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Abstract: It is known that attractive potential ∼−1/r2 gives rise to the critical quantum collapse in
the framework of the three-dimensional (3D) linear Schrödinger equation. This article summarizes
theoretical analysis, chiefly published in several original papers, which demonstrates suppression
of the collapse caused by this potential, and the creation of the otherwise missing ground state
in a 3D gas of bosonic dipoles pulled by the same potential to the central charge, with repulsive
contact interactions between them, represented by the cubic term in the respective Gross–Pitaevskii
equation (GPE). In two dimensions (2D), quintic self-repulsion is necessary for the suppression of
the collapse; alternatively, this may be provided by the effective quartic repulsion produced by the
Lee–Huang–Yang correction to the GPE. 3D states carrying angular momentum are constructed in
the model with the symmetry reduced from spherical to cylindrical by an external polarizing field.
Interplay of the collapse suppression and miscibility–immiscibility transition is considered in a binary
condensate. The consideration of the 3D setting in the form of the many-body quantum system,
with the help of the Monte Carlo method, demonstrates that, although the quantum collapse cannot
be fully suppressed, the self-trapped states predicted by the GPE exist in the many-body setting as
metastable modes protected against the collapse by a tall potential barrier.

Keywords: quantum anomaly; ground state; self-trapping; Bose–Einstein condensate; Gross–Pitaevskii
equation; Thomas–Fermi approximation; mean-field approximation; quantum phase transitions;
Monte–Carlo method

1. Introduction

One of standard exercises given to students taking a course in quantum mechanics is solving the
three-dimensional (3D) Schrödinger equation with an isotropic attractive potential [1],

U(r) = −U0

2r2 , U0 > 0. (1)

This exercise offers a unique example of critical phenomena in the nonrelativistic quantum theory.
Indeed, the corresponding classical (Newton’s) equation of motion for the particle’s coordinates,
r = {x, y, z},

d2r
dt2 = −∂U

∂r
≡ U0

r
r4 , (2)
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admits obvious rescaling, t ≡ t̃/
√

U0, which eliminates U0 from Equation (2), thus making the
solution invariant with respect to the choice of a positive value of the potential strength, U0. However,
the invariance is lost in the corresponding 3D Schrödinger equation for wave function ψ (r, t),

iψt = −
1
2
∇2ψ− U0

2r2 ψ, (3)

in which U0 cannot be removed by rescaling. This drastic difference between the classical mechanical
system and its quantum-mechanical counterpart is known as the quantum anomaly, alias “dimensional
transmutation” [2,3].

The consequence of the anomaly is well known: if an external trapping potential,

Utrap =
1
2

Ω2r2, (4)

is added to Equation (3), to make the integral norm

N =
∫
|ψ(r)|2 dr (5)

convergent at r → ∞, the Schrödinger equation gives rise to the normal set of trapped modes, starting
from the ground state (GS), at

U0 < (U0)
(3D)
cr = 1/4. (6)

On the other hand, above this critical point (i.e., at U0 > 1/4), the GS does not exist (or, formally
speaking, it has an infinitely small size corresponding to energy E → −∞, which is known as “fall
onto the center” [1], the other name for which is “quantum collapse” [2,3]).

In the 2D space, the quantum collapse driven by the same potential (1) is more violent, taking
place at any value U0 > 0 (in other words, the respective critical value is (U0)

(2D)
cr = 0). Finally, in the

1D case, the same potential (1) gives rise to a still stronger superselection effect, which means splitting
the 1D space into two non-communicating subspaces, x ≷ 0 [4].

A solution to the quantum-collapse problem in the 3D case was proposed in terms of
a linear quantum-field-theory, replacing the usual quantum-mechanical wave function by the
secondary-quantized field [2,3]. This approach makes it possible to introduce the GS, which is missing
at U0 > 1/4 in the framework of standard quantum mechanics. However, the solution does not predict
a definite value of the size of the newly created GS. Instead, based on the renormalization-group
technique, the field-theory formulation introduces a GS with an arbitrary spatial scale, in terms of
which all other spatial sizes are measured in that setting.

The present mini-review aims to summarize results produced by works which elaborated another
possibility to resolve the problem of the quantum collapse. This possibility was proposed in Ref. [5], and
then developed for more general situations in works [6,7]. The solution was based on the consideration
of an ultracold gas of bosonic particles pulled to the center by potential (1). The gas was assumed to
be in the state of the Bose–Einstein condensate (BEC) [8], and the suppression of the single-particle
quantum collapse in this coherent many-body setting was provided by repulsive contact interactions
between colliding particles in the gas. The solution was elaborated in the framework of the mean-field
approach [8]; that is, treating the single-particle wave function which represents all particles in the gas
as a classical field governed by the corresponding Gross–Pitaevskii equation (GPE).

The same work [5] offered a physical realization of potential (1) in the 3D space, which was
previously considered as a formal exercise [1]. The realization is provided by assuming that the
bosonic particles are small molecules carrying a permanent electric dipole moment, d, pulled by the
electrostatic force to a point-like charge, Q, placed at the origin, which creates electric field E = Qr/r3.
In this connection, it is relevant to mention that it has been demonstrated experimentally that a free
charge (ion) immersed in an ultracold gas may be kept at a fixed position by means of a laser-trapping
technique [9]. Assuming that the orientation of the dipole carried by each particle is locked to the local
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field (i.e., d/d = sgn(Q) (r/r)), in order to minimize the interaction energy, the respective interaction
potential is U(r) = −d · E, which is tantamount to potential (1) with strength

U0 = 2|Q|d. (7)

As for the dipolar molecules which may be used to build the BEC under the consideration,
experimental results suggest that they may be, for example, LiCs [10] or KRb [11].

The gas of ultracold dipolar molecules trapped in a pancake-shaped configuration shaped by
an appropriate external potential [12], with the central electric charge immersed in the gas as outlined
above, provides for the realization of the 2D version of the setting. An alternative realization of
the 2D setting is offered by a gas of polarizable atoms without a permanent dielectric moment,
while an effective moment is induced in them by the electric field of a uniformly charged wire set
perpendicular to the pancake’s plane [13], or with an effective magnetic moment induced by a current
filament (e.g., an electron beam) piercing the pancake perpendicularly.

In the context of 2D settings, it is relevant to mention that a quantum anomaly was also predicted
in a model described by the GPE in the 2D space for a gas of bosons with the repulsive contact
interaction, trapped in the harmonic-oscillator potential (4) [14]. The anomaly breaks the specific
scaling invariance of this gas, which holds in the mean-field approximation.

In terms of the GPE, the contact repulsive interaction in the bosonic gas is represented by the cubic
term [8]. With the addition of this term, and considering the external trapping potential (4) which is
present in any experiment with ultracold atoms, the linear Schrödinger Equation (3) is replaced by the
GPE, which is written here in the scaled form:

iψt = −
1
2

(
∇2 +

U0

r2 −Ω2r2
)

ψ + |ψ|2 ψ. (8)

It is relevant to mention that the 3D GPE with the self-attractive interaction, which corresponds to
the opposite sign in front of the cubic term in Equation (8), gives rise—in the absence of the attractive
potential (U0 = 0)—to the well-known supercritical wave collapse [15]. A relation of this setting to
Equation (8) is that the inclusion of the trapping potential ∼Ω2 gives rise to stable bound states in the
form of spherically symmetric bound states and ones with vorticity m = 1 (cf. Equation (16) below),
provided that norm N does not exceed a certain critical value [16–19].

The energy (Hamiltonian) corresponding to Equation (8) is

E =
1
2

∫ [
|∇ψ|2 −

(
U0

r2 −Ω2r2
)
|ψ|2 +

∣∣∣ψ4
∣∣∣] dr. (9)

The scaled variables and constants, in terms of which Equation (8) is written, are related to their
counterparts measured in physical units:

r =
rph

r0
, t =

h̄
mr2

0
tph, ψ = 2

√
πasr0ψph, U0 =

m
h̄2 (U0)ph , Ω =

mr2
0

h̄
Ωph, (10)

where m and as are the bosonic mass and s-scattering length, which accounts for the repulsive
interactions between the particles [8], and r0 is an arbitrary spatial scale. The total number of bosons in
the gas is given by

Nph =
∫ ∣∣∣ψph(rph)

∣∣∣2 drph ≡
r0N
4πas

, (11)

where the norm of the scaled wave function is given by Equation (5).
Note that as it follows from Equation (7) and rescaling (10), the above-mentioned critical value,

U0 = 1/4, of the strength of the attractive potential (see Equation (6)) corresponds to a very small dipole
moment, d ∼ 10−6 Debye, if central charge Q is taken as the elementary charge, and the mass of the
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particle is ∼100 proton masses. Therefore, the overcritical case of U0 > 1/4, the consideration of which is
the main objective of the present article, is relevant in the actual physical context.

Taken as Equation (8), the GPE neglects dipole–dipole interactions between the particles.
These interactions can be considered in the framework of another application of the mean-field
approach. Indeed, the local density of the dipole moment in the gas (i.e., the dielectric polarization
of the medium) is P = d |ψ(r)|2, hence the electrostatic field generated by the polarization, Ed,
is determined by the Poisson equation, ∇ · (Ed + 4πP) = 0, which can be solved immediately:

Ed = −4πP ≡ −4πd |ψ(r)|2 . (12)

Then, the extra term in the GPE, accounting for the interaction of the local dipole with the
collective field (12) created by all the other dipoles is

− (d · Ed)ψ ≡ 4πd2 |ψ|2 ψ. (13)

If added to Equation (8), this term may be absorbed into a redefinition of the scattering length
accounting for the repulsion between the particles. In the underlying physical units, this amounts to

as → (as)eff ≡ as + md2/h̄2, (14)

where m is the mass of the dipolar molecule. For the typical value of as ∼ 10 nm and the
above-mentioned mass of the particle (∼100 proton masses), Equation (14) demonstrates that the
additional term is essential for dipole moments d & 0.3 Debye.

