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Abstract: The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin
polarization into a charge current and has recently attracted renewed interest due to the large
conversion efficiency observed in oxide interfaces. An important factor in the SGE theory is disorder
which ensures the stationarity of the conversion. Through this paper, we propose a procedure
for the evaluation of the SGE on disordered lattices which can also be readily implemented for
multiband systems. We demonstrate the performance of the method for a single-band Rashba model
and compare our results with those obtained within the self-consistent Born approximation for a
continuum model.
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1. Introduction

Spin-orbit coupling (SOC) lies at the heart of spin-to-charge conversion [1], which is a major issue
for future spintronics technologies [2,3]. Bychkov and Rashba [4] proposed that, in a two-dimensional
electron gas (2DEG), the lack of inversion symmetry along the direction perpendicular to the gas plane
leads to a momentum-dependent SOC usually described by the Rashba Hamiltonian

H =
p2

2m
+ αz× σ · p, (1)

where p is the momentum operator for motion along the 2DEG plane, say the x-y plane, and z is a
unit vector perpendicular to it. σ = (σx, σy, σz) is a vector of the standard Pauli matrices and α is a
coupling constant whose strength depends on the SOC of the material and the field responsible
for the parity breaking. In the last decade, progress in the technology of thin film growth has
enabled the exploration of numerous phenomena where “Rashba Physics” plays a fundamental
role (cf. e.g., [5,6]). With regard to spin-charge conversion, two major effects are discussed: the spin
Hall effect (SHE) originally proposed by Dyakonov and Perel in 1971 [7], and the spin galvanic effect
(SGE) which was first predicted by Ivchenko and Pikus [8] and later studied within the Rashba
model by Edelstein [9] in its reciprocal manifestation (inverse SGE). The SHE and its reciprocal
manifestation are the coupling between charge and spin currents flowing perpendicular to each
other where the current spin polarization is perpendicular to both the charge and spin current’s flow
(see, e.g., [10,11]). Therefore, spin polarization due to an applied electric field accumulates only at
the sample edges. In contrast, SGE and inverse SGE describe the interconversion of charge current
and bulk spin polarization (see, e.g., [12] for a review) and has recently been observed to yield an
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unexpectedly large spin-to-charge conversion at oxide interfaces [13–15], i.e., between LaAlO3 and
SrTiO3. A minimal model for the electronic structure of such interfaces usually involves the Ti t2g
orbitals [16]. The individual bands are further spin-split by atomic spin-orbit coupling and an interface
asymmetry term [17,18]. Alternatively, the splitting can be analyzed using the k · p Luttinger-Kohn
(LK) approach [19,20]. In both cases, this leads to a complex structure of the Rashba SOC (RSOC),
which for the atomic SOC in combination with an interface asymmetry has been derived in [21,22].
The evaluation of the SGE response for such couplings on a lattice is a challenging task and requires
a method which is also applicable in the presence of disorder. The standard impurity technique
involves a three-step procedure: (a) calculation of the irreducible self-energy in the self-consistent
Born approximation for the determination of the single-particle Green function; (b) calculation of
the vertex corrections for the charge current by solving the corresponding Bethe-Salpeter equations;
and (c) computation of the response function from a convolution of the Green functions and the
vertices. This procedure has been successfully applied for the evaluation of the inverse spin galvanic
effect [23], anisotropy magnetoresistance [24,25], and the spin Hall effect [26] in single-band Rashba
models. However, similar investigations for multiband models with broken inversion symmetry
have not been conducted yet to the best of our knowledge. In fact, while the general theory has been
worked out (cf. e.g., [27] for the anomalous Hall effect), previous investigations have been restricted
to inversion-symmetric multiband systems where vertex corrections vanish (cf. e.g., [28]). In fact,
the increasing demand for the solution of the Bethe-Salpeter equations with increasing number of
bands suggests the use of alternative approaches for the evaluation of the SGE response in disordered
systems. One possibility would be the use of a multiband generalization of quasi-classical Green
functions or its diffusive limit (in the context of superconductivity known as the Eilenberger and Usadel
equations, cf. e.g., [29]). Alternatively, one could diagonalize directly the microscopic Hamiltonian on
finite lattices and induce disorder by a suitable distribution of local and/or intersite potentials and
evaluate the Kubo response function numerically from the eigenvalues and eigenstates. This approach
has been previously followed in [22] for the evaluation of the SGE in a multiband model for oxide
interfaces. Disorder was implemented via a flat distribution of local chemical potentials.

