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Abstract: Silver tabular hexagonal particles (<diagonal> = 200 nm) were prepared at 40 ◦C by the
reduction of silver nitrate with ascorbic acid in a solution of a polynaphthalene sulphonic dispersant
agent, Daxad 19, in strong acidic conditions. By varying the reaction temperature and thus the
dispersion viscosity between 10 ◦C and 30 ◦C, mesostructures of silver flat rods and flakes were
obtained, the former resulting from linear aggregation of tabular hexagonal particles and the latter
formed by intertwined flat rods. The results indicate an easy way to tune the aggregation of particles
to obtain ordered mesostructures.
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1. Introduction

Noble metal nanoparticles have attracted considerable attention in the last few decades due to
their unique optical, electric, catalytic, and antibacteriostatic properties. Theoretical and experimental
research has established that the intrinsic properties of a metal nanoparticle, which can have a
great influence on its macroscopic behavior, are mainly determined by its size, composition, and
crystallinity [1]. Many metals can now be processed into monodispersed particles with controllable
composition and structure, and can be produced in large quantities at low cost through solution-phase
methods [2–7]. An important role in determining new macroscopic properties is also attributed to
the shape of the particle [8]. Regarding optical properties, for example, prolate silver spheroids
are particularly effective in surface enhancement Raman scattering (SERS). The effect, compared to
spherical particles, involves the splitting of the dipole resonance into two absorptions bands, in which
the induced dipole oscillates along and transverse to the spheroidal axis. The change-over from a
spherical to an ellipsoidal shape results in a shifting of the absorption into the UV-VIS range [9].

Besides particle shape, another important effect on macroscopic properties is determined
by particle-particle interaction. In order to observe, identify, and study this phenomenon, as
well as find new technological applications, metal particles have to be organized in ordered
structures [10,11]. Linear metal particle aggregates, for example, find potential use as interconnects
in fabricating nanodevices and play important roles in investigating a variety of physical
phenomena [12,13]. In particular, silver has received special attention because it exhibits the highest
thermal and electrical conductivity of all the metals, and the performance of silver in many applications
could be enhanced by processing silver into one-dimensional nanostructures [14,15].

The challenge is therefore to find low-cost synthetic methods capable of (a) preparing particles
with definite shapes different from the most common isotropic spheres and (b) assembling the particles
into ordered structures. To prepare particles with definite shapes, capping agents can be used, i.e.,
molecules that, through selective coordination on some crystal planes, favor a preferential particle
growth, therefore modifying the particle shape [16]. A beautiful example is given by monodispersed
acicular haematite (α-Fe2O3) particles [17], where the particle shape is mainly determined by the
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capping effect of PO4
3− ions that, through coordination with Fe3+ ions onto preferential crystal planes,

hinders the particle growth along these planes [18].
For the preparation of silver particles, a well-known chemical method involves the reduction

of silver ions with ascorbic acid in the presence of a dispersant agent (which is necessary to avoid
particle aggregation). Some authors pointed out the presence, besides spherical particles, of isolated
particles of different shapes [3,19]. We therefore decided to investigate the preparation method, trying
to understand the cause of the new particle shapes and optimize their selective formation.

Eventually, by lowering the reaction temperature from 30 to 10 ◦C and thereby increasing the
viscosity of the dispersion, one dimensional (1D) and two dimensional (2D) mesostructures, formed
by particle aggregation, were obtained.

2. Materials and Methods

2.1. Materials

Silver nitrate crystals and ascorbic acid, purchased from Aldrich (Saint Louis, MO, USA), were of
the high purity grade. HNO3 69.7 wt % was purchased from Fischer. The surfactant Daxad 19 (sodium
salt of poly naphthalene sulphonate formaldeyde condensate, mol wt. 8000, in the text abbreviated as
Daxad) was obtained from Akrochem Company, Akron, OH, USA.

