86)

which is the most general Schwinger–Dyson equation to be associated to this theory. Now, the equation
that expresses the BRST invariance of the extended action is

0 = δSext =
∫

dx δrSext
δφA(x) cA(x)−

∫
dx δrSext

δφ∗A(x)
δlS

δφA(x) =

=
∫

dx δrSext
δφA(x) cA(x)−

∫
dx δrSext

δφ∗A(x)
δlSext

δφA(x)

(87)

where S differs from Sext by a term independent of φA.
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Using the definition of the anti-bracket written in general for two functionals F and G as

(F, G) =
δrF

δφA(x)
δlG

δφ∗A(x)
− δrF

δφ∗A(x)
δlG

δφA(x)
(88)

the above identity corresponds to what is called the master equation

1
2
(Sext, Sext) = −

∫
dx

δrSext

δφA(x)
cA(x) (89)

The important aspect to be considered here is the right-hand side term of the above formula.
In this case, the solution of the above expression implies an expansion in terms of the ghosts and the
antighosts with a set of unknown coefficients

Sext[φ
A, φ∗A, cA] = S[φA] +

∞

∑
n=1

anφ∗A1
...φ∗An

cA1 ...cAn (90)

Of course the choice of integrating over both the ghosts and the antighosts is arbitrary. One can
choose to integrate only over the ghost fields cA(x) but not over the corresponding antighosts φ∗A(x).
The partition function then becomes

Z =
∫
[dφA][dφ∗A]δ(φ

∗
A)exp[

i
h̄

S[φA]] (91)

On the side of the BRST algebra this change amounts in the way in which the non-propagating
fields are replaced by their corresponding equations of motion. The direct method used above must be
refined when dealing with fermionic type fields. The main question with respect to how to replace cA

inside the Green functions. The answer will give the transformation rules for the fields that are not
integrated out. Consider the identity∫

[dc]F[cB(y)]exp[− i
h̄

∫
dxφ∗A(x)cA(x)] = F(ih̄ δl

δφ∗B(y)
)exp[− i

h̄

∫
dxφ∗A(x)cA(x)] (92)

It follows that the replacement of cA with its equation of motion (cA(x) = 0) is not sufficient.
One has to add what is called a “quantum correction” of the form h̄δ/δφ∗. What appears as “quantum
correction” in the Green function results from our choice of integrating only over a ghost field and not
over its associated antighost. Essentially, it is at this point in the quantization procedure where the
difference between fermionic and bosonic fields appears. The BRST symmetry transformations have to
change accordingly if the option of integrating only over the fermionic “half” of the field–antifield
structure is chosen. Now, performing this replacement (meaningful only inside the path integral) the
BRST transformation itself becomes

δφA(x) = ih̄(−1)εA δr

δφ∗A(x)

δφ∗A(x) = − δlS
δφA(x)

(93)

where εA is the Grassmann parity associated to the fields indexed by A. It can be checked that
this transformation leaves at least the combination of the measure and the action invariant. After
integrating out the ghost, the antibracket structure is modified. In order to see how, one can perform a
variation of an arbitrary functional G[φA, φ∗A]. Inside the path integral we obtain

δG[φA, φ∗A] =
∫

dx δrG
δφA(x) [

δlSext
δφ∗A(x) + (ih̄)(−1)εA δr

δφ∗A(x) ]−
∫

dx δrG
δφ∗A(x)

δlSext
δφA(x) (94)
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The left derivative on the left side comes from the definition of cA in Sext. In this case, it can
be considered simply as zero. I follow here closely the notation of [11]. This equation describes the
“quantum deformation” introduced in the antibracket structure

δG[φA, φ∗A] =
∫

dx[(G, Sext)− ih̄∆G] (95)

where
∆ = (−1)εA+1 δrδr

δφ∗A(x)δφA(x)
(96)

Again, this term appears only as a consequence of the partial integration, which allows us to
expose the operator δ/δφ∗A that otherwise acts only on a δ-functional. Whenever one choses to keep
only half of the field–antifield components in the theory and integrates over the ghosts obeying fermi
statistics, the result will be a deformation of the antibracket structure that will lead to the quantum
master equation. One can already see that the mapping of the “quantum” problem to the “classical”
problem as presented in [3] is correct but not unique. In the next chapter I show how one should
extend the field structure of an arbitrary theory in order to obtain a sign-problem free theory. This
prescription implies by no means any exponential increase in complexity if one considers what has
been presented above.

4. Construction of the Theory

My method relies at a first level on the field–antifield formalism as introduced by Batalin and
Vilkovisky [7] and at a second level on an innovative use of some algebraic geometry and topology
theorems [14,15]. I will regard the partition function as depending on the action functional described
in terms of a set of fields φA

Z = Z0

∫
exp(−∑

i
Si[φ

A])DφA (97)

More generally, the theory may have additional internal symmetries, generated by corresponding
operators. First, let me show here the main idea related to the introduction of a single shift symmetry
using one set of collective fields. I will regard the partition function as depending on the action
functional described in terms of a set of fields φA (43). More generally, the theory may have
additional internal symmetries, generated by corresponding operators. Let me now double the
fields by introducing a collective field ϕA that induces a shift symmetry in the theory:

φA → φA − ϕA (98)