However, to substantiate the results of [22], it is necessary to demonstrate that, for a simpler
single-band model, this method leads to results which agree with those obtained with the standard
impurity technique mentioned above. This is precisely the purpose of this paper.

In Section 2, we introduce the necessary response function for the SGE which is subsequently
analytically computed in Section 3 for the model Equation (1) both in the clean and disordered
limit. In Section 4, we compare these results with the response functions obtained by diagonalizing
numerically the corresponding lattice version of Equation (1) supplemented with local disorder.
We conclude our discussions in Section 5.

2. Response Functions

The response function for the SGE is defined via [23]

σSGE(ω) = (−e)
〈〈Jx; Sy〉〉ω
i(ω + iη)

(2)

with

〈〈Jx; Sy〉〉ω =
1
N ∑

k,p
( fk − fp)

〈p|Sy|k〉〈k|Jx|p〉
ω + iη + Ep − Ek

(3)

where Jx is the total particle current and Sy denotes the total y-polarized spin. In principle, all quantities
have to be evaluated for vanishing particle-hole lifetime η → 0. However, as will be discussed in
Section 4, the numerical approach requires a careful evaluation of this limit.
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Upon applying the identity

1
(ω + iη)(ω + iη + Ep − Ek)

=
1

Ep − Ek

(
1

ω + iη
− 1

ω + iη + Ep − Ek

)
(4)

to Equations (2) and (3), the real part of the response function Equation (2) can be decomposed in a
“Drude” and a regular part

<σSGE(ω) = DSGEδ(ω) + σ
reg
SGE(ω) (5)

with

DSGE =
−eπ

N ∑
k 6=p

fk − fp

Ek − Ep
<〈p|Sy|k〉〈k|Jx|p〉 (6)

σ
reg
SGE(ω) =

−e
N ∑

k 6=p

fk − fp

Ek − Ep
= 〈p|S

y|k〉〈k|Jx|p〉
ω + iη + Ep − Ek

. (7)

Here, p (k) refers to the quantum numbers which classify the single-particle eigenstates |p(k)〉
and eigenvalues Ep(k) of the system. We have adopted the term “Drude” from its optical conductivity
analogue since for the SGE it describes the non-equilibrium generation of an electrical current, i.e.,
an increase with time, in response to a uniform spin polarization Sy. Therefore, it is only finite for a
clean system (see below), whereas it is expected to disappear in the presence of disorder.

We also need to compute the regular part of the optical conductivity

Re σxx(ω) = (e2)
Im Λjj

xx(ω)

ω
(8)

with

Λjj
xx(ω) = −∑

k,p
( fk − fp)

〈k|Jx|p〉〈p|Jx|k〉
ω + iη + Ek − Ep

(9)

and for definiteness we have specified both the applied electric field and the current to be oriented
along the x-direction.

3. Analytic Evaluation of the SGE in the Clean and Dirty Limit for a Free Electron Gas with RSOC

Here, we consider the Hamiltonian for a free 2D electron gas in the xy-plane subject to RSOC so
that Equation (1) reads

H =
p2

2m
+ α(σx py − σy px) (10)

which upon diagonalizing has eigenvalues

ε± =
p2

2m
± αp

and eigenvectors

|±〉 = 1√
2

(
±ie−iθ

1

)
(11)

with tan(θ) = py/px. The SOC splits the Fermi surfaces and corresponding Fermi momenta and
density of states can be obtained from an expansion in α as

p± = pF

(
1∓ α

vF

)
N± = N0

(
1∓ α

vF

)
.
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In the above, N0 = m/(2π), pF and vF = pF/m are the density of states at the Fermi surface,
the Fermi momentum, and the Fermi velocity, respectively, in the absence of SOC. Here, for the sake of
simplicity, we are using natural units such that h̄ = 1.

