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Abstract: Transport behavior that is characterized by a low-temperature electrical resistivity that
displays a power law behavior (ρ(T → 0) ∝ Ts) with an exponent of s < 2 is commonly observed in
magnetic materials in both the magnetic and non-magnetic phases. We give a pedagogical overview
of this phenomenon that summarizes both the experimental situation and the state of its theoretical
understanding. We also put it in context by drawing parallels with unusual power law transport
behavior in other systems.
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1. Introduction

Simple metals are characterized, inter alia, low-temperature (T) electrical resistivity (ρ) behaviour
given by the power law δρ(T → 0) ∝ T2 [1,2], with δρ = ρ− ρ0 being the temperature-dependent
part of the resistivity and ρ0 being the residual resistivity. This is often considered to be one of the
hallmarks of a Fermi liquid, and a stronger T-dependence of the form

δρ(T → 0) = AsTs (1)

with the exponent s < 2 is often referred to as “non-Fermi liquid” (NFL) (transport) behavior, although
this designation requires some qualification as we discuss in Section 5. A prominent example is the
linear T-dependence of the resistivity in the normal phase of hole-doped, high-Tc superconductors
near optimal levels of doping [3,4]. Examples in other systems are provided by various ferromagnets
with low Curie temperatures. Sato observed a behavior given by Equation (1) with s ≈ 1.50− 1.65
in Pd-doped Ni3Al [5]. A very similar behavior was found in pressure-tuned Ni3Al [6], as well as in
pressure-tuned ZrZn2 [7]. Another example is provided by the helical magnet MnSi, which shows a
very clean s = 3/2 behavior in a temperature range from a few mK to several K [8]. The measured
resistivities of ZrZn2 and MnSi are shown in Figure 1 as representative examples. We note that
the anomalous transport behavior in ZrZn2 is observed in both the ordered and disordered phases,
whereas in MnSi, it shows only in the disordered phase. In the helically-ordered phase of MnSi,
δρ ∝ T2 can be observed, albeit with a large prefactor (A2), an observation we will come back to.

Surprisingly, this anomalous transport behavior is far from being completely understood, despite
having been observed for many decades in many different materials. In this paper, we provide a
pedagogical overview of this problem and the solutions that have been proposed.
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Figure 1. (Left) panel: Observed temperature–pressure phase diagram of ZrZn2, with the false colors
indicating the value of the resistivity exponents. The white lines represent lines of second-order (solid)
and first-order (dashed) transitions between the ferromagnetic (FM) and paramagnetic (PM) phases,
and TCP denotes the tricritical point where the order of the transition changes. Based on Figure 2 in
Reference [7]; this version was taken from Reference [9]. (Right) panel: Measured resistivity of MnSi in
the nonmagnetic phase (based on Reference [8]).

2. Soft Modes as the Origin of Power Law Relaxation Rates

It is intuitively plausible that any power law behavior of relaxation rates, including those that
determine transport coefficients, requires the scattering of conduction electrons by soft or massless
excitations, i.e., excitations whose characteristic frequency vanishes in the limit of the vanishing wave
number. A gapped excitation, whose frequency remains non-zero in this limit, will get frozen out at
low temperatures compared to the gap and produce an exponentially small relaxation rate. This can
be demonstrated explicitly by means of some very simple and general arguments.

As a very simple schematic example, consider non-interacting electrons described by the action
S0[ψ̄, ψ]. ψ̄(x) and ψ(x) are fermionic fields, x ≡ (~x, τ) comprises the real-space position ~x and the
imaginary-time variable τ, and we suppress discrete degrees of freedom such as spin, band indices,
etc., in our notation. Let the single-electron energy-momentum relation be ε~k, and denote the chemical
potential by µ. The Fermi surface is then characterized by ξ~k ≡ ε~k − µ = 0. Consider a generalized
electron density of n(x) = ψ̄(x)ψ(x) and its fluctuations (δn(x) = n(x) − 〈n(x)〉), and denote its
Fourier transform by n(k), with k ≡ (~k, ωn) being a 4-vector that comprises a wave vector (~k) and a
fermionic Matsubara frequency (ωn). Examples of n(x) are the number density, the spin density, or any
other moment of a general phase space density. In addition, let δN(x) be a non-electronic density
fluctuation that is governed by a Gaussian action,

Sfluct[δN] =
−1
2

∫
dx dy δN(x) χ−1(x− y) δN(y), (2)

with χ being the physical susceptibility that is appropriate for the δN fluctuations and couples to the
electronic density via a short-ranged interaction, potential (v):

Scoup =
∫

dx dy δN(x) δ(τx − τy) v(~x−~y) δn(y) . (3)

An example of δN is the ionic density fluctuations, in which case n is the electronic number
density, v is the screened Coulomb interaction, and Scoup describes the electron–phonon coupling.
If we integrate out the δN fluctuations, we obtain an effective electronic action of

Seff[ψ̄, ψ] = S0[ψ̄, ψ] +
1
2

∫
k

δn(k)V(k) δn(−k), (4a)
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with an effective potential of V(k) =
(

v(~k)
)2

χ(k). Since the potential (v) is short-ranged, we can, for
the purpose of studying long-wavelength effects, replace this expression by

V(k) = C χ(k) (4b)

with C = v2(~k = 0) being a coupling constant. The integration measures in Equations (2), (3) and (4a),
respectively, are

∫
dx ≡

∫
V d~x

∫ 1/T
0 dτ and

∫
k = (1/V)∑~k T ∑ωn , with V being the system volume.