No assumption regarding the statistics of the φA fields is required. They can be fermionic or
bosonic. The new shift symmetry must be gauge fixed and for this I have to introduce a ghost and
a trivial system in the form of a multiplet consisting of an antifield φ∗A and an auxiliary field BA.
After gauge fixing, a global BRST symmetry emerges in general. In the present case however, in order
to maintain the triviality of the extended BRST symmetry that encompasses also the shift symmetry,
the BRST transformation rules change in the following way:

δφA = cA

δϕA = cA − RA[φA − ϕA]

δcA = 0

δφ∗A = BA

δBA = 0

(99)
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where cA is the ghost field and δ is the BRST transformation to be associated with the total BRST-type
symmetries. RA[φA − ϕA] represents a formal definition of the BRST symmetry associated to the
possible intrinsic initial gauge symmetry. There exists a freedom to shift the original gauge symmetry
RA[φA − ϕA] between the BRST transformation of the fields and the BRST transformation of the
collective fields. In this way a possible off-shell non-nilpotency in the transformation rules is transfered
to the transformation rules of the collective field. This was one of the first applications of the collective
field formalism to the quantization of theories involving algebras that do not close (i.e., algebras of the
gauge symmetry generators depending on the form of the field equations of motion). As an example
of such theories, one may quote supergravity. The ghost numbers of the new fields are

gh(cA) = 1; gh(φ∗A) = −1; gh(BA) = 0 (100)

Although the new artificial and certainly trivial continuous shift symmetry is easy to eliminate at
this level, it is of major importance as a tool for generating new discrete symmetries. Considering the
new continuous shift symmetry, one has to gauge fix it. This can be done adding the following terms
in the form of BRST transformations:

Sg f = S0[φ
A − ϕA]− δ[φ∗AφA] + δΨ[φA]

= S0[φ
A − ϕA] + φ∗ARA[φA − ϕA]− φ∗AcA + δl Ψ

δφA cA − ϕABA

= SBV [φ
A − ϕA]− φ∗AcA + δl Ψ

δφA cA − ϕABA

(101)

where SBV is called the Batalin–Vilkovisky action. It incorporates the original action and the terms
arising from other possible internal gauge symmetries. Ψ is a gauge fixing bosonic functional
depending only on the original fields. By this, I define a new gauge fixed action. Note that the
nillpotency δ2 = 0 of the BRST transformation assures the overall invariance. The partition function is
the standard one:

Z =
∫
[dφA][dφ∗A]δ(φ

∗
A −

δlΨ[φA]

δφA )e−SBV [φ
A ,φ∗A ] (102)

where Ψ[φA] is defined considering the condition imposed in the resulting delta-function. One must
underline that the gauge fixing procedure must keep the gauge independence of the full partition
function, including the integration measure.

Until now, a continuous shift-symmetry has been introduced and gauge fixed.
However, the action presents further flexibility. One can extend the field structure such that

two BRST operators become manifest. In this way, one implements the BRST–anti-BRST symmetry
and the associated field structure [9,10]. This method allows Schwinger–Dyson equations as Ward
identities as well. Moreover, this method, also known as the “Sp(2)”-invariant quantization, has
the property of manifestly generating a symplectic structure over the field space. This will prove
to be important further on. The method is similar to what has been shown before and we obtain
S0[φ]→ S0[φA − ϕA1 − ϕA2]. Two extra gauge symmetries arise, for which a new structure of fields is
introduced: two ghostfields (cA1, φ∗A2) and two antighost fields (φ∗1 , cA2). Of course this extends the
symmetries allowed in the theory.

δ1φA = cA1 δ2φA = cA2

δ1 ϕA1 = cA1 − φ∗A2 δ2 ϕA1 = −φ∗A1

δ1 ϕA2 = φ∗A2 δ2 ϕA2 = cA2 + φ∗A1

δ1cA1 = 0 δ2cA2 = 0

δ1φ∗A2 = 0 δA2φ∗A1 = 0

(103)



Condens. Matter 2017, 2, 33 14 of 26

Here, δ1 and δ2 are respectively the BRST and anti-BRST transformations. The next step is to
impose gauge fixing. This is done in the standard way by adding more bosonic fields, calling them BA
and λA. The BRST transformation rules extend according to

δ1cA2 = BA δ2cA1 = −BA

δ1BA = 0 δ2BA = 0

δ1φ∗1 = λA − BA
2 δ2φ∗2 = −λA − BA

2

δ1λA = 0 δ2λA = 0

(104)

These rules imply the nillpotency conditions δ2
1 = δ2

2 = δ1δ2 + δ2δ1 = 0. The action invariant
under this BRST symmetry contains the terms of S0[φA − ϕA1 − ϕA2], plus some gauge fixing terms

Scol =
1
2 δ1δ2[ϕ

2
A1 − ϕ2

A2]

= −(ϕA1 + ϕA2)λA + BA
2 (ϕA1 − ϕA2) + (−1)aφ∗AacAa

(105)

Here summation over a = 1, 2 is implied. Using the transformation

ϕA± = ϕA1 ± ϕA2 (106)

we obtain the gauge fixed action

Sg f = S0[φA − ϕA+]− ϕA+λA +
BA
2

ϕA− + (−1)aφ∗AacAa (107)