3.1. Clean Limit

With the basis states, Equation (11), the particle and spin operators are represented as

Ĵx =
∂H
∂px

=
px

m
σ0 − ασy (12)

Ŝy =
1
2

σy (13)

so that evaluation of the corresponding matrix elements in Equation (6) yields

〈s|Sy|s′〉 = −1
4
(s + s′) cos(θ)− i

4
(s− s′) sin(θ) (14)

〈s′|Jx|s〉 =
px

m
δs,s′ +

α

2
(s + s′) cos(θ) +

iα
2
(s− s′) sin(θ) . (15)

For the Drude response, only interband transitions s 6= s′ are relevant and, with
<〈s|Sy| − s〉〈−s|Jx|s〉 = −α sin2(θ)/2, one obtains from Equation (6)

DSGE =
e

4π ∑
s

∫
dpp

f (εs)− f (ε−s)

εs − ε−s

α

2

∫ 2π

0
dθ sin2(θ)

=
e
8 ∑

s
s(ps − p−s)

= −e
α

2
πN0 = −e

α

4
m . (16)

Similarly, the regular part—Equation (7)—can be evaluated as

σ
reg
SGE(ω) =

e
32α
{Θ(|ω| − 2αpF,+)−Θ(|ω| − 2αpF,−)} (17)

where pF,± =
√

2mµ + (mα)2 ∓mα denote the Fermi momenta of the two Rashba split bands and µ is
the chemical potential. It is then straightforward to show that Equations (16) and (17) obey the sum rule

∫ +∞

−∞
dω<σSGE(ω) = DSGE +

∫ +∞

−∞
dωσ

reg
SGE(ω) = 0 (18)

which, similar to the optical conductivity, follows from the Kramers-Kronig relation between real
and imaginary part of the response function Equation (3). However, in contrast to the optical
conductivity, there is no diamagnetic term in the spin galvanic response so that the frequency integral
over <σSGE(ω) vanishes.

3.2. Disorder Limit

In the presence of disorder, a stationary state can be reached so that the singular Drude
contribution Equation (6) vanishes (see next section) and the zero frequency response instead is
governed by a finite value of the regular part σ

reg
SGE(ω = 0). It can be calculated from standard impurity

techniques which are based on a determination of the Green function within the self-consistent Born
approximation and the implementation of current vertex corrections in the response function.

In the presence of white-noise standard disorder, the Green function Ĝ = G0σ0 + G1σx + G2σy reads

Ĝ =
G+ + G−

2
σ0 − (σx p̂y − σy p̂x)

G+ − G−
2



Condens. Matter 2018, 3, 22 5 of 10

where
G± = (ε− ε±(p)− Σ)−1, ΣR,A = ∓ i

2τ

with τ−1 = 2πni N0u2, ni being the impurity density and u2 the square of the scattering amplitude,
describes the correlations of the disorder potential, 〈V(r)V(r′) = u2δ(r− r′).

The vertex equation for the particle current vertex reads

Ĵx = v̂x +
1

2πN0τ ∑
p

ĜR ĴxĜA

where v̂x is the bare current vertex and GR(A) denotes the retarded (advanced) Green’s functions.
Since vertex corrections do not modify the momentum dependence of the vertex [25,30], it is useful to
write the full vertex as

Ĵx = v̂x,0 + Γ̂x

where v̂x,0 represents the momentum-dependent part of the bare vertex v̂x. The resulting equation for
the vertex Γ̂x reads

Γ̂x = γ̂x +
1

2πN0τ ∑
p

ĜRΓ̂xĜA (19)

where the effective bare vertex γ̂x is defined by

γ̂x = v̂x − v̂x,0 +
1

2πN0τ ∑
p

ĜRv̂x,0ĜA.

One finds that v̂x is given by Equation (12) and v̂x,0 = px
m σ0. The effective bare vertex can then be

shown to vanish
γ̂x = −ασy + 1

2πN0τ ∑p ĜR px
m ĜA

= −ασy + σy

4mN0
(p+N+ − p−N−)

= −ασy + σy

4mN0

(
4 α

vF

)
No pF

= 0,

(20)

so that Equation (19) is solved by Γ̂x = 0 and the SGE response can be evaluated with the standard
velocity term Ĵx = px/m,

σSGE ≡ σ
reg
SGE(ω = 0) =

(
− e

2π

)
∑p Tr

[
σy

2 GR px
m GA

]
=

(
− e

2π

)
Tr
[

σy

2 ∑p GR px
m GA

]
=

(
− e

2π

)
Tr
[

σy

2 (ασy)2πN0τ
]

= (−e)(αN0τ).