We use units such as the Boltzmann constant (kB = 1).
The effective electron–electron interactions described by V can be interpreted as an exchange of

δN fluctuations by the electrons. This leads to an electron self energy that is given, by Hartree–Fock
approximation, by

Σ(p) =
∫

k
V(k) G(p− k). (5)

The single-particle relaxation rate (1/τsp), i.e., the inverse quasiparticle lifetime due to the effective
interaction, averaged over the Fermi surface, is given by

1
2τsp

=
−1

NFV ∑
~p

δ(ξ~p)Σ′′(~p, 0)

= 2NF

∫ ∞

−∞
du V̄′′(u)

1
sinh(u/T).

(6)

Here, NF is the electronic density of the states at the Fermi surface,
Σ′′(~p, ω) = ImΣ(~p, iωn → ω + i0) is the spectrum of the self energy, and

V̄′′(u) =
1

(NFV)2 ∑
~k,~p

δ(ξ~k)δ(ξ~p)V′′(~k− ~p, u) (7)

is the spectrum of the effective potential averaged over the Fermi surface. For simplicity, we ignore the
splitting of the Fermi surface in magnets for the time being. We add this feature and several important
others in Section 4.

2.1. Power Law Relaxation Rates from the Exchange of Particles

To specify the effective potential (V), consider a particle-like excitation with a wave-number
dependent resonance frequency of ω0(~k → 0) = c |~k|n, in which case, the spectrum of the
susceptibility (χ) has the form

χ′′(~k, u) ∝ |u|m sgn (u) δ(u2 −ω2
0(~k)). (8)

Here, c is a stiffness coefficient, and we ignore a prefactor that we absorb into the coupling
constant (C), and we neglect any damping of the excitation. The values of exponents n and m depend
on the nature of the particles. Examples are shown below.

By performing the wave-number integrals in Equation (7), we find

V̄′′(u) ∝ |u|m+(d−1−2n)/nsgn (u). (9)

Via Equation (6), this leads to
1/τsp ∝ Tm+(d−1−n)/n (10)

with d being the spatial dimensionality.
These simple considerations illustrate a basic point: the power law behavior of 1/τsp hinges on

the resonance frequency ω0 by scaling as a power of |~k| for~k→ 0. This is the defining property of a
mode that is soft, gapless, or massless.
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As a well-known example, consider longitudinal phonons. In this case, δn and δN are the
electronic and ionic number density fluctuations, respectively, and v is a screened Coulomb interaction.
The susceptibility (χ) has the same form as in a classical fluid and is characterized by m = 2 and
n = 1 [10]. We thus have 1/τsp ∝ Td. In d = 3, this is the well-known T3 law for the single-particle
relaxation rate due to phonons [11].

We note that we have made several simplifying assumptions so far, in addition to the assumption
of the single Fermi surface mentioned above. First, we have considered only the single-particle
relaxation rate, rather than the more complicated transport rate, 1/τtr, which determines the electrical
resistivity. The single-particle rate does, however, have the same T-dependence as the thermal
resistivity, at least at the level of the Boltzmann equation [1]. Second, we have assumed an isotropic
resonance frequency that depends only on the magnitude of the wave vector. Third, we have ignored
the effects of quenched disorder, which is always present in real materials (sometimes only very
weakly). Relaxing these constraints is important in order to understand the experimental results that
we are interested in; we will discuss this in Section 4.

2.2. Power Law Relaxation Rates from the Exchange of Unparticles

Another possibility is the exchange of fluctuations that have been dubbed ‘unparticles’ in a
particle physics context [12]. They are characterized by a continuous spectrum that is scale invariant
but lacks the resonance peak characteristic of particles:

χ′′(~k, u) ∝ um/|~k|n. (11)

Spectra of this type are actually very familiar from condensed matter physics; the most common
example is the Lindhard function [13]. The wave vector integrals in Equation (7) then simply lead to
a prefactor, and the single particle and transport rates are the same, except for having a prefactor of
O(1), 1/τsp ≈ 1/τtr ≡ 1/τ. The temperature dependence of either relaxation rate is determined by
exponent m only, and we have

1/τ ∝ Tm+1. (12)

An obvious example is the case of Coulomb scattering. In this case, δN and δn both represent
electronic number density fluctuations that interact via a screened Coulomb interaction. χ′′ then is the
spectrum of the Lindhard function, and hence, m = n = 1, which leads to 1/τ ∝ T2. We note that at the
level of quantum electrodynamics, the objects exchanged by the electrons in this example are, of course,
particles, namely, virtual photons. However, at the level of an effective low energy theory where the
microscopic details have been integrated out, the effects of this exchange manifest themselves in the
form of a continuous spectrum, namely, the dynamically screened Coulomb interaction.

For later reference, we restore the prefactors, which leads to a familiar result for the Coulomb
scattering rate,

1/τ = πT2/2εF, (13)

with εF being the Fermi energy. The above derivation is similar in spirit to the one presented in
Reference [14]. It is remarkable that the argument of interacting density fluctuations still works if the
δN fluctuation that interacts with the electronic δn fluctuation is itself an electronic density fluctuation
created by all the other electrons. This aspect was stressed in Reference [15].