For the sake of generality, I follow the notation in [9,10] and define

δaφA = RAa(φA) (108)

where RAa is the BRST–anti-BRST symmetry transformation associated to an initial intrinsic gauge
symmetry. Apart from this, the transformations associated to the additional artificial shift symmetries
will be added. In the case a = 1 we have the BRST transformation rules, whereas in the case a = 2
we have the anti-BRST transformation rules. The two collective fields are denoted by ϕA1 and ϕA2 or
generally ϕAa. The transformation will be φA − ϕA1 − ϕA2. The field multiplets used are the ghosts
(cA1, φ∗2A ) and the antighosts (φ∗1A , cA2). For a = 1, cAa is a ghost while for a = 2, cAa is an antighost.
The BRST–anti-BRST transformations are

δaφA = cAa

δa ϕAb = δab[cAa − εacφ∗cA − RAa(φA − ϕA1 − ϕA2)] + (1− δab)εacφ∗cA
(109)

Here I imply no summation over a. Also, here εac is the antisymmetric tensor. The extra fields BA
and λA are introduced and we have extra transformation rules

δacAb = εabBA

δaBA = 0

δaφ∗bA = −δb
a [(−1)aλA + 1

2 (BA + δl RA1(φA−ϕA1−ϕA2)
δφB

RB2(φB − ϕB1 − ϕB2))]

δaλA = 0

(110)

The gauge fixing procedure must occur in a BRST–anti-BRST invariant way. The inclusion of

the terms involving δl RA1
δφB

RB2 as well as the additional terms in Equation (56) as a modification of the
traditional BRST transformation rules is done in order to encode the nilpotency of the BRST–anti-BRST
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transformation in a way that is independent of the gauge algebra. The additional fields BA and λA
have the role of imposing the nilpotency at the level of the transformation rules of the original fields.
Any off-shell non-nilpotency is thus shifted to the transformation rules of the collective fields. There
are various ways in which more than one gauge symmetry can be encoded in the BRST transformation
rules. Also, parts of some transformation rules can be transfered to transformation rules of additional
fields. These properties have many possible applications. Here, I make use of them in order to avoid
the sign problem. One can introduce a matrix MAB which is invertible and has the property

MAB = (−1)εAεB MBA (111)

It also makes all the entries between the Grassmann odd and Grassmann even sectors vanish.
This means that the term φA MABφB has ghostnumber zero and even Grassmann parity. One can gauge
fix to zero the collective terms

Scol = −ϕA+MABλB + 1
2 ϕA−MABBB+

+(−1)a(−1)εB φ∗aA MABcBa+

+ 1
2 ϕA−MAB δl RB1(φB−ϕB+)

δφC
RC2(φC − ϕC+)

+(−1)a+1(−1)εB φ∗aA MABRBa(φB − ϕB+)

(112)

Here, the summation over a is implied. The sum of the two collective fields is fixed to zero,
φ∗aA are the source terms for the BRST–anti-BRST transformations, and the difference between the
two collective fields ϕA− is the source of the mixed transformations. The original gauge symmetry
can be fixed in an extended BRST-invariant way by adding the variation of a gauge boson Ψ(φ) of
ghostnumber zero.

SΨ =
1
2

εabδaδbΨ(φA) (113)

The gauge fixed action can be written as:

Sg f = S0[φA − ϕA+] + Scol + SΨ (114)

where
Scol = −

1
4

εabδaδb(ϕA1MAB ϕB1 − ϕA2MAB ϕB2) (115)

At this moment, we have a gauge fixed action with a BRST–anti-BRST symmetry. Although the
matrix M can be eliminated in the end, it has the potential to introduce a metric on the space spanned
by the fields of the trivial system and the ghosts [22]. The same idea can be used to introduce a Kahler
structure on the field space [23]. The introduction of the internal space is required due to the definition
of the Hodge dual operation. As can be seen in [20] the internal space allows the definition of the
Hodge operator in any dimension. This will extend the applicability of the procedure described in [24]
for arbitrary dimensions of the original theory (considering the suitable generalization of the indices of
the operators). The discrete symmetry is obtained by introducing new collective fields and imposing
a dual-space gauge fixing that generates a Kahler structure. The Hodge star operator that relates
the direct and dual emerging global continuous symmetry transformations will induce a discrete
symmetry in the final theory. This symmetry can be associated to a form of artificial discrete invariance
(see [19,25]). Now, I focus on the method that generates a time reversal-type symmetry. One spans an
internal space by the introduction of a new set of fields and an equivalent of the M matrix. Take the
action Scol used above. Now, introduce an internal space index for the collective fields ϕΩ

Aa, defining
their dual with respect to the internal space:

ϕ̃Ω
Aa =

1
2

εΩΓ ϕΓ
Aa (116)
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and rewrite the fields as
ϕ±Ω

Aa =
1
2
(ϕΩ

Aa ± iϕ̃Ω
Aa) (117)

In the same way, introduce another matrix N that can be factorized as:

NΩΓ = 1
2 (h

ΩΓ − i f ΩΓ)

NΩΓ
= 1

2 (h
ΩΓ + i f ΩΓ)

(118)