The rest of the article is organized as follows. In Section 2, results are reported for the basic model
outlined above, as per Ref. [5]. Particular subsections of Section 2 first recapitulate the description
of the 3D and 2D collapse in the framework of the Schrödinger Equation (3), which includes the
trapping potential (4), and then present main results obtained in the 3D case on the basis of Equation (8)
(with Ω = 0, as the trapping potential is not a necessary ingredient of the nonlinear model, contrary
to the linear one). The results explicitly demonstrate the creation of the originally missing GS by the
self-repulsive cubic nonlinearity at U0 > 1/4. In addition, a subsection of Section 2 reports a new
result, viz. a quantum phase transition in the GS of the model which includes the Lee–Huang–Yang
(LHY) correction [20] to the mean-field GPE. The summary of results for the 2D nonlinear model are
also presented in Section 2. It is demonstrated that the cubic self-repulsive term is insufficient for the
suppression of the 2D quantum collapse and restoration of the missing GS. This is possible if a quintic
repulsive term is included in the GPE, which may account for three-body collisions, or if the quartic LHY
correction is included in the effective two-dimensional GPE. A short subsection concluding Section 2
formulates a challenging problem of the consideration of the quantum collapse in the gas of fermions.

Along the lines of Ref. [6], Section 3 addresses the collapse suppression and creation of the GS
in the 3D model with the symmetry of the effective attractive potential reduced from spherical to
cylindrical by an external field which polarizes dipole moments of the particles. In this version of the
model, states carrying the angular momentum are constructed in addition to the GS.

Section 4 deals with a two-component model in 3D, which makes it possible to consider the interplay
of the collapse suppression and the transition between miscibility and immiscibility in the binary system.
A weak quantum phase transition which occurs in that setting is also briefly considered in Section 4.

Section 5 presents results for the basic 3D model, considered in terms of the many-body quantum
theory, as per Ref. [21], with the help of variational approximation for the many-body wave functions
and numerically implemented Monte Carlo method. The main result is that, strictly speaking,
the quantum collapse is not fully suppressed in the many-body theory. Nevertheless, the non-collapsing
self-trapped state predicted by the mean-field theory exists as a metastable one, insulated from the
collapse by a tall potential barrier.
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The paper is concluded by Section 6, which also suggests directions for further work on this
general topic.

2. The Basic Three- and Two-Dimensional Models

This section summarizes results produced in Ref. [5]. The quantum phase transition driven by
the LHY correction to the mean-field theory, briefly outlined in Section 2.3, is a new finding.

2.1. The Quantum Collapse in the Linear Schrödinger Equation

First, it is relevant to recapitulate the analysis of the linear Schrödinger Equation (3), to which the
trapping potential (4) is added:

iψt = −
1
2

(
∇2 +

U0

r2 −Ω2r2
)

ψ. (15)

Stationary solutions of Equation (15) in 3D spherical coordinates, (r, θ, ϕ), are looked for as

ψ3D = exp(−iµt)Ylm (θ, ϕ)Φ(r), (16)

where µ is the energy eigenvalue (or chemical potential, in terms of the GPE), Ylm (θ, ϕ) is the spherical
harmonic with quantum numbers (l, m), and radial wave function Φ(r) is real. Substituting ansatz (16)
in Equation (15), two exact solutions for Φ(r) can be found:

Φ(r) = Φ0r−σ± exp
(
−Ωr2/2

)
, (17)

µ = Ω
(

3
2
− σ±

)
, σ± ≡

1
2
±
√

1
4
−Ul , (18)

which exist under condition
Ul ≡ U0 − l (l + 1) < 1/4. (19)

The smaller value of µ (in the case of l = 0, it defines the GS of the system under the consideration)
corresponds to σ+; that is, the top sign in Equation (18). The wave function is characterized by its norm (5),

N = 4π
∫ ∞

0
Φ2(r)r2dr = 2πΦ2

0Ω
−
(

1∓
√

1
4−Ul

)
Γ

(
1∓

√
1
4
−Ul

)
, (20)

where Γ is the Gamma-function. Equation (20) shows why the trapping potential ∼ Ω2 is necessary for
the existence of physically relevant (normalizable) eigenmodes of the linear Schrödinger Equation (15),
as norm (20) diverges in the limit of Ω→ 0 due to its weak localization at r → ∞.

These solutions for the stationary wave functions do not exist at Ul > 1/4 (note that the presence
of the angular momentum, l ≥ 1, secures the existence of the bound states at essentially larger values of
U0, as per Equation (19)). The nonexistence of stationary wave functions implies that the system suffers
the onset of the quantum collapse, as confirmed by simulations of time-dependent Equation (15),
see an example in Figure 1. Indeed, a set of instantaneous profiles of

√
r|ψ(r, t)|, shown in Figure 1 for

the weakly overcritical case (U0 = 0.27, with l = 0), confirm the development of the self-compression
(finally, collapse) of the wave function towards r = 0. Note that in the simulations, the collapse is
eventually arrested due to a finite mesh size of the numerical scheme.

In 2D, the GS solution to Equation (15) exists only for U0 < 0. In the exact form, the GS wave
function is given by Equations (16) and (17), but with (18) replaced by

µ = Ω (1− σ±) , σ± = ±
√
−U0. (21)

Direct simulations of the 2D Equation (15) at U0 > 0 also demonstrate the onset of the collapse dynamics.
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Figure 1. Radial profiles of |χ(r, t)| ≡
√

r|ψ(r)| at t = 0, 0.005, and 0.1 (dotted, dashed, and solid
curves, respectively), as originally produced in Ref. [5] by simulations of Equation (15) with Ω2 = 0.1
and U0 = 0.27, which slightly exceeds the critical one, (U0)

(3D)
cr = 1/4. The initial conditions are taken

as ψ0(r) = r−1/2 exp(−Ωr2/2), which is the exact stationary wave function for U0 = 1/4—that is,
precisely at the critical point, taken as per Equations (17) and (18) (for this reason, the evolution of the
wave function is displayed here in terms of

√
r|ψ(r)|). The simulations demonstrate the onset of the

quantum collapse in the linear Schrödinger equation.

2.2. The Three-Dimensional Ground State (GS) Created by the Cubic Self-Repulsive Nonlinearity

The most essential results may be produced by GPE (8) without an external trapping potential.
Hence, the equation simplifies to

iψt = −
1
2

(
∇2 +

U0

r2

)
ψ + |ψ|2 ψ. (22)

The substitution of ψ = e−iµtΦ(r) with real Φ(r) for isotropic stationary states of Equation (22)
(here only l = 0 is considered, cf. Equation (16), with the intention to construct the GS, which always
has l = 0) yields equation

µΦ = −1
2

(
d2Φ
dr2 +

2
r

dΦ
dr

+
U0

r2

)
Φ + Φ3. (23)

The scaling invariance of Equation (23) at r → 0 suggests that the respective asymptotic form of
the solution should be Φ ∼ 1/r. Therefore, solutions are looked for as

Φ (r) =
χ(r)

r
, (24)

with function χ(r) obeying equation

µχ = −1
2

[
χ′′ +

(
U0

r2 −Ω2r2
)

χ

]
+

χ3

r2 . (25)

Asymptotic forms of solutions to Equation (25) can be readily constructed for r → 0 and r → ∞.
First, the expansion at r → 0 yields

χ(r) =
√

U0/2 + χ1rs/2, s ≡ 1 +
√

1 + 8U0, (26)

where χ1 is a free constant, in terms of this expansion. At r → ∞, the asymptotic form of the
bound-state solution with µ < 0 is

χ = χ0 exp
(
−
√
−2µr

)
, (27)
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where χ0 is an arbitrary constant, in terms of the expansion for r → ∞. A global analytical
approximation can be constructed as an interpolation, stitching together the asymptotic forms (26)
(where the correction term ∼χ1 is neglected in the present approximation) and (27):

ψ(r, t) =

√
U0

2
e−iµtr−1e−

√
−2µr. (28)

Note that the singularity of wave function (28) at r → 0 is acceptable, as the respective
integral (5) converges at small r. It is also relevant to mention that, following the substitution of
the asymptotic form (28) in the effective pseudopotential in Equation (22) (which includes the nonlinear
term, Upseudo(r) ≡ −(1/2)U0r−2 + |ψ(r)|2), the singularity ∼ r−2 at r → 0 cancels out in it. Note
also that a more singular attractive potential, U(r) = −U0/rb, with U0 > 0 and b > 2, gives rise to
asymptotic form |ψ|2 ≈ U0/rb of the solution at r → 0. Hence, the corresponding norm still converges
at b < 3.

Due to the nonlinearity of Equation (22), the chemical potential of the GS depends on its norm.
Using approximation (28), it is easy to calculate µ as a function of N:

µ = −1
2

(
πU0

N

)2
. (29)

In fact, scaling µ ∼ N−2 is an exact property of solutions to Equation (22), which follows from a
straightforward analysis of this equation. Note also that in the limit of µ→ −0, Equation (28) gives a
particular exact solution of Equation (22),

ψµ=0(r) =
√

U0/2r−1, (30)

although its norm diverges at r → ∞b.
Equation (25) can be easily solved in a numerical form. A typical example of the numerical GS

solution, along with approximation (28), is displayed in Figure 2a for U0 = 0.8, which is essentially
larger than the critical value of the attraction strength, (U0)

(3D)
cr = 1/4 (see Equation (6)), beyond which

linear Schrödinger Equation (15) has no GS. Further, Figure 2b,c represent the family of the GS states
by means of dependences µ(N) for two values, U0 = 0.8 and 0.1, which are, respectively, larger and
smaller than 1/4. Thus, in contrast to the linear Schrödinger equation, GPE (22) maintains the GS
at all values of U0 and N. In other words, the inclusion of the repulsive cubic term in Equation (22)
completely suppresses the quantum collapse in the 3D space, creating the GS where it does not exist in
the linear Schrödinger equation.