3. Experimental Results

To classify experimental results that show anomalous transport behavior, it is crucial to distinguish
between two different cases. In the first case, the anomalous behavior is observed only in a
narrow region of the phase diagram, usually in the vicinity of a known or suspected critical point.
Its observation thus requires fine tuning. An example is the T3/2 resistivity combined with a logarithmic
T-dependence of the specific heat coefficient observed near a probable quantum critical point in
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NbFe2 [16]. In the second case, the anomalous behavior is generic in the sense that it is observed in
large regions of the phase diagram. This distinction is crucial, since critical points necessarily lead
to critical fluctuations that can serve as the scale invariant excitations that underlie the mechanism
discussed in Section 2. Another important distinction is between clean systems that contain no or very
little quenched disorder and disordered ones. This is because quenched disorder leads to diffusive
electron dynamics that can lead to anomalous transport behavior via well-known mechanisms [17,18].
The anomalous transport behavior that is hardest to understand thus occurs in systems that are clean,
as evidenced by a small residual electric resistivity (ρ0) or a large mean-free path and show generic
anomalous behavior that does not require fine tuning.

Two materials that fall into the latter category are the ferromagnet ZrZn2, and the helimagnet
MnSi. The cleanest samples for either system have ρ0 ≈ 0.3 µΩcm, and the transition from the
magnetic to the non-magnetic phase can be triggered by applying hydrostatic pressure. The magnetic
quantum phase transitions have been well established to be first-order [19,20], so critical fluctuations
are not a viable candidate for explaining the observed transport anomalies (see Reference [21] and
references therein for a review of the magnetic properties of these materials).

The phase diagram of ZrZn2 is shown in Figure 1. The resistivity exponent s, determined by the
slope of a log-log plot of the electrical resistivity, is less than 2 in a large part of the phase diagram,
ranging from ambient pressure to twice the critical pressure, and from the lowest temperatures
achievable to about 20 K. The smallest exponent, s ≈ 1.5, was found in a temperature region around
10 K in the paramagnetic phase [7]. Data at ambient pressure have been fitted to Equation (1) with
s = 5/3 for samples with residual resistivities between 0.3 µΩcm and 6.4 µΩcm, while a magnetic
field of 9T restores T2 behavior [22]. The respective prefactors are A5/3 ≈ 0.021 µΩcm/K5/3 and
A2 ≈ 0.003 µΩcm/K2. We discuss interpretations of this behavior in Sections 4 and 5, where we show
that an equally good fit of the data is obtained by superpositions of s = 3/2 and s = 2.

MnSi is a helimagnet with a rather long helical pitch wavelength of about 180 Å [23]. Hydrostatic
pressure destroys the helical order [20] and drives the system into a phase with no long-range magnetic
order. There is, however, evidence for strong fluctuations in the non-magnetic phase [24]. The phase
diagram in the temperature–pressure plane is shown in the left panel of Figure 2. The magnetic phase
transition at low temperatures is first-order, as is generically the case in clean metallic ferromagnets and
long-wavelength helimagnets (for a review of the magnetic properties, see Reference [21]). Throughout
the non-magnetic phase, from a critical pressure of pc ≈ 15 kbar to about 50 kbar, and over a
temperature range from a few mK to almost 10 K, the electrical resistivity displays a T3/2 behavior with
a prefactor ranging from A3/2 ≈ 0.1µΩ cm/K3/2 at high pressure to 0.22µΩ cm/K3/2 near the critical
pressure [8,25] (see Figures 1 and 2). In the helical phase, the electrical resistivity shows a T2 behavior
with a prefactor of A2 ≈ 0.03 µΩcm/K2 at ambient pressure that rises, first gradually, and eventually
sharply, to A2 ≈ 0.12 µΩcm/K2 as the critical pressure is approached from below [25]. We note
that these prefactors are surprisingly large. They are larger by a factor of 10 compared to their
counterparts in ZrZn2, and larger by many orders of magnitude compared to the Coulomb scattering
contribution given by the Drude formula in conjunction with the scattering rate in Equation (13). The
T2 behavior in the helical phase is thus as anomalous as the T3/2 behavior in the disordered phase, even
though the exponent value happens to coincide with the one that is characteristic of ordinary Fermi
liquid behavior.
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Figure 2. (Left) panel: Temperature–pressure phase diagram of MnSi based on experimental data
from References [20,24,25] and theoretical interpretations from Reference [26]. HM and PM denote
the helimagnetic and paramagnetic phases, respectively, and NFL denotes the region where s = 1.5.
The upper limit of the NFL region is not sharp. TCP is the observed tricritical point that separates
second-order HM–PM transitions (solid line) from first-order ones (dashed line), and CP is a critical
point that was proposed in Reference [26]. The inset shows the abrupt change in the resistivity exponent
at the critical pressure (from Reference [9]). (Right) panel: Magnetic field–temperature phase diagram
of MnSi, showing various phases. The A-phase hosts a columnar skyrmionic spin texture. The inset
shows an artist’s rendition of the skyrmions in a plane that is perpendicular to the columns. Based on
Figure 1 in Reference [27] (main figure); inset taken from Reference [28].

In a magnetic field, MnSi has a phase known as the A-phase that consists of a skyrmionic spin
texture, with the cores of the skyrmions forming a hexagonal lattice of columns in the material [27] (see
the right panel in Figure 2). The T3/2 behavior of the resistivity in the paramagnetic phase persists in a
non-zero field up to the crossover to the field-polarized ferromagnetic region, and neutron scattering
has provided evidence for strong fluctuations in the paramagnetic phase [24].