2.2. Chemical Synthesis

Tabular Hexagonal

Silver particles (Sample 1): Small sized hexagonal tabular particles (<diagonal> = 200 nm) were
obtained by modifying a process described previously [3].

To 250 mL of an aqueous solution of 9.17 g AgNO3 at 40 ± 2 ◦C, 1.32 g Daxad was added.
The orange brown solution was then acidified by the addition of 28 mL HNO3. Then, 10 g ascorbic
acid dissolved in 30 mL H2O was added after 1 h. The rate of ascorbic acid solution addition was
0.5 cm3/min for the first 5 min. The color of the suspension turned from light brown to dark brown
to dark green. At this point, the rate was slowed to 0.3 cm3/min. The ascorbic acid addition was
completed. Mechanical stirring was continued for 1 h, until the dispersion reached room temperature.
After settling of the grey precipitate, the mother liquors were siphoned. The precipitate was then
washed three times with deionized water, and dispersed in water.

Silver flat rods (Sample 2): Same procedure as above but the reaction temperature was set at
30 ± 2 ◦C.

Silver flakes (Sample 3): Same procedure as above but the reaction temperature was set at
10 ± 2 ◦C.

Polydispersed particles (Sample 4): Same procedure as sample 1, but with a AgNO3 concentration
that was 10 times less (see Table 1).

Table 1. Experimental preparation conditions for samples 1–4 in relation to the different
morphologies obtained.

Sample 1 2 3 4

T (◦C) 40 10 30 40
t (min) 60 60 60 10

Ag Initial Conc. mol dm−3 0.2 0.2 0.2 0.02
HNO3 mol dm−3 1.6 1.5 1.6 1.4

Dispersant Initial Conc. g dm−3 4.9 4.9 5.4 5.2
Dispersant/Metal Ratio 1/4.4 1/4.4 1/3.6 2.4/1

Asc Acid Fin. Conc. mol dm−3 0.18 0.19 0.19 0.16
Vol Prior Reduction cm3 278 270 165 170
Vol after Reduction cm3 308 300 183 185

SEM TEM Hexag. part 1 Flat rods flakesflakFl Flakes Polydispersed particles 2

1 Part = Particles. 2 Largest particle size 0.6 µm (see Figure 6).
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2.3. Characterization

The material was studied with a scanning electron microscope (SEM), a transmission electron
microscope (TEM), and in the case of tabular silver particles, also with a field-emission scanning
electron microscope (FE-SEM).

The crystalline structure was analyzed by X-ray powder diffraction (XRD) and electron diffraction,
and the crystallite size was evaluated using Scherrer’s equation.

Electrokinetic measurements of silver particles as a function of pH in 1 × 10−3 mol dm−3 KCl
aqueous solution were performed with a ZetaPlus instrument at 25 ◦C.

3. Results

Figure 1a–d show SEM micrographs of the different silver-based materials. In Table 1, the
experimental conditions in relation to the different morphologies obtained are listed.

Apparently, the temperature is the main parameter that determines the different morphologies.
In fact, at low temperatures (10 ◦C), flakes are obtained (Figure 1a); at 30 ◦C, flat rods are obtained
(Figure 1b); and at 40 ◦C, hexagonal tabular particles are obtained (Figure 1c). In the case of flakes,
Figure 1d shows that they are formed by flat rods fused and/or intertwined together (inset of Figure 1d).
All of the samples are composed of silver covered by a surfactant layer as shown by SEM and TEM
investigations (see below) as well as zeta potential measurements (Figure 2) [20].

According to the anionic nature of the surfactant, the particles are, in fact, negatively charged
over the studied pH range. An analogous result was found previously by Sondi et al. [3] where FTIR
spectroscopic measurements also supported the presence of the surfactant.

SEM micrographs of tabular hexagonal silver particles show a particle thickness of 20 nm and a
particle diagonal of 200 nm (Figure 3). Previous TEM investigations on the same samples showed the
presence of twinning defects common in metallic particles [21,22] and in situ time-resolved small angle
X-ray scattering measurements also revealed that the tabular particles result from the aggregation
of primary particles with size of about 30 nm [23]. The electron diffraction SAED pattern could be
indexed as a silver face-centered cubic structure (JCPDS-04-0783) [21].