The matrices f and h are completely arbitrary as long as the matrix N can be decomposed in the
above way. Replacing this into the action together with a corresponding change in the fields we obtain
a Kahler structure imposed over the manifold of the field–antifield formalism. This procedure may be
related to the idea of Kahler polarization in the geometric quantization. The additional terms obtained
in the matrix are now of the form:

Scol = −
1
4

εabδaδbδδ̄(ϕ−Ω
A1 NΩΓ ϕ−Γ

B1 − ϕ+Ω
A2 NΩΓ ϕ+Γ

B2 ) (119)

where now, the δ and δ̄ operators correspond to the dual BRST transformations. Their form depends
on the practical calculation. The most general expression that can be written here is

δDaφA = φ∗Aa

δDa ϕAb = δab[φ
∗
Aa − εaccc

A − RAa] + (1− δab)εaccc
A

δDacAb = −δb
a [(−1)aλA + 1

2 (BA + δl RA1
δφB

RB2)]

δDaBA = 0

δDaφ∗bA = εabBa
A

δDaλA = 0

(120)

where the same convention remains valid as for the BRST and anti-BRST transformations. However,
several expressions may be altered according to the particularities of each theory. The expressions
for the case of two dimensional quantum electrodynamics (2D QED) are given in the Appendix A.
Scol is the equivalent of the collective term in the action for the new degrees of freedom constructed
to introduce the Kahler structure. The matrices NΩΓ and NΩΓ allow me to write the gauge fixing
term in such a way that a Kahler structure becomes visible. They may be compared to the choice of a
polarization set over the field space although here the scope is another. MAB is considered implictly.
The same method that allows the M matrix to vanish eliminates the N matrix as well if this is our
intention. This would lead to losing the “polarization” that makes the Kahler structure visible (please
note that I use the term “polarization” in a non-rigorous sense, referring only to the way in which the
fields can be partitioned, see Appendix B). We now have a Kahler structure imposed on our original
action. The dual-BRST symmetry is the BRST symmetry, created by the new collective fields together
with their trivial system. It is the analogue of the co-derivative from algebraic geometry. In this way we
obtained the so-called de-Rham cohomology operators, that are now identified with the (anti)-BRST
and dual-(anti)-BRST operators.

The connection between them is given by the Hodge star operator which can be constructed
independent of the dimension of the original field space if one follows the prescription of constructing
the internal spaces as described above. In this case the Hodge duality plays the role of a discrete
symmetry transformation.

As noted in [17,26], the field–antifield setup is amenable to the construction of a Kahlerian
structure imposed on the system of fields. Here, the Hodge star induces a symmetry that can be
identified with time reversal in the case of Kahlerian structures (see Appendix C). If one thinks of the
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Hopf algebra, one can see that there exist certain similarities between the Hodge star operator and the
Hodge algebra antipode. All one has to do is to suitably introduce fields and antifields via appropriate
trivial symmetries such that the antipodal structure (associated to the Hodge dual) becomes visible. In
the context of the field-antifield approach the structure of the emerging fermionic determinant will be

det(D) =

(
iT1 0
0 −iT1

)
(121)

where T1 results from the construction of the Kahler structure. This assures that for the extended field
space, the sign of the fermionic determinant is always positive and allows us to avoid the sign problem.
The fact that the imposed structure is reflected on the form of the determinant is explained in [27].

In order to asses the complexity of the final problem, considering the fact that the fermionic
determinant does not change sign (this can be interpreted in the formalism of the first chapter as the
weights p(c) being positive) the increase in complexity is due to the addition of more fields. In the
above constructions the number of fields has been doubled twice, so I went from a theory containing
N fields to a theory containing 4N fields. Also, additional fields have been added each time in order to
ensure the desired gauge fixing. The additional fields on the BRST and anti-BRST branches are related
so the construction of the BRST–anti-BRST structure required 4N fields and the dual counterpart
required another 4N fields. This amounts to a theory containing 8N fields globally. Considering that
half of the fields live in the internal space and have a controlled behavior and also that the increase in
the field number is polynomial, the method should not add exponential complexity. The analysis of
the resulting Jacobian is analysed in Appendix D.

5. Practical Calculation

I present here preliminary results obtained by applying a path integral Monte Carlo method to a
simple oscillator-quartic anharmonic potential. While this is not a numerical proof of validity it may
be considered as a test for a known case. The results presented in the left figure have been obtained
using the corrective series expansion in the form of an effective potential [28,29]. The dual gauge fixing
method used to produce the right figure had no need for such corrective expansions and converged
to the values obtained via the corrective series expansion. The number of iterations appears larger
in the gauge fixing method but one has to consider that in the left figure the cost of constructing the
effective corrective potential is not considered. That effective potential calculation introduced several
other terms and became intractable for higher orders.