Neither in the case of ZrZn2, nor in that of MnSi is there any reason to believe that either critical
fluctuations or diffusive electron dynamics lead to the observed anomalous transport behavior. The
explanation thus must lie in generic excitations that are extraneous to the conduction electrons. We
discuss proposals along these lines in Section 4.

Another example of generic anomalous transport behavior in quantum magnets is provided by
the isostructural compounds Ni3Al and Ni3Ga, which can be prepared with various Ni concentrations
around the stoichiometric value. Ni3Al has a ferromagnetic order below 15–41 K, depending on
the exact composition, and a ferromagnetic-to-paramagnetic quantum phase transition (QPT) can
be triggered by means of hydrostatic pressure (see References [21,25] and references therein). The
transition is suspected to be first-order [6,25], and stoichiometric samples have residual resistivities of
ρ0 ≈ 1µΩcm. The resistivity exponent is s >

∼ 1.5 on either side of the transition (see Figure 3), and the
prefactor is As ≈ 0.01 µΩcm/Ks [25]. Similar behavior is observed in Ni1−xPdx)3Al, which undergoes
a ferromagnetic QPT at x ≈ 0.095 [5]. This transport behavior is very similar to that observed in
ZrZn2. Stoichiometric Ni3Ga is paramagnetic and remains so for Ni-poor compositions, but it has a
ferromagnetic ground state for Ni-rich compositions. In ferromagnetic samples, s ≈ 1.5 with a prefactor
of A3/2 ≈ 0.04 µΩcm/K3/2, whereas s = 2 in the paramagnetic samples with A2 ≈ 0.001 µΩcm/K2

(see Reference [25] and references therein). This situation is the reverse of the one in MnSi, where
s = 2 in the magnetically ordered phase and s = 1.5 in the disordered phase.
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Figure 3. (Left) panel: Electrical resistivity of Ni3Al plotted vs. T3/2 for pressure values below, close to,
and above the critical pressure (pc). Based on Figure 4 in Reference [6]. (Right) panel: The resistivity
exponents for Ni3Al with a range of Ni concentrations. Data taken from Reference [29] as replotted in
Reference [25]. Based on Figure 3 in Reference [25].

4. Theoretical Explanations

As we have seen in Section 2, any explanation of the generic transport anomalies observed
in various quantum magnets must involve the scattering of electrons by soft generic excitations.
In magnetically ordered phases, obvious candidates are the Goldstone modes that result from the
magnetic order. In phases without long-range magnetic order, there are two possibilities. Strong
fluctuations that are remnants of the long-range order may provide scattering mechanisms that can
lead to generic transport anomalies. Candidates for such fluctuations have been observed in the
non-magnetic phase of MnSi [24] and have been discussed as a possible origin of the observed T3/2

behavior [30]. Alternatively, weak quenched disorder may provide droplets of the ordered phase
within the disordered one (and vice versa) [31]. This explains the widespread observation of phase
separation away from the coexistence curve of a first-order phase transition, and it also provides a way
for scattering mechanisms that are germane to the magnetic phase to persist in parts of the disordered
phase. We discuss these mechanisms in more detail later in this section and also in Section 5.

For ferromagnets in the ordered phase, the magnon contribution to the resistivity was considered
early on and was found to produce a T2 behavior [32,33], in agreement with experimental results on Fe,
Co, and Ni [34]. Later work confirmed this, and also considered scattering by the continuum of Stoner
excitations (another example of the ‘unparticles’ mentioned in Section 2) [35,36]. T2 behavior is valid
only above a characteristic temperature that is related to the exchange splitting [37], as we explain
explicitly below. The behavior of both the electric and thermal resistivities in various temperature
regimes was discussed in Reference [15]. For helimagnets, the Goldstone modes and their contribution
to the scattering rates were derived in References [38–41]. Recently, electron scattering from Goldstone
modes in both ferromagnets and helimagnets has been reconsidered, and several new mechanisms
for anomalous transport behavior have been discussed [9]. In this section, we give a summary of the
current state of the theory. We focus on three mechanisms that yield a resistivity exponent of s = 3/2
in some temperature regime (for more complete results see Reference [9]). For completeness, and
to clarify some common misconceptions, we also briefly discuss the effects of non-generic critical
fluctuations and the extent to which they exist.

4.1. Scattering by Magnetic Goldstone Modes

As mentioned in Section 2, the basic considerations presented need to be generalized and refined
in several ways in order to be applicable to magnetic materials. We start with a discussion of clean
systems, and then consider the effects of weak disorder.
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4.1.1. Clean Systems

In the ordered phase of both ferromagnets and helimagnets, the effective local magnetic field
seen by the conduction electrons leads to an exchange splitting (λ) of the Fermi surface. We thus need
to distinguish between intraband scattering, where a magnon is exchanged between electrons in the
same sub-band of the exchange-split Fermi surface, and interband scattering, where the exchange is
between electrons in different sub-bands. At asymptotically low temperatures in clean systems, the
latter will always lead to exponentially small rates, as the scattering processes gets frozen out for small
temperatures compared to the exchange splitting. However, they can provide the leading contribution
to scattering in a pre-asymptotic temperature window whose lower limit can be rather low, and thus
needs to be considered. Furthermore, weak quenched disorder eliminates the exponential suppression,
as we will see. In ferromagnets, the magnons do not couple electrons in the same sub-band, and thus,
interband scattering is the only mechanism available. The effective potential for interband scattering
is given by Equation (7), but with shifted arguments of the δ-functions that reflect the fact that the
electrons with a wave vector of~k live on a different Fermi surface than those with a wave vector of ~p.
The coupling constant (C) is given by the square of the exchange interaction (Γt), and the resulting
expression for the single-particle interband scattering rate is