The analytical approximation (28) suggests an estimate for the radial size of the GS created by the
repulsive nonlinearity:

r2
GS ≡

4π

N

∫ ∞

0
|ψ(r)|2 r4dr =

N2

2π2U2
0

. (31)

It is relevant to rewrite this estimate in terms of physical units, as per Equations (10), (11), and (14):

(rGS)ph ≡ r0rGS =
2
√

2
(

h̄2as + md2
)

Nph

m (U0)ph
. (32)

Note that the arbitrary spatial scale r0 which was used in rescalings (10) and (11) cancels out in
Equation (11). Thus, GPE (22) uniquely predicts the radius of the restored GS in terms of the physical
parameters of the model.
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Figure 2. (a) A typical example of the 3D ground state, shown in terms of χ(r) ≡ r |ψ(r)|, produced
by the Gross–Pitaevskii equation (GPE) (22), as per Ref. [5], without the external trap (Ω = 0), for
U0 = 0.8 and µ = −0.225. Panels (b) and (c) display curves µ(N) for the ground-state families with
U0 = 0.8 and 0.1. These strengths of the attractive potential are, respectively, larger and smaller than
the critical value 1/4 (see Equation (6)) for the linear Schrödinger Equation (15). Here, solid and dashed
curves, respectively, depict the numerical results and analytical approximation given by Equations (28)
and (29). In panels (b,c), the curves follow scaling µ ∼ N−2, which is an exact property of Equation (22).
In particular, the analytical approximation predicts N(µ = −0.225) = 5.30 for U0 = 0.8 (the solution
shown in (a)), while the numerically found counterpart of this value is Nnum(µ = −0.225) = 6.26.
The convergence of the numerical and analytical curves for N(µ) at µ→ 0 corresponds to the fact that
Equation (28) gives exact solution (17) in this limit.

It is natural that rGS, given by Equation (32), shrinks to zero in the limit of vanishing nonlinearity,
which is tantamount to Nph → 0, implying the onset of the collapse in the framework of the linear
Schrödinger equation. Note also that, if the contribution from the dipole–dipole interactions (∼d2)
dominates over the contact interactions in Equation (32) (md2 & h̄2as), the latter result strongly
simplifies, taking into regard Equation (7): (rGS)ph =

(√
2d/|Q|

)
Nph. Then, for Q equal to the

elementary charge, d ∼ 1 Debye, and Nph ∼ 105, the latter estimate predicts the GS with radius ∼ 3 µm.
This result upholds the self-consistency of the model, as the mean-field approximation (and the
respective GPE) are definitely applicable for scales &1 µm [8].

It is worth stressing that Equation (8), which does not include the trapping potential (Ω = 0),
predicts the GS with the finite norm at U0 < 1/4, as the norm of the corresponding stationary solutions
to the linear Equation (15) (see Equations (16) and (17)) diverges at Ω = 0. Lastly, simulations of
Equation (8) with random perturbations added to the stationary solutions demonstrate that the GS
is always dynamically stable [5]. The stability also agrees with the anti-Vakhitov–Kolokolov criterion,
dµ/dN > 0, which is a necessary stability condition for localized states supported by self-repulsive
nonlinearities [22] (the original Vakhitov–Kolokolov criterion, dµ/dN < 0, is the necessary stability
condition in the case of self-attraction [15,23]) .

2.3. The Quantum Phase Transition Induced by the Lee–Huang–Yang (LHY) Correction to the Mean-Field Theory

As seen in Equations (24) and (26), the singularity ∼r−1 of the stationary wave function at r → 0
suggests that, although the singularity is integrable (as the respective 3D integral for the total norm
converges), the LHY correction [20] to the mean-field theory, which is relevant for higher values of the
condensate’s density, should be taken into regard. As shown in Refs. [24,25], the scaled GPE with this
correction, represented by coefficient gLHY > 0, is

iψt = −
1
2

(
∇2 +

U0

r2

)
ψ + |ψ|2 ψ + gLHY |ψ|3 ψ. (33)
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Then, the asymptotic form of the stationary wave function at r → 0, which was found above in
the form determined by the cubic term in Equation (22), Φ(r) ≈

√
U0/2r−1, is replaced by

ΦLHY(r) ≈ (U0/2− 1/9)1/3 r−2/3, (34)

under the condition of U0 > 2/9. Meanwhile, at 0 < U0 < 2/9, the asymptotic form is determined by
the linearization of Equation (33), leading to the same result as given by Equations (17) and (18) with
σ = σ− (and Ul replaced by U0):

ΦLHY(r) ≈ Φ0r−(1/2−
√

1/4−U0), (35)

where Φ0 is an arbitrary constant in terms of the expansion at r → 0. Note that the wave function with
asymptotic form r−σ+ , which corresponds to the GS in the linear Schrödinger equation, is incompatible
with the presence of the LHY term in Equation (33), although power −2/3 in expression (33) coincides
at the critical point, U0 = 2/9, with σ+, rather than σ−.

Thus, the jump from the asymptotic form (35) produced by the linear Schrödinger equation
to one (34) generated by the LHY term at U0 = 2/9 (in particular, the jump between σ− and σ+),
takes place at U0 = 2/9, which is a signature of a quantum phase transition. Examples of such phase
transitions were studied in many-body settings [26] and in many other systems [27–31].

Lastly, the LHY term may stabilize the bosonic gas pulled to the center by potential (1) even in
the case of the effective attractive interaction. This is possible in a binary condensate, with intrinsic
self-repulsion in each component, and dominating attraction between them, as proposed in Refs. [24,25],
and realized experimentally in the form of “quantum droplets” (in the binary condensate of 39K) in
Refs. [32–34]. For the symmetric case, with equal wave functions of the two components, the effective
GPE takes the form of Equation (33) with the opposite sign in front of the cubic term. This model may be
a subject for special consideration.

2.4. The Two-Dimensional Ground State Created by the Quintic Self-Repulsive Nonlinearity

As mentioned above, the GPE in the form of Equation (8) may also be relevant as a physical model
in 2D. However, the 2D version of norm (5) of the wave function with asymptotic form ∼r−1 at r → 0,
which follows from this equation (see Equation (28)), logarithmically diverges at small r. This means
that the cubic self-repulsion is not strong enough to suppress the collapse in the 2D geometry. On the
other hand, the GPE may also include the quintic repulsive term accounting for three-body collisions,
provided that the collisions do not give rise to conspicuous losses [35,36].

The 2D GPE can be derived from the underlying 3D version if tight confinement, with
the respective harmonic-oscillator length, a⊥, is imposed in the z direction by the trapping
harmonic-oscillator potential, reducing the effective dimension to that of the plane with remaining
coordinates (x, y) [37–39]. In particular, if the dominating quintic terms appear in the 3D GPE with

coefficient g5, the reduction to the 2D equation replaces it by
(√

3πa2
⊥

)−1
g5.

In the scaled form, the 2D equation is written in the polar coordinates, (r, θ), as

iψt = −
1
2

(
ψrr +

1
r

ψr + r +
1
r2 ψθθ +

U0

r2

)
ψ + |ψ|4 ψ. (36)

Stationary solutions to Equation (36) (not only the GS, but also for states carrying the angular
momentum) are looked for as

ψ2D (r, t) = e−iµt+ilθr−1/2χ(r), (37)
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where integer l is the azimuthal quantum number, cf. Equation (24). The substitution of this ansatz in
Equation (36) yields an equation for real χ2D(r):

µχ = −1
2

[
χ′′ +

(
U(2D)

l +
1
4

)
r−2χ

]
+ r−2χ5, (38)

with U(2D)
l ≡ U0 − l2, cf. Equation (19). Note that, unlike the 3D case, in the 2D nonlinear model the

analysis is possible both for l = 0 (the GS) and l ≥ 1.
The expansion of the solution to Equation (38) at r → 0 yields

χ =

[
1
2

(
U(2D)

l +
1
4

)]1/4
+ χ1rs, (39)

where s = (1/2)
(

1 +
√

5 + 16U(2D)
l

)
, and χ1 is an arbitrary constant in terms of this expansion,

cf. Equation (26) in the 3D case. The solution with a finite norm exists at U(2D)
l > −1/4, representing

at U(2D)
l > 0 the suppression of the collapse and creation of the GS (l = 0), or the state with l ≥ 1

by the quintic self-repulsive term.
Combining the 2D asymptotic form (39), valid at r → 0, and the obvious approximation valid

at r → ∞, χ2D ≈ χ0 exp
(
−
√
−2µr

)
, one can derive an interpolation formula for the GS and the

dependence µ(N) following from it, cf. Equations (28) and (29) in the 3D case:

ψ2D (r, t) =

[
1
2

(
U(2D)

l +
1
4

)]1/4
e−iµt+ilθr−1/2e−

√
−2µr,

µ = −
(

U(2D)
l +

1
4

)( π

2N

)2
. (40)

Similar to the situation in the 3D case, Equation (40) gives an exact wave function with a divergent
norm in the limit of µ→ −0,

ψ
(µ=0)
2D (r) =

[
1
2

(
U(2D)

l +
1
4

)]1/4
eilθr−1/2, (41)

cf. Equation (30). The approximation (40) makes it possible to define the rms (root-mean square) radial
size of the two-dimensional GS, cf. Equation (31) in the 3D case:

r(2D)
GS ≡

√
2π

N

∫ ∞

0
|ψ2D(r)|2 r3dr =

N

π

√(
U(2D)

l + 1/4
) . (42)

Note that the quintic term supports the GS in 2D even at 0 < −U(2D)
l < 1/4, when the central

potential is repulsive. The correctness of this counter-intuitive conclusion is corroborated by the
above-mentioned fact that the analytical approximation (40) gives exact solution (41) for µ → 0,
including the case of 0 < −U(2D)

l < 1/4.
An example of the stable GS, and curves µ(N) for the GS in 2D are displayed along with the

analytical approximation (40) in Figure 3 (referring to l = 0, although the replacement of U0 by Ul
actually makes no difference in the plots). The µ(N) curves are shown for both signs of the central
potential, U0 = −0.18 and U0 = 0.05. Simulations of the perturbed evolution in the framework of
Equation (36) confirm the stability of the GS families.
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Figure 3. (a) The radial profile of the ground state in the 2D model with the quintic nonlinearity
for U0 = 0.05 and µ = −0.1867. (b) Curves µ(N) for the ground states with U0 = −0.18 and
U0 = 0.05. In both panels (shown as per Ref. [5]), the numerical results and the respective analytical
approximation (40) are depicted by the continuous and dashed curves, respectively. The convergence
of the numerical and analytical curves for N(µ) at µ→ −0 corresponds to the fact that Equation (40)
gives the exact solution (41) in this limit.