The classical method is based on the path integral Monte Carlo technique designed in [29], based
on the addition of terms in the action functional that would vanish in the continuous limit. Adopting
the same functional formalism, we write the quantum mechanical amplitude

A(a, b; T) = (
1

2πεN
)

N
2

∫
dq1...dqN−1e−SN (122)

The path integral method is applied on the Euclidean time interval [0, T], subdivided into N equal
steps of length εN = T/N, with the boundaries given by q0 = a and qN = b. The discretised action of
the theory is SN . The initial action has the form

S =
∫ T

0
dt(

1
2

q̇2 + V(q)) (123)

After discretisation we obtain

SN =
N−1

∑
n=0

(
δ2

n
2ε

+ εNV(q̄n)) (124)
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with δn = qn+1− qn and q̄n = 1
2 (qn+1 + qn). The freedom of choosing one among various discretization

procedures led the authors of [28,30,31] to new insights which brought a faster convergence to the
path integral Monte Carlo procedure. The main result of a path-integral Monte Carlo computation is
the continuum amplitude. This result will not be modified by the choice of the point in the interval
[qn, qn+1] to compute the potential V. Different points correspond to different ordering prescriptions
of the operator formalism [29]. Another choice that will not affect the end result is related to the
discretization of the action. Indeed, one may add terms to the action functional that explicitly vanish
in the continuum limit. The addition of such terms may accelerate the convergence of the path-integral
computation, as has been shown in [29] and this precise computation is being used in the baseline
simulation performed here and presented in Figure 1a. For example, the addition of a term defined by

N−1

∑
n=0

εNδ2
ng(q̄n) (125)

where g is regular when εN → 0, will not change the continuum physics since it will vanish as ε2
N

when it is employed in ε2
N
∫ T

0 dtq̇2g(q). However, as shown by [29], such terms will affect the speed of
convergence towards the continuum limit. The authors of [29] compare the relation between 2N and
N-fold discretisation. The relation found by [29] was

e−S̃N = (
2

πεN
)N/2

∫
dx1...dxNe−S2N (126)

where S2N is the 2N fold discretisation of the original action. Integrating this action we obtain a new
type of terms in S̃N . The class of actions that is closed with respect to the transformation presented in
the above equation is of the form

SN =
N−1

∑
n=0

(
δ2

n
2εN

+ εNV(q̄n) + εNδ2
ng1(q̄n) + εNδ4

ng2(q̄n) + εNδ6
ng3(q̄n) + ...) (127)

Figure 1. (a) Series-corrected solution; (b) Hodge symmetric solution; each color identifies a specific
eigenvalue .

All of the functions above also depend on the time step εN and are regular in the limit εN → 0,
making these effective actions equivalent to the starting action. For a general action, the time step is
playing the role of a small parameter, ideal for an asymptotic expansion analysis. The calculations
of [29] provided us with the modifications of the potential required for implementing this acceleration
tool and the results of [28,30,31] have also been used as a baseline calculation. A similar idea is the
foundation of this research work: Is it possible to still improve the action functional and the formulation
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of the theory, without altering the results, such that the sign problem could be avoided in a broader
sense than what has been done until now? My approach was not to look at even finer discretizations,
but instead, being guided by the fact that the sign problem appeared to be of a global nature, to employ
gauge invariance and the (dual) BRST–anti-BRST symmetry to generate an artificial discrete symmetry
(symmetry out of cohomology, see [32]) that would extend the classes of problems that can be analyzed
by means of path integral Monte Carlo tools. The technique employed in this paper simply consists
of adding a zero to the action functional, because finally all additional fields can be integrated out
and the topological construction will be rendered invisible. The point of this paper is that such a
topological construction, resulting in an additional (and fictitious) symmetry, is required for the theory
to be numerically solvable and not plagued by the sign problem.

Of course, an important point is to understand the limitations of such a method. After all, we
start with a fundamentally ill-defined theory. The sign problem, from this point of view, can be seen as
a global anomaly of the form presented in [32]. The computational non-determinism is associated with
precisely this global structure covered by the infinite set of paths which is intrinsic to a path integral
formulation. It must be clearly said that in general, by adding more fields one does not solve the
non-deterministic issues associated to the theory. The solution I propose here tries an approach that
adds a physically irrelevant, yet topologically non-trivial field structure to the theory. This structure is
capable of globally avoiding the sign problem and of reducing the complexity not by simply adding
new fields, but by adding new fields such that a topologically non-trivial structure emerges that has
the role of a topological anti-anomaly, namely an additional region of the manifold over which the
paths will cancel precisely the terms that generate the sign problem on the original, unextended field
manifold. The non-detectability of auxiliary topological structures has been discussed in [33,34].

With all terms added, the action functional employed for the calculation of the right side of
Figure 1 is given by Equation (114) with the term of Equation (113)) properly taken into account and
with the collective term as defined by Equation (119). The results presented in the figure represent
convergences after several iterations towards the energy eigenvalues of the quartic anharmonic
oscillator with the original potential V(x) = 1

2 x2 + λx4 for a small value of λ. This problem is certainly
trivial. It has therefore been used as a benchmark calculation in [30] where it was possible to see the
speedup obtained by adding the terms that vanish in the continuous limit. Here, I used the same
problem in order to show that it is possible to modify the theory according to the BRST–dual-BRST
prescription i.e., to add an auxiliary symmetry originating in the BRST–dual-BRST gauge fixing
condition and to obtain equivalent results.

As the numerical verification above cannot make this point explicit by itself, it is worth mentioning
that the sign problem only becomes important if the bosonic problem is numerically simple, while
the equivalent fermionic problem is difficult precisely because of the sign problem. In the case when
the bosonic problem is already hard, the sign problem will not increase the complexity of the already
unsolvable problem.