1
τsp

∝ NFΓ2
t

∫ ∞

−∞
du

1
sinh(u/T)

1
N2

FV2 ∑
~k,~p

δ(ξ~k+~p − λ) δ(ξ~p + λ) χ′′(~k, u). (14)

The transport rate is given by the same expression with an additional factor of ~k2/k2
F in the

integrand, with kF being the Fermi wave number. This is known as the backscattering factor that
suppresses large-angle scattering [1]. For the transport interband scattering rate, we thus have

1
τtr

∝ NFΓ2
t

∫ ∞

−∞
du

1
sinh(u/T)

1
N2

FV2 ∑
~k,~p

(~k2/k2
F) δ(ξ~k+~p − λ) δ(ξ~p + λ) χ′′(~k, u). (15)

4.1.2. Systems with Weak Disorder

Quenched disorder, however weak, is present in all real materials and leads to a non-zero
scattering rate of 1/τ0, even at T = 0, and a corresponding residual resistivity (ρ0). The cleanest
samples of the magnetic systems discussed here have residual resistivities of a few tenths of a
µΩ cm. While being very clean by the standards of these compounds, these values are large compared
to the residual resistivities of many non-magnetic metals (e.g., the residual resistivity of commercial
Cu wire is less than 1 nΩ cm). This motivates the consideration of disorder in the ballistic or weak
disorder regimes [42], which, in magnets, is characterized by the condition λτ0 � 1 [41]. A rigorous
treatment requires elaborate diagrammatic calculations, but the net effect can be described by using
simple heuristic arguments [9].

Next, we consider the expression for the clean single particle rate in Equation (14). Performing
the wave number convolution integral yields

1
NFV ∑

~p
δ(ξ~k+~p − λ) δ(ξ~p + λ) ∝

∫ 1

−1
dη δ(kvFη − 2λ) =

1

vF|~k|
Θ(|~k| − 2λ/vF) (16)

where vF is the Fermi velocity. The step function leads to exponential suppression of the rates at
the asymptotically low temperatures mentioned above [15,37]. In a weak disorder, the δ-function is
replaced with a Lorentzian, and in the limit vF|~k|/λ� 1, λτ0 � 1 the step function gets replaced by

1

vF|~k|
Θ(|~k| − 2λ/vF) =

∫ 1

−1
dη δ(kvFη − 2λ)→

∫ 1

−1
dη

1/τ0

(vF|~k|η − 2λ)2 + 1/τ2
0

≈ 1
λ2τ0

(17)
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The disorder thus eliminates the lower cutoff for the~k-integral and leads to an extra factor of
vF|~k|/λ2τ0 in the integrand. Since~k scales as a positive power of the temperature, this implies that the
power law T-dependence of the single particle rate is weaker than in the corresponding clean system,
but extends to a temperature of zero.

In the case of the transport rate, the same arguments apply, but, in addition, the disorder eliminates
the backscattering factor, since it leads to more isotropic scattering. The effective extra factor in the
integrand is thus (εF/λ2τ0)kF/|~k|, and the disorder strengthens the T-dependence of the rate, in
addition to eliminating the exponential suppression at asymptotically low T values. The single particle
rate and the transport rate are thus qualitatively the same and are given by

1
τsp

∝
1

τtr
∝

NFΓ2
t

λ2τ0

∫ ∞

−∞
du

1
sinh(u/T)

1
NFV ∑

~k

χ′′(~k, u). (18)

1/τtr and 1/τsp determine the electrical and thermal resistivities via the Drude formula:

ρ = me/ne e2τ, (19)

where e, me, and ne represents the electron charge, mass, and density, respectively.

4.2. Application to Quantum Ferromagnets

Now, consider the scattering of electrons by magnons in ferromagnets. The relevant resonance
frequency (ω0 in Section 2) is

ωFM(~k→ 0) = D~k2 (20)

with D being the spin stiffness coefficient, and the corresponding susceptibility is, apart from a
numerical prefactor [10],

χFM(~k, iΩ) ∝
m0D~k2

ωFM(~k)2 − (iΩ)2
. (21)

m0 is the magnetization scale that determines the exchange splitting (λ) via λ = Γtm0. Two other
relevant energy scales represent the largest amount of energy that can be carried by a magnon (i.e., the
magnetic equivalent of the Debye temperature),

T1 = Dk2
F, (22)

and the smallest amount of energy that can be transferred by means of magnon exchange,

T0 = Dk2
0 ≈ T1(λ/εF)

2, (23)

where k0 = λ/vF.
For clean ferromagnets, Equations (14) and (15) yield the results shown in References [15,35,37],

namely, T ln Tand T2 behavior for 1/τsp and 1/τtr, respectively, for T0 < T < T1, and exponentially
small rates for T < T0. In the presence of ballistic quenched disorder, Equation (18) leads to both rates
scaling as T3/2, which results in the resistivity contribution

δρFM = AFM
3/2 T3/2, (24a)

with a prefactor of
AFM

3/2 = γ1 ρ0/T1
√

T0, (24b)
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where γ1 is a numerical prefactor. Since the single particle rate has the same T-dependence as the
transport rate, this result also holds for the thermal resistivity—only the numerical prefactor is different.
It is valid for Tball � T <

∼ T0, with
Tball = T1/(εFτ0)

2. (25)

The lower limit on the temperature window is dictated by the constraints on the ballistic disorder
regime [9]. For lower temperatures, the electron dynamics are diffusive.