Generally, the results for the 2D model are more formal than those summarized above for 3D,
as the realization of the dominant quintic nonlinearity in BEC is problematic in experimentally relevant
settings. On the other hand, the LHY correction to the GPE is sufficient to provide the suppression
of the quantum collapse and restoration of the GS in the 2D setting. The same dimension-reduction
procedure as outlined above will replace the original LHY coefficient in the 3D Equation (33) by√

2/5π−3/4a−3/2
⊥ gLHY. Finally, the quartic LHY term determines the asymptotic form of the wave

functions at r → 0 as ∼ r−2/3, which provides for the convergence of the 2D norm. That is, it secures
the existence of the GS in the 2D model including the LHY term.

2.5. A Challenging Issue: The Fermi Gas Pulled to the Center

An interesting possibility is to elaborate the 3D model for the gas of fermions pulled to the
center by potential (1). In a rigorous form, this is a challenging problem, as for Fermi gases the
dynamical theory cannot be reduced to a simple mean-field equation [40]. Nevertheless, there is
a relatively simple approach to the description of stationary states in a sufficiently dense gas, based
on a time-independent equation for the real fermionic wave function, Φ (r) [41–44], with a nonlinear
term of power 7/3 generated by the density-functional approximation, even in the absence of direct
interaction between the fermions, which is forbidden by the Pauli principle. In the scaled form,
this equation—including potential (1) and chemical potential µ—is

µΦ = −1
3
∇2Φ + Φ7/3 − U0

2r2 Φ. (43)

The asymptotic form of the solution to Equation (43) at r → 0 is

Φ(r) =
√
(3 + 4U0) /8r−3/2 + O

(
r1/2

)
. (44)

This result demonstrates a problem similar to the one stressed above in the case of the 2D model
with the cubic nonlinearity: the substitution of expression (44) in the 3D integral (5) for the norm of the
wave function leads to the logarithmic divergence at r → 0. Hence, the relatively weak nonlinearity in
Equation (43) is insufficient for the suppression of the 3D quantum collapse of the Fermi gas pulled to
the center by potential (1), and a more sophisticated analysis is necessary in this case.

3. The Three-Dimensional Model with Cylindrical Symmetry

The presentation in this section follows the original analysis reported in Ref. [6].
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3.1. Formulation of the Model

The previous section addressed the most fundamental spherically symmetric configuration in 3D
space. Because the geometry plays a crucially important role in determining properties of the bound
states produced by the model, it is interesting to consider physically relevant settings in 3D with the
spatial symmetry reduced from spherical to a lower one. In particular, it is possible to consider the
model in which a strong uniform external field is applied to the quantum gas so that all the dipole
moments carried by the particles are polarized not towards the center, but in a fixed direction (z),
so that d = dez. This configuration gives rise to the cylindrically symmetric potential of the interaction
of the dipolar particle with the fixed attractive center:

U(r) = −d · EQ = −1
2

U0r−2 cos θ, (45)

where cos θ ≡ z/r.
If the polarizing external field is electric, it also acts on the central charge. For this reason, a

more relevant situation corresponds to the case when the ultracold gas is composed of Hund A-type
molecules, with mutually locked electric and magnetic dipoles. Then, an external uniform magnetic
field may be employed to align the dipoles in the fixed direction [45].

The 3D GPE with potential (45) is

i
∂ψ

∂t
= −1

2

(
∇2ψ +

U0

r2 cos θ

)
ψ + |ψ|2ψ. (46)

Along with the consideration of the GS, it is also relevant to construct eigenmodes carrying the
orbital angular momentum, which corresponds to the azimuthal quantum number, m:

ψ = e−iµteimϕΦ(r, θ), (47)

where the spherical coordinates are used again, cf. Equation (16), and real eigenmode Φ should be
found as a solution of the equation following from the substitution of ansatz (47) in Equation (46):

µΦ = −1
2

[
∂2

∂r2 +
2
r

∂

∂r
− m2

r2 sin2 θ
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

U0

r2 cos θ

]
Φ + Φ3. (48)

3.2. The Linear Schrödinger Equation with Cylindrical Symmetry

The analysis of the present model should start with identifying conditions for the existence of the
GS in the respective linear Schrödinger equation, obtained by dropping the cubic term in Equation (48).
At r → 0, an asymptotic solution to the linear equation is sought as

Φ (r, θ) = r−σχlin(θ). (49)

The substitution of ansatz (49) in the linearized version of Equation (48) and dropping the term
µΦ (which is negligible for the asymptotic analysis at r → 0) leads to an equation that can be written
in terms of ξ ≡ cos θ:

d
dξ

((
1− ξ2

) dχlin
dξ

)
+

(
σ2 − σ− m2

1− ξ2 + U0ξ

)
χlin(ξ) = 0. (50)

For U0 = 0, Equation (50) with integer values

σ = l + 1 (51)
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may be solved in terms of the associated Legendre functions, l ≥ m being the orbital quantum number.
Note that the singular wave function (49) is 3D-normalizable at r → 0 for σ < 3/2, that is, as it follows
from Equation (51), solely for the GS, with m = l = 0 and σ = 1.

The onset of the quantum collapse is signalled by a transition in Equation (50) from real
eigenvalues σ to complex ones. Because the effective eigenvalue in the equation is ε ≡ σ2 − σ

(i.e., σ = (1 +
√

1 + 4ε)/2), the transition to complex σ happens at point ε = −1/4 (i.e., σ = 1/2).
At U0 6= 0, Equation (50) cannot be solved in terms of standard special functions. The result of
a numerical solution is displayed in Figure 4. It demonstrates that, for given azimuthal quantum
number m, with the increase of U0 from zero to some critical value (U0)cr, eigenvalue σ decreases
from σ (U0 = 0) = m + 1 to σ (U0 = (U0)cr) = 1/2. For the lowest values of m, the numerically found
critical values of the potential strength at which σ = 1/2 is attained are

(U0)cr (m = 0, 1, 2) = 1.28, 7.58, 19.06. (52)

Thus, in the framework of the linear Schrödinger equation, the quantum collapse takes place at
U0 > (U0)cr (m).
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Figure 4. Eigenvalue σ of the singular eigenmode (49) (generated as per Ref. [6] by the numerical
solution of linear Equation (50)) vs. strength U0 of the attractive potential, for three values of the
azimuthal quantum number: (a) m = 0, (b) m = 1, (c) m = 2. The eigenmode does not exist, signaling
the onset of the quantum collapse at U0 > (U0)cr (m). See Equation (52), where U0 = (U0)cr (m)

corresponds to σ = 1/2.

It is relevant to compare critical values (52) of the strength of the axisymmetric potential with
those given by Equation (19) for the spherically isotropic one:

(U0)
(iso)
cr (m = 0, 1, 2) =

1
4
+ m(m + 1) ≡ 0.25, 2.25, 6.25. (53)

The comparison naturally shows that the critical strengths are much lower for the spherical
potential, which provides a stronger pull to the center.

3.3. Suppression of the Quantum Collapse by the Repulsive Nonlinearity under the Cylindrical Symmetry

As in the isotropic setting, cf. Equation (24), the repulsive cubic term in Equation (48) may balance
the attractive potential ∼−r−2 if, at r → 0, the wave function contains the singular factor r−1 (rather
than generic r−σ in the linear Equation (49)). Then, the substitution of

Φ(r, θ) = r−1χ(r, θ) (54)



Condens. Matter 2018, 3, 15 14 of 27

transforms Equation (48) into the following equation:

µχ = −1
2

[
∂2χ

∂r2 +
1− ξ2

r2
∂2χ

∂ξ2 −
2ξ

r2
∂χ

∂ξ
+

(
U0ξ − m2

1− ξ2

)
χ

r2

]
+

χ3

r2 , (55)

(recall ξ ≡ cos θ). Note that Equation (54) makes it possible to write the norm of the 3D wave function as

N
2π

=
∫ ∞

0
r2dr

∫ π

0
sin θdθ |ψ (r, θ)|2 =

∫ ∞

0
dr
∫ +1

−1
dξχ2 (r, ξ) . (56)

To analyze solutions to Equation (55) at r → 0, one may expand them as

χ(r, ξ) = χ0(ξ) + χ1(ξ)rs/2, (57)

assuming s > 0, which leads to the following equation for χ0(ξ), which does not admit an
exact solution: (

1− ξ2
) d2χ0

dξ2 − 2ξ
dχ0

dξ
+

(
U0ξ − m2

1− ξ2

)
χ0 − χ3

0 = 0, (58)

cf. Equation (50).
Bound states produced by Equation (55) were found by means of numerical methods in Ref. [6].

Typical profiles of solutions for function χ (r, ξ), generated by Equation (55), are displayed in Figure 5
for m = 0, 1, 2 and fixed norm N = 2π.

(a) (b) (c)
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Figure 5. Typical profiles of real function χ(r, ξ), produced in Ref. [6] by the numerical solution of
Equation (55), which determines the shape of the bound state with the reduced (cylindrical) symmetry,
as per Equation (54): (a) m = 0, U0 = 3; (b) m = 1, U0 = 8.5; (c) m = 2, U0 = 20. The solutions are
subject to normalization N = 2π, see Equation (56).

A crude analytical form of the solutions is provided by the Thomas–Fermi approximation (TFA),
which neglects all derivatives in Equation (55) [8]:

χ2
TFA (r, ξ) =


1
2 U0ξ − m2

2(1−ξ2)
− |µ|r2, at r2 < 1

2|µ|

(
U0ξ − m2

1−ξ2

)
,

0, at r2 ≥ 1
2|µ|

(
U0ξ − m2

1−ξ2

)
.

(59)

Actually, this approximation for m ≥ 1 exists only for U0 >
(

3
√

3/2
)

m2 (otherwise, Equation (59)

yields χ2
TF ≡ 0).