(21)

We thus obtain the following relation between the SGE response in the dirty and clean limit,
Equation (16),

σSGE
DSGE

=
2τ

π
(22)

which in the subsequent section will be used to validate our numerical approach for the evaluation of
σSGE on a disordered lattice.

4. Evaluation of the Spin Galvanic Effect for a Disordered Lattice Model with RSOC

We consider a 2D lattice model (size Nx × Ny) with RSOC

H = ∑
ijσ

tijc†
iσcjσ + ∑

iσ
Vic†

iσciσ + HRSO (23)
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where the first term describes the kinetic energy of electrons on a square lattice (lattice constant a,
only nearest-neighbor hopping: tij ≡ −t for |Ri − Rj| = a) and the second term is a local disorder
potential with a flat distribution −V0 ≤ Vi ≤ V0.

The last term is the RSO coupling

HRSO =
α

2 ∑
i

[ ˜jyi,i+x − ˜jx
i,i+y

]
(24)

where ˜jνi,i+η = −i ∑
σσ′

[
c†

iσσν
σσ′ci+η,σ′ − c†

i+η,σ′σ
ν
σ′σci,σ

]
(25)

denotes the ν-component of the spin-current flowing on the bond between Ri and Ri+η . The tilde
indicates that Equation (25) only represents that part of the spin current which is derived from the
kinetic energy. In momentum space and in the basis of (ck,↑, ck,↓), Equation (24) can be written as

HRSO
kk = α

[
sin(ky)σ

x − sin(kx)σ
y]

which for small momenta coincides with the RSOC in Equation (10).
Figure 1 reports the Drude SGE response obtained from Equation (6) for the clean lattice model as

a function of chemical potential µ, specified in units of the bandwidth parameter B = 4t. For small
RSOC α/B, the Drude response agrees with the expected result from the continuum model (symbols),
Equation (16), with the mass given by m = 1/(2t) = 2/B. Deviations occur for large coupling and
close to the band edges where only one of the Rashba split subbands is occupied. Major deviations
occur also for large α/B and around µ = 0, where DSGE changes sign due to the transformation of the
dispersion from electron to hole-like. Note, however, that, due to particle-hole symmetry, the relation
DSGE(µ) = −DSGE(−µ) is always obeyed.

-1 -0.5 0 0.5 1
chemical potential [B]

-0.1

0

0.1

D
ru

de
 c

oe
ff

ic
ie

nt
 [e

]

α/B=0.05
α/B=0.15
α/B=0.25

Figure 1. Drude coefficient of the spin galvanic response DSGE for the single-band Rashba lattice
model as a function of chemical potential (solid lines). The symbols correspond to DSGE = −eα/(2B)
obtained from Equation (16) with the replacement m = 2/B and the bandwidth parameter B = 4t.

We proceed by evaluating the SGE response for the disordered system and by validating our
numerical results on the basis of the relation Equation (22). The latter depends on the momentum
relaxation time τ which can be obtained by fitting the optical conductivity, obtained from Equation (8),
with the Drude formula

σ(ω) =
σ0

1 + (ωτ)2 . (26)
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The main panel of Figure 2 reports the numerical result (dots) for the optical conductivity which
has been obtained by averaging Equation (8) over 50 disorder configurations and 50 boundary
conditions along x- and y-directions on a Nx × Ny lattice with Nx = Ny = 30. The boundary
conditions are specified by the phase 0 ≤ ϕ ≤ 2π which is acquired by the wave-function upon
performing a translation with the linear dimension of the system |Ψ(Ri + Nx,yaex,y)〉 = exp(iϕ)|Ψ(Ri)〉.
This procedure can be thought of as a sampling of momenta between the points (n2π/Nx, m2π/Ny)

with n, m = 0, ... , Nx,y − 1 which correspond to ϕ = 0. Therefore, an average over random values of ϕ

mimics the states of a larger system.
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E  [e
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σSGE=2Dτ/π

Figure 2. Optical conductivity (full dots) evaluated for disorder strength V0/t = 0.3, chemical potential
µ = −3t, and RSOC α/t = 0.3. The blue solid line is a fit to the Drude model Equation (26) with
σ0 = 11.5e2t and τ = 43.81/t. Inset: The SGE response Equation (7) as a function of the lifetime
parameter η for the same parameters. The red solid line is a polynomial fit to the data points with
η > 0.005 corresponding to the average level spacing of eigenvalues (vertical dotted line). It extrapolates
to a value of σSGE ≈ −2e in agreement with the value expected from the SCBA analysis (horizontal
dashed line).