I am aware that this example is not specifically related to the fermionic sign problem. The figures
presented here only aim to show that my method is valid and consistent with known results. Further
investigation of the effects of this method in more relevant physical situations (especially fermionic
problems) is obviously desirable. It is important to understand the limitations of such an approach.
The non-determinism associated to each field is not eliminated; only the effects of the sign problem
are avoided by re-defining the theory in a way that is more amenable to path-integral Monte
Carlo computations.

6. Conclusions

In conclusion, I showed that it is possible to introduce an auxiliary discrete symmetry that mimics
time reversal and that this symmetry can be used in order to avoid the sign problem. It remains to be
seen how general the applicability of such a method is. As said in the introduction, this article makes
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no claim about solving the P vs. NP puzzle. It is however possible that gauge field theories may offer
a new approach in solving apparently hard problems.

Acknowledgments: This work is supported by ERC Advanced Investigator Project 267219.
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Appendix A. Hodge Star as Discrete Symmetry

For an example of how the Hodge star induces a discrete symmetry I follow [19,24,25]. The main
idea there was to represent the Hodge decomposition operators (d, δ, ∆) as some symmetries of a given
BRST-invariant Lagrangean of a gauge theory. In general, the Hodge decomposition theorem states
that on a compact manifold any n-form fn(n = 0, 1, 2, ...) can be uniquely represented as the sum of a
harmonic form hn(∆hn = 0, dhn = 0, δhn = 0), an exact form den−1, and a co-exact form δcn+1 as

fn = hn + den+1 + δcn+1 (A1)

where here d is the exterior derivative, δ is its dual, and ∆ is the Laplacian operator ∆ = dδ + δd.
In order to identify the dual BRST transformation, one has to observe that while the direct BRST
transformations leave the two- form F = dA in the construction of a gauge theory invariant and
transform the Dirac fields like a local gauge transformation, the dual-BRST transformations leave
the previous gauge fixing term invariant and transform the Dirac fields like a chiral transformation.
So, as a practical example, I can begin like the authors of [24] from a BRST-invariant Lagrangean for
QED, noting that generalizations for non-abelian gauge theories with interactions exist in the literature
as well.

LB = −1
4

FµνFµν + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +
1
2

B2 − i∂µC̄∂µC (A2)

where Fµν is the field strength tensor, B is the Nakanishi–Lautrup auxiliary field, and C, C̄ represent
the anticommuting ghosts. The BRST transformations that leave this Lagrangian invariant are

δB Aµ = η∂µC δBψ = −iηeCψ

δBC = 0 δBC̄ = iηB

δBψ̄ = iηeCψ̄ δBFµν = 0

δB(∂A) = η�C δBB = 0

(A3)

where η is an anticommuting space-time independent transformation parameter. Particularizing for
the two-dimensional case, the Lagrangian becomes

LB = −1
2

E2 + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +
1
2

B2 − i∂µC̄∂µC (A4)

and this can be rewritten after introducing another auxiliary field B as

LB = BE− 1
2
B2 + ψ̄(iγµ∂µ −m)ψ− eψ̄γµ Aµψ + B(∂A) +

1
2

B2 − i∂µC̄∂µC (A5)
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The dual BRST symmetry operators to be associated to the theory above in the two-dimensional
case are [24]

δD Aµ = −ηεµν∂νC̄ δDψ = −iηeC̄γ5ψ

δDC = −iηB δDC̄ = 0

δDψ̄ = iηeC̄γ5ψ̄ δDFµν = η�C̄

δD(∂A) = 0 δDB = 0

δDB = 0

(A6)

Moreover, as noted in [24], the interacting Lagrangian in two dimensions is invariant under the
following transformations

C → ±iγ5C̄ C̄ → ±iγ5C

B → ∓iγ5B A0 → ±iγ5 A1

A1 → ±iγ5 A0 B→ ∓iγ5B

E→ ±iγ5(∂A) (∂A)→ ±iγ5E

e→ ∓ie ψ→ ψ

ψ̄→ ψ̄

(A7)

The author of [24] shows that these are the analogues of the Hodge duality (∗) for this particular
example and that they induce a discrete symmetry. One can also verify that

∗ (∗Φ) = ±Φ (A8)

where for (+) the generic field Φ is ψ, ψ̄ and for (−), Φ represents the rest of the fields. One can also
observe that for the direct and dual BRST symmetries

δDΦ = ± ∗ δB ∗Φ (A9)

is valid. It was previously known that the above statements are valid for any even-dimensional
theory [19], and applications for D = 4, (3, 1) and D = 6 dimensional theories have been given.
However, combining the ideas presented in the main paper with the observations in [20] and some
theorems of algebraic topology and geometry, one can generalize the applicability of this method
to any dimension. While it is true that in some cases non-local transformations emerge [35–37] the
method described in this paper is simply a mathematical trick that allows the construction of dual
theories with no sign problems, so the physical meaning of the artificial transformations is irrelevant.