Families of the bound states with different quantum numbers m are presented in Figure 6 by
a set of curves showing the chemical potential, µ, versus nonlinearity strength, U0, for a fixed norm
(N = N0 ≡ 2π; producing the results for a fixed norm is sufficient, as the scaling invariance of
Equation (55) implies an exact property, µ (U0, N) = (N/N0)

−2 µ (U0, N0), the same as mentioned
above for the isotropic configuration). Figure 6b,c display the µ(U0) dependences in relatively narrow
intervals of values of U0, stressing that the dependences are obtained above the critical values for the
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linear Schrödinger equation given by Equation (52), where the linear equation fails to produce any
bound state.

TFA based on Equation (59) makes it possible to predict the µ (U0) dependence for the GS (m = 0)
in an analytical form:

µ
(GS)
TFA = − (2/225)U3

0 . (60)

As seen in Figure 6a, this simple approximation is reasonably close to its numerically found counterpart.
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Figure 6. Panels (a–c) display, respectively, the chemical potential of the bound states with
azimuthal quantum numbers m = 0, 1, 2 vs. the strength of the attractive potential, U0, of the
potential (45), with reduced (cylindrical) symmetry, and for the fixed norm, N = 2π, as obtained in
Ref. [6]. The dashed curve in (a) additionally shows dependence (60) predicted by the Thomas–Fermi
approximation (TFA).

Lastly, the stability of the bound states against perturbations was verified in Ref. [6] by direct
simulations of the underlying GPE (46), demonstrating complete stability of the families of the bound
states for m = 0, 1, and 2.

4. The Two-Component System in Three Dimensions: The Suppression of Quantum Collapse in
Miscible and Immiscible Settings

This section summarizes results of the analysis reported in Ref. [7].

4.1. The Formulation of the Model and Analytical Considerations

The generalization of basic model (22) for a binary bosonic gas, with component wave functions
ψ1 and ψ2, is provided by the system of nonlinearly coupled GPEs:

i
∂ψ1

∂t
= −1

2
∇2ψ1 + (|ψ1|2 + γ|ψ2|2)ψ1 −

V0

r2 ψ1 ,

(61)

i
∂ψ2

∂t
= −1

2
∇2ψ2 + (γ|ψ1|2 + |ψ2|2)ψ2 −

V0

r2 φ2,

where γ is the relative strength of the inter-component repulsion, while the coefficients of the
self-repulsion are scaled to be 1. To remain consistent with Ref. ([6]), parameter V0 ≡ U0/2 is
now used as the strength of the potential pulling particles to the center.

Spherically symmetric bound states with chemical potentials µn < 0, n = 1, 2, of the two
components are looked for as

ψn (r, t) =
χn(r)

r
exp (−iµnt) , (62)
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with real radial functions χn(r) obeying the coupled equations

µ1χ1 = −1
2

χ′′1 −
V0

r2 χ1 +
(

χ2
1 + γχ2

2

) χ1

r2 ,

(63)

µ2χ2 = −1
2

χ′′2 −
V0

r2 χ2 +
(

χ2
2 + γχ2

1

) χ2

r2 ,

cf. Equations (24) and (25). In terms of these functions, the norms of the components are

Nn ≡
∫
|φn(r)| dr = 4π

∫ ∞

0
[χn(r)]

2 dr, (64)

and the rms radial size of the trapped mode in each component is defined as

〈
r2

n

〉
=

∫ ∞
0 [χn(r)]

2 r2dr∫ ∞
0 [χn(r)]

2 dr
, (65)

cf. Equation (31).
An expansion of solutions to Equations (63) at r → 0 is looked for as

χn(r) = χ
(0)
n

[
1− c(1)n rs/2 − c(2)n rs/2+2 + · · · − d(1)n r2 − d(2)n r4 + · · ·

]
, (66)

with s > 0, cf. Equation (26) (here, c1 6= c2 is possible, but power s must be the same for χ1 and χ2),
which leads to a system of algebraic equations for leading-order coefficients χ

(0)
n :

χ
(0)
1

[(
χ
(0)
1

)2
+ γ

(
χ
(0)
2

)2
]

= V0χ
(0)
1 ,

(67)

χ
(0)
2

[(
χ
(0)
2

)2
+ γ

(
χ
(0)
1

)2
]

= V0χ
(0)
2 .

Equations (67) give rise to solutions of two types, corresponding to mixed and demixed states in
the binary gas:

χ
(0)
1 = χ

(0)
2 ≡ χ

(0)
mix =

√
V0/ (1 + γ); (68)

χ
(0)
1 ≡ χ

(0)
demix =

√
V0, χ

(0)
2 = 0. (69)

The numerical analysis performed in Ref. [6] demonstrates that demixed modes do not exist
at γ < 1, when the mutual repulsion is weaker than the self-repulsive nonlinearity, while mixed
ones are completely unstable in the opposite case, γ > 1. Thus, unlike other systems featuring
miscibility–immiscibility transitions [46–48], in the present situation the transition point is not altered,
under the action of the confining potential, in comparison with the commonly known free-space point,
γ = 1 [49].

Further analysis demonstrates a change in the structure of the r-dependent corrections in
Equation (66) for the miscible system, with γ < 1: at V0 < 1/2, the dominant terms are

∼ r(1+
√

1+16V0)/2, while at V0 > 1/2 these are terms ∼ r2. This break of analyticity, which happens
with the increase of V0 (at V0 = 1/2), implies that a weak quantum phase transition happens at this
value of V0, although the well-defined GS exists equally well at V0 < 1/2 and V0 > 1/2. Precisely at
V0 = 1/2 ≡ (V0)phase−trans, expansion (66) is replaced by

χn(r) =
1√

2 (1 + γ)

[
1 +

µ1 + µ2

4
r2 ln

( r0

r

)
+ (−1)n 1 + γ

4γ
(µ1 − µ2) r2

]
. (70)
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Note that the present phase transition is weak in comparison with the above-mentioned one,
driven by the LHY correction to the mean-field theory, which gives rise to the jump between the
different asymptotic forms of the wave function, given by Equations (34) and (35). For the comparison
with the present setting, based on the binary BEC, especially relevant are previously investigated phase
transitions in binary fluids [50].

Lastly, at r → ∞, Equations (63) yield an exponential asymptotic form of the solution,

χn(r) ≈ χ
(∞)
n

(
1− V0√

−2µnr

)
exp

(
−
√
−2µnr

)
, (71)

where constants χ
(∞)
n are indefinite in terms of the asymptotic expansion at r → ∞.

4.2. Numerical and Additional Analytical Results for Trapped Binary Modes

4.2.1. Mixed Ground States

Figure 7a shows a typical profile for the mixed GS produced by a numerical solution of
Equation (63) at V0 = 1 for γ = 0.9 and equal norms of the two components, N1 = N2 = 4π.
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Figure 7. (a) The numerically found profile of wave functions χ1(r) = χ2(r) of the GS in the miscible
binary system at V0 = 1, γ = 0.9, and N1 = N2 = 4π, as found in Ref. [7], and its comparison
with the analytical approximation given by Equation (72) (short-dashed line), and TFA based on
Equation (75) (long-dashed line). (b) The chain of rhombuses depicts the numerically found relation
between |µ|N2 and V0 at γ = 0.9. The short- and long-dashed lines represent the approximations
provided by Equations (73) and (76), respectively.

The simplest global analytical approximation for the GS wave function is provided by the
interpolation, similar to that introduced in the single-component setting, cf. Equation (28):

χn(r) ≈ χ
(0)
mixe−

√
−2µnr. (72)

The substitution of this interpolation in Equations (64) and (65), along with expression (68), leads
to predictions for the chemical potentials and rms radius of the two components as functions of their
norms (which are also valid in the case of N1 6= N2):

µn = −2
[

πV0

(1 + γ)Nn

]2
, (73)

〈
r2

n

〉
=

[
(1 + γ)Nn

2πV0

]2

. (74)

Comparison of expression (73) with numerical results is shown in Figure 7(b) by the dashed line.
This approximation is accurate for sufficiently small V0, but becomes inaccurate for large V0.
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For larger V0, TFA can be applied to the mixed balanced mixture, with N1 = N2 ≡ N, which yields
(for χ1 = χ2 ≡ χ):

χTFA(r) =

{ √
(V0 + µr2) / (1 + γ) , at r < R0 ≡

√
V0/(−µ),

0, at r > R0 ,
(75)

cf. TFA for the potential with the cylindrical symmetry, given by Equation (59). The substitution of
approximation (75) in Equations (5) and (65) yields the predictions for the chemical potential and
effective size of the GS:

µTFA = −
64π2V3

0
9(1 + γ)2N2 , (76)

〈
r2

TFA

〉
=

5
π3

[
3 (1 + γ) N

16V0

]2
≡ 5

4π
R2

0, (77)

(recall R0 is the TFA cutoff radius defined in Equation (75)). Analytical approximations (72) and (75)
(shown by the short- and long-dashed lines, respectively) are compared to the numerically found
profile of the GS in Figure 7b. A general conclusion (see details in Ref. [7]) is that, quite naturally, TFA
works better for larger V0, while interpolation (72) is more accurate for smaller V0.

Numerically generated profiles of imbalanced mixed GSs are displayed in Figure 3a at V0 = 2 and
γ = 0.9 for N1 = 4π and N2 = 2π. The imbalanced mixed states with µ1 6= µ2 and N1 6= N2 feature
equal values of χ1,2(r = 0), in agreement with Equation (68).

In the case of the strong pull to the center, V0 � 1, TFA can be generalized for imbalanced states,
fixing |µ1| ≤ |µ2| for the definiteness’ sake. Then, TFA is constructed in a two-layer form, technically
similar to that applied to the so-called symbiotic gap solitons in Ref. [51]. In the inner layer,

r2 < r2
0 ≡

1− γ

γµ1 − µ2
V0, (78)

both wave functions are different from zero:

χ
(inner)
n (r) =

√
V0

1 + γ
− γµ3−n − µn

1− γ2 r2. (79)

In the outer layer, only one component is present, in the framework of TFA: χ2 ≡ 0,

χ
(outer)
1 (r) =

{ √
V0 + µ1r2, at r2

0 ≤ r2 ≤ R2
0 ≡ −V0/µ1,

0, at r2 ≥ R2
0 .