The appropriate parameter values for ZrZn2 were estimated in Reference [9]. The result was a
prefactor of AFM

3/2 ≈ 0.01 µΩcm/K3/2, which is very close to what is observed in this material (see
the discussion in Sections 3 and 5). In order for this mechanism to explain the anomalous transport
behavior on either side of the first-order QPT, the droplet formation discussed in Reference [31]
is crucial.

4.3. Application to Quantum Helimagnets

In helimagnets, there are two different soft modes that are candidates for explaining anomalous
transport behavior. One is the helimagnons, which are the Goldstone modes of the spontaneously
broken symmetry that is present in the helically-ordered phase [38]. The other is fluctuations of
the columnar skyrmion structure that is observed, e.g., in the A-phase of MnSi (see Figure 2 and
Reference [27]). Columnar fluctuations are familiar from the theory of liquid crystals [43] and were
studied in the context of helimagnets in References [30] and [44].

4.3.1. Scattering by Columnar Fluctuations in the Skyrmionic Phases

Consider a hexagonal lattice of columns in the z-direction that fluctuate about their equilibrium
positions, as shown in Figure 4. Such fluctuations have an anisotropic dispersion relation, with the
resonance frequency scaling linearly with the wave number for the wave vectors (~k⊥) perpendicular
to the columns, and quadratically with the wave number for wave vectors in the direction of the
columns [43]. If the columnar structure is due to skyrmions comprising a superposition of three helices
with a pitch wave number of q, as proposed in Reference [27], then the resonance frequency is [9,45]

ωsky(~k) =

D
√

k4
z +~k2

⊥q2 for Dq4/k2
F
<
∼ ωsky

<
∼ Dq2

D(k2
F/q2)(k4

z/q2 +~k2
⊥) for ωsky

<
∼ Dq4/k2

F.
(26)

For ωsky
>
∼ Dq2, the behavior crosses over to the ferromagnetic one given by Equation (20).

The corresponding susceptibility is

χsky(~k, iΩ) ∝
m0

ω2
sky(

~k)− (iΩ)2

{
Dq2 for ωsky

>
∼ Dq4/k2

F

(kF/q)2ωsky(~k) for ωsky
<
∼ Dq4/k2

F.
(27)

In the presence of ballistic disorder, the behavior of the mode in the upper frequency range
leads, in conjunction with Equation (18), to qualitatively equal results for the electrical and thermal
resistivities as in the ferromagnetic case:

δρsky = Asky
3/2 T3/2 (28a)

with the prefactor
Asky

3/2 = γ2 ρ0/T1
√

T0, (28b)

where γ2 is another numerical factor. This is valid for Max(Tball, Tqq2/k2
F)

<
∼ T <

∼ Tq, with

Tq = Dq2 (29)



Condens. Matter 2018, 3, 30 11 of 17

being another energy scale—this one is relevant for helimagnets. Since the behavior for T >
∼ Tq crosses

over to ferromagnetic, which is the same, except for the numerical prefactor, the effective upper limit
of the region of validity is the greater value of T0 and Tq.

Figure 4. Hexagonal lattice of columns and fluctuations about this state. a is the lattice constant, and
~u(~x) is the displacement vector (based on Figure 5 in Reference [44]).

For temperatures lower than Tq(q/kF)
2, the lower frequency regime in Equations (26) and (27)

is relevant, and the T-dependence of the resistivity crosses over to a T5/4 behavior. However, for
helimagnets with a small q/kF, this crossover temperature is extremely low and may not be larger than
Tball, so this behavior may not be observable. For instance, an estimate for MnSi yields [9] Tq ≈ 250mK,
Tball ≈ 1 mK. With q/kF ≈ 0.03 [23], this yields a crossover temperature of about 0.2 mK, which is
lower than Tball and hence, is not observable.

Using parameter values that are appropriate for MnSi, an estimate of the prefactor shows that it is
within a factor of 5 within what is observed in the non-magnetic phase of MnSi can be determined [9].
In order for this mechanism to be operative in that phase, strong columnar fluctuations must exist.
There is experimental evidence for this to be the case [24]. A theoretical analysis of the possible nature
of this phase was given in Reference [26].

4.3.2. Scattering by Helimagnons

A third mechanism for T3/2 behavior of the electrical resistivity is provided by scattering of
electrons by helimagnons, the Goldstone modes of helical order, in clean helimagnets. The dispersion
relation and the susceptibility for the helimagnons are [38]

ωHM(~k) = D
√

q2k2
z +~k4

⊥ (30)

and

χHM(~k, iΩ) ∝
m0Dq2

ω2
HM(~k)− (iΩ)2

. (31)

Here, q is the modulus of the helical pitch wave vector, which we again take to point in the
z-direction. This is valid for ωHM

<
∼ Dq2—for larger wave numbers, the behavior crosses over to the

ferromagnetic one. We note that the numerator of the susceptibility is independent of the wave number,
whereas in the ferromagnet, it is proportional to~k2. As a result, the helimagnon’s susceptibility is
softer than the ferromagnon’s, even though the Goldstone mode is stiffer in the helimagnet than in
the ferromagnet.