It is interesting to note that, in the SEM micrographs, the tabular particles show, on their surface,
smaller shining spherical particles (<diameter> = 20 nm) (inset of Figure 1c). Most probably they are
gold particles coated with silver. Because the particles are covered by an insulating surfactant layer,
charging phenomena can occur during SEM measurements. To avoid this, before SEM investigation,
the samples were sputtered with gold. During the process, the hot gold droplets arriving on the thin
silver hexagonal tabular surface induce silver, having a lower melting point than gold, to flow onto the
warmer gold particle surface. As a result, silver-coated gold particles become significantly brighter
than the gold particles deposited on the bare substrate (as a matter of fact, the silver enhancing effect is
commonly used in electron microscopy, especially when small gold particle labels (1–5 nm) must be
used) [24].

X-ray diffraction measurements performed on every sample showed, besides a large peak
attributed to the amorphous Daxad, only the diffraction peaks of silver (Figure 4).

In our previous studies [21,25], we determined the crystallite size using Scherrer’s equation
corrected with an external standard for instrumental error, and showed that in all cases crystalline
sizes varied between 20 nm and 33 nm. In the case of single crystal hexagonal particles, the crystal size
of 33 nm, found by applying Scherrer’s equation, was sensibly less than the particle size (diagonal
was ca. 200 nm). This is in agreement with in situ and time-resolved small angle X-ray scattering
measurements, indicating that the hexagonal particle is not a single crystal but is formed by the
aggregation of primary particles with size of about 30 nm. The ratio between the intensities of 111 and
200 XRD powder diffraction peaks increased compared to the spherical particles (3.9 to 2.5), denoting
the preferential particle growth in the (111) crystal plane.
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Figure 1. (a) SEM micrograph of silver flakes (bar size = 10 µm); (b) SEM micrograph of silver flat
rods (bar size = 6 µm); (c) SEM image of tabular hexagonal silver particles deposited on a porous
polycarbonate membrane. The sample is sputtered with gold. Inset: Tabular hexagonal particle
showing gold nanoparticles covered with silver; (d) SEM micrograph showing the flakes formed by
the flat rods (bar size = 3 µm).
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Figure 2. ζ potential of hexagonal tabular silver particles in 10−3 mol dm−3 KCl solution as a function
of pH.

Figure 3. FE-SEM micrograph of a hexagonal tabular silver particle with a thickness of about 20 nm.
The sample was not sputtered with gold (bar size = 10 nm).

Figure 4. X-ray diffraction (XRD) pattern of hexagonal tabular silver particles.
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It is notable that, if the rate of ascorbic acid addition is fast (more than 0.5 mL/min), capping
(determining the ordering process acting during the particle growth) is depressed, yielding particles
that are almost all round shaped and approximately 200 nm in diameter.

Furthermore, in order to obtain larger particles, in the case where nucleation and growth are
separate processes [20], it is possible to decrease the number of silver nuclei by decreasing the
concentration of silver nitrate, thus favoring the particle growth process. By decreasing the silver nitrate
concentration by 10 times (from 0.2 to 0.02 M), micrometer sized particles are obtained (Table 1, sample
4). As evidenced by SEM investigations (Figure 5) the particles are not monodispersed. Probably
longer digestion times would be required, in accordance with the Ostwald ripening process, to reduce
the distribution size in favor of the largest ones.

Figure 5. SEM micrograph of polydispersed silver particles (bar size = 6 µm).

4. Discussion

What is remarkable in this system is that, by simply varying the reaction temperature in a very
small range (10–40 ◦C), a variety of silver forms are obtained, such as flake and flat rod mesostructures
and tabular hexagonal particles. In Figure 6a,b, aggregated tabular particles are visible, building blocks
of the flat rods observed in Figure 1b.