(80)

Both components of the TFA solution given by Equations (78)–(80) are continuous at r = r0 and
r = R0. The two-layer TFA for a typical imbalanced GS is compared to its numerical counterpart in
Figure 8b,c.

The analysis reported in Ref. [7] also includes the consideration of a two-component system with
attraction between the components, in the case when only one component is subject to the action of the
pull-to-the-center potential, while the other one plays the role of a buffer. In particular, the interpolation,
similar to that based on Equation (72), produces a sufficiently accurate prediction in that case.
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Figure 8. (a) χ1 (continuous line) and χ2 (dashed line) components of the imbalanced mixed GS of the
binary system at V0 = 2 and γ = 0.9, with N1 = 4π and N2 = 2π, as found in Ref. [7]. (b,c) Comparison
of the numerical result (continuous lines) with the two-layer TFA (dashed lines, see Equations (79)
and (80)) for χ1(r) and χ2(r).

4.2.2. The Immiscible Ground State

As said above, in the case of γ > 1, relevant states are immiscible ones. The two-layer TFA may
be applied to produce an immiscible GS. In the inner layer,

r2 < r2
0 =

(γ− 1)V0

γµ1 − µ2
,

the approximation yields

χ1(r) =
√

V0 + µ1r2, χ2(r) = 0. (81)

In the outer layer, which is r2
0 < r2 < R2

0 = V0/(−µ2), the result is

χ1(r) = 0, χ2(r) =
√

V0 + µ2r2. (82)

That is, TFA predicts complete separation between the components in the immiscible state.
Figure 9 compares the approximation to numerical results. Of course, the immiscible components are
not completely separated in the numerical solution.
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Figure 9. (a,b) Comparison of the numerically found profiles for components χ1(r) and χ2(r) of
the immiscible GS (solid lines) in the binary condensate (V0 = 1, γ = 1.2) with equal norms of
both components (N1 = N2 = 0.8π), and the corresponding TFA, given by Equations (81) and (82),
respectively (dashed lines), as per Ref. [7]. The numerical solution gives widely different values of
chemical potentials of the two components in this case: µ1 = −14.2, µ2 = −0.84.
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5. The Mean-Field Predictions versus the Many-Body Quantum Theory

5.1. Introduction to the Section

The analysis presented above was performed in Refs. [5–7] in the framework of the mean-field
theory, that is, the respective GPEs (possibly including the beyond-mean-field LHY corrections,
see Equation (33)). A relevant issue is the comparison of the basic mean-field predictions (e.g.,
the suppression of the quantum collapse and creation of the originally missing GS) with the
consideration of the many-body system of repulsively interacting quantum bosons, pulled to the
center by potential (1), which is taken here as U(r) = −U0/r2. That is, U0 in Equation (1) is replaced
by 2U0 to make the notation consistent with that in Ref. [21], which addressed the present problem.
Results produced in that work are recapitulated in the present section.

The many-body Hamiltonian representing the setting under consideration is

Ĥ = −
N

∑
j=1

(
h̄2∇2

j

2m
+

U0

r2
j

)
+

N

∑
j<k

Vint(|rj − rk|), (83)

where rj are coordinates of the j-th particle in the 3D space, m is the particle’s mass, and Vint(r) is the
potential of the repulsive interaction between the particles. In the framework of the mean-field theory,
Vint(r) is characterized solely by the s-wave scattering length [8], while the many-body system should
be introduced with a particular form of the interaction potential. Two basic forms of the interaction
potential chosen for the analysis are specified below, see Equations (88) and (89).

Before introducing the many-body wave function, the single-particle one is adopted as per the
following ansatz:

f1(r) = rβ exp(−αr2), (84)

where α ≥ 0 determines the inverse localization length, which affects the system’s size and,
consequently, the density. Alternatively, α can be interpreted in terms of an effective external harmonic
confinement with frequency Ω = 2αh̄/m, cf. Equation (4). At rj → 0, the shape of the wave function is
controlled by parameter β in ansatz (84).

5.2. The Single-Particle Solution

The single-particle problem defined by Hamiltonian (83) with N = 1 can be studied by
means of the variational method, treating α and β in ansatz (84) as variational parameters. In the
single-particle sector, the system is steered by the competition of the external potential and kinetic
energy, while the interparticle potential, Vint(|ri − rj|), does not appear. The variational energy,

E(1)
var =

[∫
f 2
1 (r) dr

]−1 ∫ f1(r)H f1(r)dr, with f1 taken as per Equation (84), is

E(1) = α

[
1− 8U0 − 1

2(1 + 2β)

]
. (85)

For a fixed localization size, α = const, this energy is a decreasing function of β if U0 is smaller
than the critical value for the onset of the collapse, U0 = 1/8, which is tantamount to one which
appears in Equation (6). On the other hand, a metastable state may appear in the many-body system
with repulsive interparticle interactions. Actually, it corresponds to the mean-field GS predicted by the
solution of the GPE in Ref. [5].

In the framework of the local-density approximation, the chemical potential of the state with
uniform density n is taken as µhom = gn , where g = 4πh̄2as/m is the coupling constant. This choice
corresponds to the short-range interaction potential determined by the s-wave scattering length as
per the Born approximation. Further, the chemical potential in the presence of the external field is
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approximated by the sum of the local chemical potential µloc = gn, where this time n is a function of
the coordinates, rather than a constant. Additionally, the external potential,

µ = µloc −
U0

r2 +
1
2

mΩ2r2, (86)

where the harmonic-oscillator confinement with the respective length scale aho =
√

h̄/(mΩ) is added
to make the size of the system finite, cf. potential (4) used above. Solving Equation (86) for the density,
one obtains the following density profile:

n(r) =
1
g

{
µ− 1

2 mΩ2r2 + U0r−2, at r < RTFA,

0, at ≥ RTFA,
(87)

where the radius of the gaseous cloud is taken as per TFA, RTFA =
√

µ +
√

µ2 + 2mU0Ω2/(
√

mΩ).
The density at the center features an integrable divergence in Equation (87), reflecting the presence of
the attractive central potential, cf. Equation (24). Finally, the chemical potential itself is fixed by the
normalization condition, 4π

∫ RTFA
0 n(r)r2dr = N.

To study the expected scenarios of the system’s evolution, two different potentials of the inter-particle
interaction were introduced in Ref. [21], viz., the hard-sphere potential of diameter R,

Vhard(r) =

{
∞, r < R

0, r ≥ R
, (88)

and its soft-sphere counterpart,

Vsoft(r) =

{
V0, r < R

0, r ≥ R
, (89)

with finite V0 in the latter case. By varying height V0 of the soft-sphere potential, one can alter the
respective s-wave scattering length, which is

as = R[1− tanh(kR)/(kR)], (90)

where the momentum corresponding to the height of the soft-sphere potential is

k ≡
√

mV0/h̄ . (91)

For hard-sphere potential (88), the effective s-wave scattering length is identical to the diameter
of the sphere, as = R.

5.3. The Monte-Carlo Method

An efficient way to calculate the energy of a many-body system is to use the Monte-Carlo
technique. In Ref. [21], the variational Monte-Carlo method was employed, which samples the
probability distribution, p = |ψ|2, for a known many-body wave function, ψ, allowing one to
calculate the variational energy as a function of trial parameters, such as α and β in Equation (84).
The well-known Metropolis algorithm [52] was used for the implementation of the method.

The many-body trial wave function was chosen as a product of single-particle terms, f1(r), taken
as per Equation (84), and a pairwise product of two-particle Jastrow terms [53], f2(r):

ψ(r1, . . . , rN) =
N

∏
j=1

f1(rj)
N

∏
j<k

f2(|rj − rk|). (92)
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The Jastrow factor f2(r) in Equation (92) is chosen as a solution of the linear Schrödinger equation
for two-body scattering. In this way, interparticle correlations, which are important in the context of
the metastability of the many-body system, are retained in the analysis.

For the hard-sphere potential, the two-body solution is given by

f (hard)
2 (r) =

{
0, r < R

1− R/r, r ≥ R
, (93)

while for the soft-sphere potential (89), it is [1]

f (soft)
2 (r) =

{
A sinh(kr)/r, r < R

1− as/r, r ≥ R
, (94)

where k is given by Equation (91), and constant A is determined by the condition of the continuity of
f2(r) at r = R.

5.4. Numerical Results for the Many-Body System

Figure 10 shows the variational energy, calculated by the Monte Carlo method for a fixed radius
of the soft sphere, R = 1.3as, and a wide range of values of the number of particles, from N = 2 up
to N = 10, 000. For small values of α (which corresponds to weak localization), the energy may be
negative. This is not visible in the log-log plot of Figure 10. As the localization gets tighter, the energy
becomes positive, as the two-body interaction helps the system to resist the trend of collapsing. For very
tight localization, α → ∞, the collapse is observed for small values of N, with the energy diverging
towards −∞.

Figure 10. The energy per particle in the many-body system for the soft-sphere interaction potential,
as a function of the inverse-Gaussian-width parameter, α (see Equation (84)), for U0 = 1, as = 0.1,
R = 1.3as and the number of particles N = 2, 3, 4, 5, 10, 100, 1000, 10, 000 (larger numbers of particles
correspond to larger values at the maximum), as obtained in Ref. [21]. Solid lines: the variational result;
dashed lines: the asymptotic energy of the fully-collapsed state, as per Equation (96); the dash-dotted
line: typical energy associated with the Gaussian localization, as given by Equation (95).

For large N, the energy calculated with ansatz (84) does not immediately lead to the fully
collapsed state. The localization energy—proportional to the energy scale, h̄Ω, of the trapping
potential—may become a dominating term in the energy, while the system’s size is still large enough,
so that the fully-collapsed state is not realized. The energy in the corresponding regime is numerically
approximated as

E = CNα, (95)
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with C = 4. It is shown in Figure 10 by the dashed-dotted line. For still tighter localization, it has been
found that in the limit of the full collapse, when all particles overlap, the energy is well approximated
by formula

E = NE(1) + N(N − 1)V0. (96)

The energy of the interparticle interactions, revealed by the calculations, is Eint = V0N(N − 1)/2.
The asymptotic energy (96) is shown in Figure 10 by dashed lines.