Equation (15) now yields a contribution to the electrical resistivity that is given by [9]

δρHM = AHM
3/2 T3/2 (32a)
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with
AHM

3/2 = ρλγ3 q/kFT3/2
1 . (32b)

Here, ρλ = λme/nee2 is a resistivity scale, and γ3 is another numerical factor. This result is valid
for T0

<
∼ T <

∼ Tq, provided this window exists; for T <
∼ T0, the rate is exponentially suppressed. In MnSi,

the window does not exist, since Tq < T0 [9].
In the presence of ballistic disorder, Equations (30) and (31) in conjunction with Equation (18)

yield a stronger T-dependence, namely, δρHM ∝ T ln T. At sufficiently low temperatures, the observed
T2 behavior of unknown origin is predicted to cross over to this behavior (see Reference [9] and the
discussion in Section 5 below).

4.4. Scattering by Critical Fluctuations

By now, it has been well established, both theoretically and experimentally, that the QPT in clean
metallic ferromagnets is generically first-order [21]. However, historically, it was believed that the
transition was second-order and hence, accompanied by critical fluctuations [46]. We briefly discuss
the influence of these fluctuations on the resistivity for two reasons: (1) the transition can be weakly
first-order in some materials, and critical fluctuations may be observable in a pre-asymptotic regime,
and (2) early work concerning the critical behavior has influenced the analysis of experiments, even in
cases where later studies found a clear first-order transition.

Mathon [47] found the resistivity exponent s = 5/3 due to ferromagnetic quantum critical
fluctuations even before Hertz [46] developed a renormalization group treatment of QPTs. The same
result was obtained by Millis [48] with renormalization group techniques (for a discussion of how
this fits into a general scaling description of QPTs see Reference [49]). The exponent 5/3 ≈ 1.67
can be experimentally hard to distinguish from 3/2, especially if there are various competing power
law contributions to the resistivity that hold only in temperature windows of limited sizes (see
Figure 5 and the related discussion). Furthermore, the critical fluctuations, if any, will be present
only in a rather limited region of the phase diagram and cannot explain observations of anomalous
transport behavior far from any phase transition. Still, they may well contribute to parts of the phase
diagram in materials where the QPT is weakly first-order.

Sufficiently strong quenched disorder (strong enough to lead to diffusive electron dynamics)
changes the nature of the ferromagnetic QPT from first- to second-order. This was predicted
theoretically [50–52] and recently observed in Fe-doped MnSi [53]. The asymptotic critical behavior at
this quantum critical point is unusual and very hard to observe [51], but in a pre-asymptotic region, an
effective power-law behavior with the exponent s = 3/11 has been predicted [49,52].

5. Discussion

We conclude by discussing various additional points and open problems.

5.1. Fermi Liquids and Non-Fermi Liquids

The anomalous transport behavior discussed in this paper is often referred to as non-Fermi
liquid (NFL) behavior. However, this term has multiple meanings. Originally devised to describe the
low-temperature behavior of fermions with a short-ranged interactions, such as He3 [54–56], Landau’s
Fermi liquid theory was generalized to electrons with a long-ranged Coulomb interaction by Silin [57].
The chief concept of Fermi liquid theory is the existence of quasiparticles that are continuously related
to the single particle excitations in a Fermi gas. Accordingly, the term NFL is often used to refer to
systems where the interactions are so strong that they destroy the Landau quasiparticles. Examples are
the Luttinger liquid [58] and the marginal Fermi liquid [59], where the destruction is only logarithmic.
A more readily observable feature of a Fermi liquid is an electrical (and thermal) resistivity that has a
T2 temperature dependence for T → 0 due to Coulomb scattering (see Section 2.2). (We have, however,
glossed over various complications (see Reference [60]). Systems where this is not the case are also



Condens. Matter 2018, 3, 30 13 of 17

often referred to as NFLs. However, it is important to keep in mind that NFL transport behavior
in this sense does not imply that no Landau quasiparticles exist, it may merely mean that there are
soft excitations that scatter the conduction electrons more strongly than the Coulomb interaction
does. We have discussed three examples of such excitations that are generic, namely, ferromagnons,
columnar fluctuations, and helimagnons, and one that requires fine tuning, namely, ferromagnetic
critical fluctuations.

5.2. Mechanism for Generic Scale Invariance

There are a limited number of mechanisms that lead to generic soft modes and generic scale
invariance in many-particle systems. Three common ones are (1) spontaneously broken continuous
symmetries that lead to Goldstone modes, (2) conservation laws, and (3) gauge symmetries (see
Reference [61] for a comprehensive discussion). The three discussed examples all belong to the
first category. They all are two-particle excitations, i.e., correlation functions of four fermion fields.
In clean fermion systems, the single particle excitations described by the Green function are also
soft. References [21,61] also discussed how rare regions in systems with quenched disorder fit into
the classification scheme of generic scale invariance. This scarcity of generic soft modes, especially
ones that can lead to linear T-dependence of the electrical resistivity, is part of the motivation for
suggestions that a hidden quantum critical point underlies the “strange-metal” normal state of high-Tc

superconductors (for a discussion, see, e.g., [62]). There is currently no consensus on the origin of
this behavior. The phenomenological marginal Fermi liquid description in Reference [59] is a generic
mechanism that yields a resistivity exponent of s = 1, but the microscopic origin of the marginal Fermi
liquid is not clear.