Figure 6. (a) TEM image of tabular silver particles aggregated to form one-dimensional (1D) flat rods
(bar size = 100 nm); (b) SEM image of the same process (bar size = 0.4 µm).
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The different particle aggregation is probably due to the different viscosity of the reaction
dispersion, as shown in Figure 7.

Figure 7. Viscosity of the dispersion prior to the ascorbic acid addition (K = 1/T).

The lower dispersion viscosity measured at 40 ◦C allows the hexagonal tabular particles to remain
well separated, whereas as the viscosity increases, at 30 ◦C, the tabular particles aggregate, forming
flat rods, and at 10 ◦C, the flat rods further aggregate to form flakes (Figure 1d).

Regarding the tabular hexagonal particle shape, why does it form? To what extent is it possible to
control its growth? To answer these questions, we examined in detail the reaction, i.e., the reduction
by ascorbic acid (AA) of Ag+ ions dissolved in an aqueous acidic surfactant dispersion. The Ag+

reduction process is controlled by the environment in which it takes place. The surfactant, the first
reagent added to the AgNO3 solution, is a polymer constituted essentially of condensed naphtalenic
rings with sulphonic and formaldehyde groups. It is dispersible in water and through its sulphonic
groups is able to coordinate the Ag+ ions. Dissolved in the reaction solution are NO3

− anions, which
are known to be powerful electron scavengers and compete in capturing electrons released by the
reducing agent. Moreover, a higher concentration of NO3

− ions is available in the system, due to the
presence of nitric acid added to decrease the concentration of the ascorbate ions, in which AA2− is
considered the main reducing agent (Equation (1)).

AA⇔ AA2− + 2H+ (1)

In this way, it is possible to tune the reduction process by controlling the concentration of ascorbate
ions, i.e., the pH [26]. As a matter of fact, evidence that the system can be very finely controlled is
that the reduction process can even be prevented. In fact, if initially the addition rate of ascorbic
acid is below 0.5 cm3/min and starts about 10 min after the addition of silver nitrate, no visible
precipitation is observed. A possible explanation for this is that, in order to start the reaction, an
increase of pH is necessary to produce a sensible amount of AA2−. This can be accomplished by tuning
the addition rate of the weaker ascorbic acid; when the addition rate is slow (below 0.5 cm3/min),
the pH increase is slow and the AA2− concentration is low. On the contrary, when the addition rate
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increases above or equal to 0.5 cm3/min, the concentration of the reducer, AA2−, increases and the
reaction can start. Moreover, if a certain amount of time is elapsed before the ascorbic acid addition,
as soon as the ascorbic acid addition starts, Ag0 atoms nucleate but undergo prompt dissolution by
the NO3

− electron scavenger [27]. As a matter of fact, it was observed that as soon as an ascorbic
acid solution drop is added to the reaction solution, the formation of a grey turbidity occurs, which
promptly dissolves with development of gas bubbles (probably nitrogen oxides). Then, in this case, in
order to observe the precipitation of silver particles, a larger amount of ascorbic acid is needed (~twice
the quantity used in our protocol). Furthermore, our protocol for ascorbic acid concentration yielded
well-separated tabular particles (Figure 1c), together with a few spherical particles, while using larger
amounts of ascorbic acid gave only aggregated, tabular hexagonal silver particles, similar to those
obtained by Fukuyo et al. (Figure 8) [28].

Figure 8. SEM micrograph of aggregated hexagonal tabular silver particles obtained by increasing the
ascorbic acid concentration (bar size = 0.7 µm).

Apparently, the addition of a greater amount of reducing agent helps the formation of tabular,
hexagonal shaped particles. Considering the ascorbic acid molecule, a five-membered ring with the
enediol group HO–C=C–OH laying planar [29], a possible explanation for this phenomenon is that
this group acts as a capping agent on silver through the coordination of the two OH groups, stabilizing
the primary particle growth along the preferential growing plane (111). The high ratio of {111} to
{100} facets in (111)-based particles would then determine the hexagonal shape. It is notable that, if
the rate of ascorbic acid addition is fast (more than 0.5 mL/min), the capping action of the enediol
group HO–C=C–OH (determining the ordering process acting during the primary particle growth) is
hindered, yielding particles that are almost all round shaped.