A clear conclusion is that the increase of the number of particles indeed causes a strong rise of the
potential barrier, which stabilizes the metastable energy minimum corresponding to the gaseous state.
This can also be concluded from Equation (96), where the contribution due to the repulsive interactions
scales as N2 for large N, while the term corresponding to the attractive central potential scales as N.

The energy barrier between the state described by ansatz (84) and the free state with zero energy,
Ebarrier, is estimated as the maximum value of the energy per particle (see Figure 10), and is shown in
Figure 11. For a large system’s size, the barrier can be approximated by comparing the two basic energy
scales given by Equations (95) and (96). The resulting asymptotic approximation for the barrier’s
height is

Ebarrier = 6NV0/(8U0 − 3 + 2C), (97)

which is shown in Figure 11 by the dashed line.

Figure 11. The energy barrier between the state with α = 0 and α→ ∞ in the many-body system, as
a function of the number of particles, N, for the data shown in Figure 10, as per Ref. [21]. The dashed
line depicts the asymptotic approximation (97) for the large system.

6. Discussion and Conclusions

This article aims to produce a review of results reported in works [5–7,21] that offer a solution
to the known problem of the quantum collapse, alias “fall onto the center” [1], in nonrelativistic
quantum mechanics. The quantum collapse occurs in the three-dimensional Schrödinger equation with
3D isotropic attractive potential −U0/(2r2). This equation does not have a GS (ground state) if the
attraction strength, U0, exceeds a final critical value. In that case, the Schrödinger equation gives rise
to a nonstationary wave function which collapses, shrinking towards the center. The solution of the
collapse problem was proposed in the above-mentioned original works in terms of the gas of bosons
pulled to the center by the same potential, with repulsive contact interactions between the particles.
The intrinsic repulsion is represented by the cubic term in the respective GPE (Gross–Pitaevskii
equation). The setting may be realized as the 3D gas of polar molecules carrying a permanent electric
dipole moment and pulled to a central electric charge. The analysis, performed in the framework of the
mean-field theory, predicts suppression of the collapse in the gas, and the creation of the missing GS.

An original result, added in this article to the review of the previously published findings, is the
quantum phase transition occurring in the 3D model which includes the beyond-mean-field LHY
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(Lee–Huang–Yang) correction in the GPE, in the form of the self-repulsive quartic term. The phase
transition manifests itself by a jump of the asymptotic structure of the wave function (for r → 0) at the
critical value of the strength of the attractive potential.

In the 2D version of the model, the cubic self-repulsion is not sufficient to suppress the quantum
collapse. In this case, it can be suppressed if a quintic self-repulsive term, representing three-body
collisions (provided that they do not give rise to losses) is added to the underlying GPE. On the other
hand, the LHY quartic term, added to the 2D GPE, is sufficient to suppress the quantum collapse and
restore the respective GS.

Polarization of dipole moments in the 3D gas by an external uniform field reduces the symmetry
of the central attractive potential from spherical to cylindrical. This modification of the system predicts
both the GS and stabilized states carrying the angular momentum. A binary condensate, modelled by
the system of nonlinearly-coupled GPEs, is also considered, making it possible to study the interplay
of the suppression of the collapse in the 3D space and the miscibility–immiscibility transition in the
binary BEC.

In addition to the systematic numerical analysis of these mean-field settings, the original works
have produced many results by means of analytical approximations, such as combined asymptotic
expansions and TFA (Thomas–Fermi approximation). All the states predicted by the mean-field theory
in these settings are shown to be completely stable as solutions to the respective time-dependent GPEs.

In work [21], the consideration of the same 3D setting was performed in terms of the many-body
quantum theory, by means of the variational approximation for the many-body wave function,
numerically handled with the help of the Monte-Carlo method. The analysis has demonstrated
that, although the quantum collapse cannot be fully suppressed in terms of the many-body theory,
the self-trapped states predicted by the mean-field model also exist in the full many-body setting,
as metastable ones, protected against the onset of the collapse by a tall potential barrier, whose height
steeply grows with the increase of the number of particles in the gas.

As an extension of the work on the topic of this article, it may be interesting to construct modes
carrying the angular momentum in the isotropic 3D model, and also to consider the model with a set
of two mutually symmetric attractive centers. In particular, it may be relevant to explore the possibility
of the spontaneous symmetry breaking of the GS in the latter case.

As mentioned above (see Equations (43) and (44)), a challenging issue is to develop a consistent
analysis for the gas of fermions pulled to the center by the same potential, −U0/

(
2r2).
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Abbreviations

The following abbreviations are used in this manuscript:

2D two-dimensional
3D three-dimensional
BEC Bose–Einstein condensate
GPE Gross–Pitaevskii equation
LHY Lee–Huang–Yang (correction to the mean-field theory)
GS ground state
rms root-mean-square (value)
TFA Thomas–Fermi approximation



Condens. Matter 2018, 3, 15 25 of 27

References

1. Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Nonrelativistic Theory; Nauka Publishers: Moscow, Russia, 1974.
2. Gupta, K.S.; Rajeev, S.G. Renormalization in quantum mechanics. Phys. Rev. D 1993, 48, 5940–5945. [CrossRef]
3. Camblong, H.E.; Epele, L.N.; Fanchiotti, H.; Canal, C.A.G. Renormalization of the Inverse Square Potential.

Phys. Rev. Lett. 2000, 85, 1590–1593. [CrossRef]
4. Ávila-Aoki, M.; Cisneros C.; Martínez-y-Romero, R.P.; Núñez-Yepez, H.N.; Salas-Brito, A.L. Classical and

quantum motion in an inverse square potential. Phys. Lett. A 2009, 373, 418–421. [CrossRef]
5. Sakaguchi, H.; Malomed, B.A. Suppression of the quantum-mechanical collapse by repulsive interactions in

a quantum gas. Phys. Rev. A 2011, 83, 013607. [CrossRef]
6. Sakaguchi, H.; Malomed, B.A. Suppression of the quantum collapse in an anisotropic gas of dipolar bosons.

Phys. Rev. A 2011, 84, 033616. [CrossRef]
7. Sakaguchi, H.; Malomed, B.A. Suppression of the quantum collapse in binary bosonic gases. Phys. Rev. A

2013, 88, 043638. [CrossRef]
8. Pitaevskii, L.; Stringari, S. Bose–Einstein Condensation; Clarendon: Oxford, UK, 2003.
9. Schmid, S.; Härter, A.; Denschlag, J.H. Dynamics of a cold trapped Ion in a Bose–Einstein condensate.

Phys. Rev. Lett. 2010, 105, 133202. [CrossRef]
10. Deiglmayr, J.; Grochola, A.; Repp, M.; Mörtlbauer, K.; Glück, C.; Lange, J.; Dulieu, O.; Wester, R.; Weidemüller, M.

Formation of ultracold polar molecules in the rovibrational ground state. Phys. Rev. Lett. 2008, 101, 133004.
[CrossRef]

11. Ospelkaus, S.; Ni, K.-K.; Quéméner, G.; Neyenhuis, B.; Wang, D.; de Miranda, M.H.G.; Bohn, J.L.; Ye, J.; Jin, D.S.
Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 2010, 104, 030402.
[CrossRef]

12. Posazhennikova, A. Colloquium: Weakly interacting, dilute Bose gases in 2D. Rev. Mod. Phys. 2006, 78,
1111–1134. [CrossRef]

13. Denschlag, J.; Schmiedmayer, J. Scattering a neutral atom from a charged wire. Europhys. Lett. 1997, 38,
405–410. [CrossRef]

14. Olshanii, M.; Perrin, H.; Lorent, V. Example of a quantum anomaly in the physics of ultracold gases. Phys. Rev. Lett.
2010, 105, 095302. [CrossRef]

15. Bergé, L. Wave collapse in physics: Principles and applications to light and plasma waves. Phys. Rep. 1998,
303, 259–370. [CrossRef]

16. Dodd, R.J. Approximate solutions of the nonlinear Schrödinger equation for ground and excited states of
Bose–Einstein condensates. J. Res. Natl. Inst. Stand. Technol. 1996, 101, 545–552. [CrossRef]

17. Dalfovo, F.; Stringari, S. Bosons in anisotropic traps: Ground state and vortices. Phys. Rev. A 1996, 53,
2477–2485. [CrossRef]

18. Alexander, T.J.; Bergé, L. Ground states and vortices of matter-wave condensates and optical guided waves.
Phys. Rev. E 2002, 65, 026611. [CrossRef]

19. Malomed, B.A.; Lederer, F.; Mazilu, D.; Mihalache, D. On stability of vortices in three-dimensional
self-attractive Bose–Einstein condensates. Phys. Lett. A 2007, 361, 336–340. [CrossRef]

20. Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its
low-temperature properties. Phys. Rev. 1957, 106, 1135–1145. [CrossRef]

21. Astrakharchik, G.E.; Malomed, B.A. Quantum versus mean-field collapse in a many-body system. Phys. Rev. A
2015, 92, 043632. [CrossRef]

22. Sakaguchi, H.; Malomed, B.A. Solitons in combined linear and nonlinear lattice potentials. Phys. Rev. A 2010,
81, 013624. [CrossRef]

23. Vakhitov, M.; Kolokolov, A. Stationary solutions of the wave equation in a medium with nonlinearity
saturation. Radiophys. Quantum Electron. 1973, 16, 783–789. [CrossRef]

24. Petrov, D.S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 2015, 115,
155302.[CrossRef]

25. Petrov, D.S.; Astrakharchik, G.E. Ultradilute low-dimensional liquids. Phys. Rev. Lett. 2016, 117, 100401.
[CrossRef]

http://dx.doi.org/10.1103/PhysRevD.48.5940
http://dx.doi.org/10.1103/PhysRevLett.85.1590
http://dx.doi.org/10.1016/j.physleta.2008.11.054
http://dx.doi.org/10.1103/PhysRevA.83.013607
http://dx.doi.org/10.1103/PhysRevA.84.033616
http://dx.doi.org/10.1103/PhysRevA.88.043638
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.101.133004
http://dx.doi.org/10.1103/PhysRevLett.104.030402
http://dx.doi.org/10.1103/RevModPhys.78.1111
http://dx.doi.org/10.1209/epl/i1997-00259-y
http://dx.doi.org/10.1103/PhysRevLett.105.095302
http://dx.doi.org/10.1016/S0370-1573(97)00092-6
http://dx.doi.org/10.6028/jres.101.054
http://dx.doi.org/10.1103/PhysRevA.53.2477
http://dx.doi.org/10.1103/PhysRevE.65.026611
http://dx.doi.org/10.1016/j.physleta.2006.09.054
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevA.92.043632
http://dx.doi.org/10.1103/PhysRevA.81.013624
http://dx.doi.org/10.1007/BF01031343
http://dx.doi.org/10.1103/PhysRevLett.115.155302
http://dx.doi.org/10.1103/PhysRevLett.117.100401


Condens. Matter 2018, 3, 15 26 of 27

26. Astrakharchik, G.E.; Gangardt, D.M.; Lozovik, Y.E.; Sorokin, I.A. Off-diagonal correlations of the
Calogero-Sutherland model. Phys. Rev. E 2006, 74, 021105.