For the given parameters V0/t = 0.3, α/t = 0.3 and chemical potential µ = −3t, the Drude fit
yields a scattering time τ = 47.81/t and a DC conductivity of σ0 = 2.3e2t.

Upon computing the SGE response from Equation (7), we are faced with the problem of always
finding limη→0 σSGE = 0 for a finite lattice (cf. square data in the inset to Figure 2) where η is the
parameter which shifts the pole of σSGE into the complex lower half-plane. We therefore adopt a
method which has already been applied in [31] for the evaluation of the spin Hall coefficient and
amounts to extrapolating σSGE for values of η larger than the average lattice level spacing δ until η = 0.
For our 30× 30 lattice, one has δ = 2B/(2× 900) = 0.0044t so that we perform the extrapolation for
η > 0.005t indicated by the vertical dotted line in Figure 2. As a fitting curve, we take a polynomial
up to quadratic order. The resulting curve (solid line in the inset to Figure 2) extrapolates to a value
σSGE ≈ −2e which is in agreement with the expected result Equation (22) from the continuum model
(dashed horizontal line).

Figure 3a shows a comparison between the Kubo response calculation Equation (7) and the
expected result from the continuum model Equation (22) as a function of chemical potential for
V0/t = 0.3 and α/t = 0.3. Note that Equation (22) is evaluated with the Drude weight obtained for
the lattice model (cf. Figure 1). One expects best agreement between both approaches at small band
filling where both, continuum and clean lattice model, have circular spin-orbit split Fermi surfaces.
Inspection of Figure 3a reveals that this is in principle correct although the data point obtained with
the Kubo formula at the lowest chemical potential µ = −3.85t slightly deviates from the expected
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behavior. We attribute this to the fact that, for some disorder configurations, one is already in the limit
where only one of the subbands is occupied, leading to an effective decrease of |σSGE|, which explains
the small deviation from the continuum result Equation (22).

-4 -3 -2 -1 0
chemical potential [t]

-3

-2

-1

0

1

σSG
E  [e

] reg. part, Eq. 7

Eq. 22

-4 -3 -2 -1 0
chemical potential [t]

20

30

40

50

τ 
[1

/t]
-4 -3 -2 -1 00

5

10

15

20

25

σ 0 [e
2 t]

DSGE, Eq. 6a) b)

Figure 3. (a) Comparison of the SGE response evaluated with the Kubo formula Equation (7) and
performing the η-extrapolation (squares) with the continuum result obtained from Equation (22).
The SGE Drude coefficient DSGE (diamonds, error corresponds to symbol size) computed from Equation
(6) is also shown. (b) The Drude formula parameters as a function of µ as extracted from fits to the
optical conductivity. Calculations have been performed on 30 × 30 lattices for disorder potential
V0/t = 0.3 and RSOC α/t = 0.3.

Finally, Figure 3a also reports the SGE Drude contribution from Equation (6) as a function of
chemical potential. As anticipated, the DSGE = 0 within the numerical accuracy due to the stationarity
of the response in the presence of disorder.

5. Conclusions

We have discussed the problem of the numerical evaluation of the spin-galvanic response in a
disordered lattice model. Such an approach has recently been used [22] for the computation of the SGE
in a three-band model for oxide interfaces related to the observation of a large spin-to-charge conversion
in these materials [13–15]. Two particular features could be reproduced in these investigations. First,
at low temperature, a sign change of σSGE is obtained when the chemical potential is at the Lifshitz point,
i.e., where the t2g xz- and yz-orbitals become occupied. Second, at room temperature, the xy-orbitals
yield a negligible contribution to σSGE which only becomes significant when, upon gating, the chemical
potential is tuned above the Lifshitz point [15]. The results obtained with the present approach
fluctuate due to the finite size of the underlying lattice. An alternative would be the full solution of the
Bethe-Salpeter equations for the disordered multiband interface system and the subsequent evaluation
of σSGE with the resulting vertex. Work in this direction is planned for the future.
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