An indirect evidence of the influence of ascorbic acid in determining a preferential particle growth
comes from a few silver triangular shaped particles observed by Sondi et al. [3] in samples mainly
constituted of small multi-twinned spherical silver particles, also prepared by the reduction of silver
nitrate with ascorbic acid. The triangular shaped particles represent a first stage in the shape evolution
of (111)-based nanoparticles as the ratio of {111} to {100} facets increases [22].

5. Conclusions

One novel aspect of the reaction system is its extreme versatility that, depending upon slight
changes in a small range of reaction temperatures (40–10 ◦C), produces tabular hexagonal silver
particles and orders them in 1D (flat rods) and 2D (flakes) mesostructures.

The organic components, i.e., ascorbic acid and Daxad, play the main roles in determining the
new silver particle shape—hexagonal, tabular, or mesostructural. In the first case, the tabular form
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might be determined by the ascorbic acid molecule that, through the coordination of its planar endiol
(HO–C=C–OH) group, favors the primary particles’ growth along the preferential plane (111), followed
by their oriented aggregation in hexagonal tabular shapes. In the second case, the flat rod and flake
mesostructures, formed by the aggregation of the hexagonal tabular particles at 30 ◦C and 10 ◦C,
respectively, are determined by the increasing viscosity of the dispersions that favors at 30 ◦C the 1D
flat rod shaped assembling of the particles and, by further increase of the viscosity, at 10 ◦C, favors the
further aggregation of the flat rods, building 2D flake mesostructures.
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17. Ozaki, M.; Kratohvil, S.; Matijević, E. Formation of monodispersed spindle-type hematite particles. J. Colloid
Interface Sci. 1984, 102, 146–151. [CrossRef]

http://dx.doi.org/10.1039/a709236i
http://dx.doi.org/10.1016/S0021-9797(02)00205-9
http://dx.doi.org/10.1016/S0927-7757(01)01071-8
http://dx.doi.org/10.1021/la9601871
http://dx.doi.org/10.1016/S0927-7757(02)00214-5
http://dx.doi.org/10.1021/la026610p
http://dx.doi.org/10.1126/science.1077229
http://www.ncbi.nlm.nih.gov/pubmed/12481134
http://dx.doi.org/10.1016/0039-6028(82)90161-3
http://dx.doi.org/10.1016/S1010-6030(99)00231-2
http://dx.doi.org/10.1021/j100105a024
http://dx.doi.org/10.1126/science.1062711
http://www.ncbi.nlm.nih.gov/pubmed/11509722
http://dx.doi.org/10.1126/science.291.5505.851
http://www.ncbi.nlm.nih.gov/pubmed/11157160
http://dx.doi.org/10.1002/1521-4095(20020605)14:11&lt;833::AID-ADMA833&gt;3.0.CO;2-K
http://dx.doi.org/10.1021/cm0350737
http://dx.doi.org/10.1021/ja103655f
http://www.ncbi.nlm.nih.gov/pubmed/20527784
http://dx.doi.org/10.1016/0021-9797(84)90208-X


Condens. Matter 2018, 3, 13 10 of 10

18. Morales, M.P.; González-Carreño, T.; Serna, C.J. The formation of α-Fe2O3 monodispersed particles in
solution. J. Mater. Res. 1992, 7, 2538–2545. [CrossRef]

19. Johnson, C.J.; Dujardin, E.; Davis, S.A.; Murphy, C.J.; Mann, S. Growth and form of gold nanorods prepared
by seed-mediated, surfactant-directed synthesis. J. Mater. Chem. 2002, 12, 1765–1770. [CrossRef]
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