27. Chubukov, A.V.; Pépin, C.; Rech, J. Instability of the quantum-critical point of itinerant ferromagnets.
Phys. Rev. Lett. 2004, 92, 147003. [CrossRef]

28. De Oliveira, T.R.; Rigolin, G.; de Oliveira, M.C.; Miranda, E. Multipartite entanglement signature of quantum
phase transitions. Phys. Rev. Lett. 2007, 97, 170401. [CrossRef]

29. Mazzanti, F.; Astrakharchik, G.E.; Boronat, J.; Casulleras, J. Off-diagonal ground-state properties of
a one-dimensional gas of Fermi hard rods. Phys. Rev. A 2008, 77, 043632. [CrossRef]

30. Zhao, J.-H.; Zhou, H.-Q. Singularities in ground-state fidelity and quantum phase transitions for the Kitaev
model. Phys. Rev. B 2009, 80, 014403. [CrossRef]

31. Yao, Y.; Li, H.W.; Zhang, C.-M.; Yin, Z.Q.; Chen, W.C.; Guo, G.-C.; Han, Z.-F. Performance of various
correlation measures in quantum phase transitions using the quantum renormalization-group method.
Phys. Rev. A 2012, 86, 042102. [CrossRef]

32. Cabrera, C.R.; Tanzi, L.; Sanz, J.; Naylor, B.; Thomas, P.; Cheiney, P.; Tarruell, L. Quantum liquid droplets in
a mixture of Bose–Einstein condensates. Science 2018, 359, 301–304. [CrossRef]

33. Cheiney, P.; Cabrera, C.R.; Sanz, J.; Naylor, B.; Tanzi, L.; Tarruell, L. Bright soliton to quantum droplet
transition in a mixture of Bose–Einstein condensates. Phys. Rev. Lett. 2018, 120, 135301. [CrossRef]

34. Semeghini, G.; Ferioli, G.; Masi, L.; Mazzinghi, C.; Wolswijk, L.; Minardi, F.; Modugno, M.; Modugno, G.;
Inguscio, M.; Fattori, M. Self-bound quantum droplets in atomic mixtures. arXiv 2017, arXiv:1710.10890.

35. Abdullaev, F.K.; Gammal, A.; Tomio, L.; Frederico, T. Stability of trapped Bose–Einstein condensates. Phys. Rev. A
2001, 63, 043604. [CrossRef]

36. Abdullaev, F.K.; Salerno, M. Gap-Townes solitons and localized excitations in low-dimensional Bose–Einstein
condensates in optical lattices. Phys. Rev. A 2005, 72, 033617. [CrossRef]

37. Petrov, D.S.; Holzmann, M.; Shlyapnikov, G.V. Bose–Einstein condensation in quasi-2D trapped gases.
Phys. Rev. Lett. 2000, 84, 2551–2555. [CrossRef]

38. Salasnich, L.; Parola, A.; Reatto, L. Effective wave equations for the dynamics of cigar-shaped and
disk-shaped Bose condensates. Phys. Rev. A 2002, 65, 043614. [CrossRef]

39. Muñoz Mateo, A.; Delgado, V. Effective mean-field equations for cigar-shaped and disk-shaped Bose–Einstein
condensates. Phys. Rev. A 2008, 77, 013617. [CrossRef]

40. Giorgini, S.; Pitaevskii, L.P.; Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 2008, 80,
1215–1273. [CrossRef]

41. Capuzzi, P.; Minguzzi, A.; Tosi, M.P. Collective excitations of a trapped boson-fermion mixture across
demixing. Phys. Rev. A 2003, 67, 053695. [CrossRef]

42. Adhikari, S.K. Fermionic bright soliton in a boson-fermion mixture. Phys. Rev. A 2005, 72, 053608. [CrossRef]
43. Manini, N.; Salasnich, L. Bulk and collective properties of a dilute Fermi gas in the BCS-BEC crossover.

Phys. Rev. A 2005, 71, 033625. [CrossRef]
44. Bulgac, A. Local-density-functional theory for superfluid fermionic systems: The unitary gas. Phys. Rev. A

2007, 76, 040502. [CrossRef]
45. Góral, K.; Santos, L. Ground state and elementary excitations of single and binary Bose–Einstein condensates

of trapped dipolar gases. Phys. Rev. A 2002, 66, 023613. [CrossRef]
46. Deconinck, B.; Kevrekidis, P.G.; Nistazakis, H.E.; Frantzeskakis, D.J. Linearly coupled Bose–Einstein

condensates: From Rabi oscillations and quasiperiodic solutions to oscillating domain walls and spiral
waves. Phys. Rev. A 2004, 70, 063605. [CrossRef]

47. Adhikari, S.K.; Malomed, B.A. Two-component gap solitons with linear interconversion. Phys. Rev. A 2009,
79, 015602. [CrossRef]

48. Wen, L.; Liu, W.M.; Cai, Y.; Zhang, J.M.; Hum, J. Controlling phase separation of a two-component
Bose–Einstein condensate by confinement. Phys. Rev. A 2012, 85, 043602. [CrossRef]

49. Mineev, V.P. Theory of solution of two almost perfect Bose gases. JETP Lett. 1974, 67, 263–272.
50. Wang, J.; Cerdeiriña, C.A.; Anisimov, M.A.; Sengers, J.V. Principle of isomorphism and complete scaling for

binary-fluid criticality. Phys. Rev. E 2008, 77, 031127. [CrossRef]
51. Roeksabutr, A.; Mayteevarunyoo, T.; Malomed, B.A. Symbiotic two-component gap solitons. Opt. Exp. 2012,

20, 24559–24574. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.92.147003
http://dx.doi.org/10.1103/PhysRevLett.97.170401
http://dx.doi.org/10.1103/PhysRevA.77.043632
http://dx.doi.org/10.1103/PhysRevB.80.014403
http://dx.doi.org/10.1103/PhysRevA.86.042102
http://dx.doi.org/10.1126/science.aao5686
http://dx.doi.org/10.1103/PhysRevLett.120.135301
http://dx.doi.org/10.1103/PhysRevA.63.043604
http://dx.doi.org/10.1103/PhysRevA.72.033617
http://dx.doi.org/10.1103/PhysRevLett.84.2551
http://dx.doi.org/10.1103/PhysRevA.65.043614
http://dx.doi.org/10.1103/PhysRevA.77.013617
http://dx.doi.org/10.1103/RevModPhys.80.1215
http://dx.doi.org/10.1103/PhysRevA.67.053605
http://dx.doi.org/10.1103/PhysRevA.72.053608
http://dx.doi.org/10.1103/PhysRevA.71.033625
http://dx.doi.org/10.1103/PhysRevA.76.040502
http://dx.doi.org/10.1103/PhysRevA.66.023613
http://dx.doi.org/10.1103/PhysRevA.70.063605
http://dx.doi.org/10.1103/PhysRevA.79.015602
http://dx.doi.org/10.1103/PhysRevA.85.043602
http://dx.doi.org/10.1103/PhysRevE.77.031127
http://dx.doi.org/10.1364/OE.20.024559


Condens. Matter 2018, 3, 15 27 of 27

52. Metropolis, N.; Rosenbluth, A.W.; Rosenbluth, M.N.; Teller, A.H. Equation of state calculations by fast
computing machines. J. Chem. Phys. 1953, 21, 1087, [CrossRef]

53. Jastrow, R. Many-body problem with strong forces. Phys. Rev. 1955, 98, 1479–1484. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1103/PhysRev.98.1479
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Basic Three- and Two-Dimensional Models
	The Quantum Collapse in the Linear Schrödinger Equation
	The Three-Dimensional Ground State (GS) Created by the Cubic Self-Repulsive Nonlinearity
	The Quantum Phase Transition Induced by the Lee–Huang–Yang (LHY) Correction to the Mean-Field Theory
	The Two-Dimensional Ground State Created by the Quintic Self-Repulsive Nonlinearity
	A Challenging Issue: The Fermi Gas Pulled to the Center

	The Three-Dimensional Model with Cylindrical Symmetry
	Formulation of the Model
	The Linear Schrödinger Equation with Cylindrical Symmetry
	 Suppression of the Quantum Collapse by the Repulsive Nonlinearity under the Cylindrical Symmetry

	The Two-Component System in Three Dimensions: The Suppression of Quantum Collapse in Miscible and Immiscible Settings
	The Formulation of the Model and Analytical Considerations
	Numerical and Additional Analytical Results for Trapped Binary Modes
	Mixed Ground States
	The Immiscible Ground State


	The Mean-Field Predictions versus the Many-Body Quantum Theory
	Introduction to the Section
	The Single-Particle Solution
	The Monte-Carlo Method
	Numerical Results for the Many-Body System

	Discussion and Conclusions
	References