5.3. Uniqueness, or Lack Thereof, of the Resistivity Exponent

It is important to note that, generically, there are many competing contributions to the
T-dependence of the resistivity, and usually, more than one is of comparable strength in any given
temperature regime. Examples of a well-defined exponent (s) over a sizable temperature range, such
as s = 3/2 in MnSi or s = 1 in high-Tc superconductors, are rare and suggest one strongly dominant
scattering mechanism. More commonly, the value of s is less well defined and changes as a function of
T (see the experimental data for ZrZn2 in Figure 1 and Ni3Al in Figure 3). Qualitatively, this is easy to
understand from a slight extension of the discussion we have given in Section 4. We have focussed on
scattering mechanisms that result in s = 3/2; however, a more complete analysis shows that there are
various mechanisms in various temperature windows that lead to values of s between s = 1 and s = 2
(see Table I in Reference [9]).

To illustrate this point, let us discuss the behavior of ZrZn2 at ambient pressure in more detail.
References [7] and [22] found that the behavior of the electrical resistivity between 1 K and about 15 K
is well described by Equation (1) with s = 5/3 and A5/3 ≈ 0.02 µΩcm/K5/3. However, in general,
one would always expect a T2 contribution (of Fermi liquid origin or otherwise) that is additive to the
leading contribution with s < 2. One should thus write

δρ(T → 0) = AsTs + A2T2 + o(T2). (33)

References [7,22] used s and As, as given above, and A2 = 0 and obtained a good fit. In Figure 5,
we reproduce this fit (in the inset) and compare it with a fit that uses Equation (33) with s = 3/2,
A3/2 = 0.021 µΩcm/K3/2, and A2 = 0.0033 µΩcm/K2 (solid red line in the main figure). There are at
least two physical motivations for this: (1) in Section 4, we identified several scattering mechanisms
that lead to s = 3/2. (2) There is no reason to believe that A2 = 0. Indeed, Reference [22] found a
T2 behavior in a magnetic field of 9 T with a prefactor that is very close to the one used for the fit in
Figure 5. An obvious explanation is that the magnetic field gaps out the magnons which eliminates the
scattering mechanism that produces s = 3/2 and leaves a T2 mechanism of unknown origin behind.
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It then is natural to assume that this T2 mechanism is also present in a zero field and needs to be
taken into account. It is very interesting that the resulting fit, the solid red line in the main figure,
is of equal quality to the pure T5/3 fit shown in the inset. Indeed, if plotted on top of one another,
the two fits are indistinguishable on the scale of the figure. We conclude that the data by themselves
cannot distinguish between a pure T5/3 behavior and a T3/2 behavior with a T2 correction. A pure
T3/2 behavior, on the other hand, gives a good fit, but in a much more limited temperature regime (see
the green dashed line in the figure).

In this context of multiple scattering mechanisms, we also stress again that the presence of a
resistivity exponent of s = 2 does not necessarily imply that the transport behavior is conventional.
For instance, the very large value of the prefactor A2 observed in the helically-ordered phase of
MnSi cannot be explained by any known scattering mechanism. A related point is that a scattering
mechanism leading to a smaller value of s may not dominate over one leading to a larger value unless
one goes to very low temperatures, as the crossover temperature obviously depends on the ratio of
the prefactors. In the helical phase of MnSi, the helimagnons (in the form of the T ln T contribution
mentioned at the end of Section 4.3.2) must manifest themselves at sufficiently low temperatures, but
an estimate in Reference [9] suggests that they will dominate over the unknown scattering mechanism
leading to s = 2 only for temperatures below about 30 mK. The use of transport measurements in the
ordered phase of MnSi to check this prediction would be very interesting.

Figure 5. Resistivity data (blue dots) of ZrZn2 vs. T3/2 at ambient pressure. Data (blue dots) are
taken from Figure 4 of Reference [7]. The solid red line is a fit using Equation (33) with s = 3/2,
A3/2 = 0.021 µΩcm/K3/2, and A2 = 0.0033 µΩcm/K2. The dashed green line is a pure T3/2 fit with
A3/2 = 0.027µΩcm/K3/2. The inset shows a pure T5/3 fit with A5/3 = 0.0215 µΩcm/K5/3. On the
scale of the figure, this fit is indistinguishable from the red line in the main figure.

5.4. Quenched Disorder

An important component of the discussion of systems with weak quenched disorder in
Section 4.1.2 is that the disorder suppresses the backscattering factor in the expression of the transport
relaxation rate. This is a qualitative argument, and a more detailed theoretical analysis of the disorder
dependence of the backscattering factor and the related crossover in the T-dependence of the electrical
resistivity is desirable. The same is true for the crossover from the ballistic or weak-disorder regime to
the strong-disorder regime that is characterized by diffusive electron dynamics. From an experimental
point of view, a more detailed characterization of disorder and how to quantify its presence is desirable.
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The residual resistivity may be a rather crude measure of disorder. For instance, there is experimental
evidence for inhomogeneities in pressure-tuned systems that are not necessarily reflected in transport
experiments and thus, can be present even in systems with a rather small residual resistivity [63].
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