Appendix B. BRST–Anti-BRST, Kahler Partitioning, and Dual Gauge Fixing

One important aspect discussed in the main paper is the simultaneous direct and dual-gauge
fixing of artificial shift symmetries on a complexified space. This is done using some special properties
of the matrices M and N. Following [9,10] the matrix M ensures the simultaneous gauge fixing of the
collective fields in a BRST–anti-BRST invariant way. This matrix must be invertible and may have
complex numbers as entries. While acting on the field space it must have the symmetry property
MAB = (−1)εAεB MBA. It must also ensure that φA MABφB has global ghostnumber zero, where here,
φA and φB are arbitrary fields from the theory. In the discussion of [9,10] no other requirements on the
M matrix are needed. Geometric quantization follows several important steps. The first would be the
construction of a symplectic manifoldM of an even dimension (dim(M) = 2n) using the BV, BRST,
or field–antifield prescriptions. The next step is called “polarization” and involves the selection of n
directions over this manifold on which the resulting quantum states should depend. The probably
best-known polarizations produce the Schrodinger or momentum representations in basic quantum
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mechanics. These are however not the only ones. While the Batalin–Vilkovisky procedure generates
the 2n dimensional manifold, the procedure of generating the n dimensional quantum space has
additional freedom. This leads to a different form in which the variables (fields) can be partitioned,
called the Kahler polarization. A procedure very similar to the construction of a polarization is used
here in order to introduce a complex structure over the symplectic manifold. This generates a split of
the field structure into two distinct components.

T(1,0) = {v ∈ TxMC|Jx(v) = iv}; T(0,1) = {v ∈ TxMC|Jx(v) = −iv} (A10)

One may observe that MAB has the potential to induce a specific metric over the field space
constructed from the original fields and the additional ghosts, antighosts, ghost-for-ghosts, etc.
In order to use this potential for the current problem I introduce two other matrices

NΩΓ = 1
2 (h

ΩΓ − i f ΩΓ)

NΩΓ
= 1

2 (h
ΩΓ + i f ΩΓ)

(A11)

Their role is to induce special gauge fixing that generates a Kahler structure over the field space.
That gauge fixing can be done by choosing a metric over the symplectic BV (or BRST) field space has
been shown in [22]. Apart from the standard BRST–anti-BRST operators, algebraic geometry defines
also the dual-BRST–anti-BRST operators. These are related to the direct operators via a Hodge star
transformation. Moreover, the Hodge star operation induces an extra discrete symmetry. The Kahler
structure imposed by the NΩΓ matrices assures that this symmetry is of the form of an anti-unitary
time reversal operation, as required to solve the sign problem (see [8]). Polarization has two main
parts. First, it induces a form of partitioning of the field space in “momentum” and “position” types of
variables. Second, it imposes a condition that eliminates half of these variables from the definition of
the wavefunction. In this case the last part is not of interest. For the first part however one can consider
the manifold T∗M and define a complex basis {zj, z̄j}. The symplectic form becomes ω = 1

2 dz̄j ∧ zj
and the complex structure is defined by the action on the basis as Jzi = izi and Jz̄j = −iz̄j. One
can choose to partition the field space according to the complex structure J inducing spaces (blocks)
P spanned by { δ

δz̄j
}n

j=1 and anti-spaces P̄ spanned by { δ
δzj
}n

j=1. This polarization exactly induces a
Kahler structure. A similar idea is used here for partitioning the field space such that the functional
determinant becomes partitioned in complex conjugated blocks.

This construction still allows some freedom used in the main article in order to give to the discrete
symmetry shown here the form of a time reversal-type symmetry. This becomes manifest when one
uses the (NΩΓ, N̄ΩΓ) matrices in order to induce the Kahler structure over the fields. The next step is
simply to introduce the fields and the Kahler “partitioning” of the fields in the theory as shown in the
main article.

Appendix C. Kahler Duality Transformation and Symmetry

I show here that via a suitable shift in the field space, a theory can be constructed that has
the precise form as the one given in the main article for the Kahler-extended formulation. Let the
Lagrangean be

L = L0 + fΩΓ ϕΩ ϕΓ (A12)

The Lagrangean can be extended by shifting terms and fields

ϕ±Ω = 1
2 (ϕΩ ± iϕ̃Ω), NΩΓ = 1

2 (h
ΩΓ − i f ΩΓ), NΩΓ

= 1
2 (h

ΩΓ + i f ΩΓ) (A13)



Condens. Matter 2017, 2, 33 23 of 26

This will extend the ϕΩ potential, while the matrices N and N̄ will mix the extension with the
original terms. In this way at a first instance one obtains

L = L0 + fΩΓ ϕΩ ϕΓ + hΩΓ ϕΩ ϕ̃Γ (A14)

and in the end
L = L0[Φ] + Lcol (A15)

where Φ is the general notation for any field occuring in the theory. Now one has to gauge fix this by
the equation in the main paper

Lcol = −
1
4

εabδaδbδδ̄(ϕ+ΩNΩΓ ϕ+Γ − ϕ−ΩNΩΓ ϕ−Γ) (A16)

However, again here one can make use of the freedom in the definition of the matrices N and N̄.
Using a combination with the metric induced by the matrix M, the dualization, and the Hodge star
operator inducing a discrete symmetry, one can generate a splitting of the field space in blocks such
that the final field structure is of a form similar to the Kahler structure.

One observes that it is of no importance what kind of fields one considers (Grassmann or bosonic)
because the whole set of original fields is in the end split into two blocks after the introduction of
the Kahler “partitioning”. As a consequence this method works for theories combining bosons and
fermions with no additional problems. In fact, due to the specific way in which the symplectic and
Kahler structures are constructed one can also identify an artificially induced symmetry between
fermions and bosons.

Appendix D. The Jacobian

The two main ideas of this paper (symmetry out of cohomology and dual gauge fixing) define a
new way in which symmetry can be regarded. Instead of considering it as given by nature, here, some
discrete symmetries are used as artificial tools that can be added or removed from the theory. In order
to make this clear I use the field–antifield formalism. What one usually considers when studying
theoretical problems are actions that have some of the fields already integrated out. My choice, adapted
for the quantum Monte Carlo sign problem, is to use the field–antifield approach in an innovative
way such that a Kahler structure become manifest in the symplectic even-dimensional field space.
Following this choice a discrete symmetry generated by the Hodge dual (∗) emerges. This symmetry
assures that the fermionic determinant is positive definite. The specific way in which the new structure
is induced is by introducing a set of auxiliary fields that can be seen as shifts in the field space. After
performing two shifts one obtains a BRST–anti-BRST structure constructed in a way that enforces
the Schwinger–Dyson equations as Ward identities. In general, the Schwinger–Dyson equations are
the quantum equations of motion. They are derived as a consequence of the generalization to path
integrals of the invariance of an integral under a redefinition of the integration variable from x to x + a.
The BRST–anti-BRST symmetry is used in order to enforce precisely this at the level of Ward identities.
The dual symmetry is obtained analogously by using an internal space. This method ensures that no
divergencies in any of the kernel momenta appear.

One can also ask if it is possible to perform other initial transformations. The answer is of
course yes, but the final symmetry must be obtained for the entire structure, i.e., the action and the
integration measure. Performing the transformation as specified and compensating every time for the
transformations of the measure will produce the same Kahler structure and the same time reversal-type
symmetry that will be mapped into the resulting functional determinant [38,39].

Let [dq] be my initial measure, Ga a transformation of the fields, and S[q] be my action. [dq] is
assumed not to be invariant under Ga. By construction S[q] is considered invariant and so will also be
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S′[q′, a] where a is the parameter of the transformation. One assumes the integration over a as being
trivial. Performing the change in variables q→ q′ will affect [dq]. The resulting transformation will be∫

[dq]→
∫
[dq′]det| ∂qi

∂q′j
| =

∫
[dq′]det(Mij) (A17)

Here, the measure [dq′] is not invariant under the gauge transformations. The determinant of
the transformation is also not invariant but the invariance is recovered when one combines the
two transformations. Then, the gauge fixing procedure can be performed and one obtains the
emerging global (anti)BRST symmetry. Please note that at this level the Jacobian has no special
discrete symmetry. On the dual “branch” one can do the same thing obtaining the dual-(anti)BRST
symmetry. After generating the internal space over which one defines the dual BRST symmetry, I
introduce the hodge star operation which induces a discrete time reversal-type symmetry over the
entire field space and implicitly over the resulting block-determinant.

In order to improve on clarity let us think in the terms of the field–antifield formalism. For the
sake of simplicity the field space can be regarded as a D dimensional manifold parametrized by real
coordinates yi = (y1, y2, ..., yD). After performing the field extension in the sense of Batalin–Vilkovisky
the space is extended to a 2D dimensional manifold of the form yi = (x1, x2, ..., xD, ξ1, ξ2, ..., ξD) where
x are the bosonic and ξ are the fermionic coordinates. This space has a symplectic structure given by a
closed non-degenerate 2-form

ω = dyj ∧ dyiωij (A18)

dω = 0 (A19)

Finally, an antibracket structure emerges

{A, B} = A∂l
iω

ij∂jB (A20)

By introducing the internal space in the way explained in Section 3 of the main article
(Equations (62)–(64)) one extends the space again. Now D = 2d and I define the hodge star operation
and its associated duality. Having the Kahler structure defined by

J =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

 (A21)

and going to a complex coordinate basis

za = (zα, ζα) z̄a = (z̄α, ζ̄α), α = 1, 2, ..., d (A22)

zα = xα + ixd+α, ζα = ξα + iξd+α (A23)

we obtain a supermanifold with a Kahlerian geometry and an equivalent change in the representation
of the antibracket. Following [27] (for the sake of brevity I will not perform the calculations here again)
the change in the metric which amounts to the redefinition of the Poisson bracket (generalized to the
antibracket in our situation)

{ f , g} = ∑
αβ

Ωα,β ∂ f
∂ηα

∂g
∂ηβ

(A24)

modifies the expression of the integration measure taking the change of the metric in the definition
of the antibracket and mapping it onto the structure of the resulting global block-determinant.
(see Equations (11)–(15), (17) and (18) of [27]). This ensures that the discrete symmetry affects the
resulting determinant in the desired way.
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Another way of looking at this discrete symmetry is to consider it as induced by the antipode of
a Hopf-algebra (the vector space analogue of the Hodge star). Only after one constructs the global
BRST–anti-BRST and dual-BRST–anti-BRST symmetries will the discrete symmetry emerge. The
method of constructing the first two symmetries already implies the inclusion of the Jacobian of the
considered transformations. This will correctly modify action as well as the measure of integration
(see [11,12]).

One may also notice that here I used the de-Rham cohomology and Hodge duality in order to
generate a discrete symmetry. Further symmetries could be obtained considering other topological
properties like cobordism or Morse-surgery.
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