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Abstract: An emergence of magnetic boson of instantonic nature, that provides a Cooper-‘pairing
glue’, is considered in the repulsive ‘nested’ Hubbard model of superconducting cuprates.
It is demonstrated that antiferromagnetic instantons of a spin density wave type may have negative
energy due to coupling with Cooper pair condensate. A set of Eliashberg like equations is derived
and solved self-consistently, proving the above suggestion. An instantonic propagator plays the role
of the Green function of the pairing ‘glue’ boson. Simultaneously, the instantons defy condensation
of the mean-field spin-density wave (SDW) order. We had previously demonstrated in analytical
form that periodic chain of instanton-anti-instanton pairs along the axis of Matsubara time has zero
scattering cross section for weakly perturbing external probes, like neutrons, etc., thus representing
a ‘hidden order’. Hence, the two competing orders, superconducting and antiferromagnetic, may
coexist (below some Tc) in the form of the superconducting order coupled to ‘hidden’ instantonic one.
This new picture is discussed in relation with the mechanism of high temperature superconductivity.

Keywords: hidden order; Cooper-pairing ‘glue’; instantons; Eliashberg equations; high-temperature
superconductivity

1. Introduction

We present here an idea of instanton-mediated superconductivity using a ‘minimal’ model
Hamiltoninan of electronic system with spin-fermion coupling [1,2] to a bosonic mode on a
square lattice with antiferromagnetic (AF) wave vector ~Q near the ‘nested’ Fermi-surface points in
momentum space. It proves to be that this simple model incorporates intrinsic creation of instantons
and provides a unified explanation of an emergence of a ‘hidden order’ state followed by a transition
to superconductivity. To explain a matter of principle we consider here just a model of fermions on a
square lattice linearly coupled to a spin subsystem with dominating AF spin fluctuations. The latter
are described by effective nonlinear Euclidean action Ss:

S =
∫ β

0
dτ

[
∑
i,σ

c+iσ(∂τ − µe)ciσ − ∑
i,j,σ

tijc+iσcjσ + ∑
i,σ,σ′

c+iσ~Si ·~σσσ′ciσ′

]
+ Ss ; (1)

Ss =
∫ β

0
dτ

[
∑

i

(
∂τ~Si

)2
+ ∑

i,j
Jij~Si · ~Sj + ∑

i
V(~Si)

]
. (2)

where~σ =
{

σx, σy, σz
}

are the Pauli matrices, and µe is the chemical potential. This model could be
considered formally as being an effective infrared-scale theory obtained by a proper renormalisation
of the Hubbard-like on-site repulsive-U Hamiltonian [3,4]. In principle, two-component spin-fermion
models could be derived from taking into account details of Cu and O orbitals in cuprates [5,6].
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Naively, one would expect the spin subsystem part Ss to consist just of the Hubbard-Stratonovich
‘spin-field’ quadratic term 3

2U ∑i(~S)2 (cast into general V(~Si) term in (2)), that together with the
spin-fermion term ∑i,σ,σ′ c

+
iσ
~Si ·~σσσ′ciσ′ , restores the familiar onsite repulsion, ∝ U ∑i ni↑ni↓, of the

Hubbard-U model after path integration over spins ~Si(τ), where niσ = c+iσciσ. But, in reality,
one has also to allow for the spin-exchange terms of the kind ∑i,j Jij~Si · ~Sj, that are generated by
inter-site fermionic (indirect) exchange, and cause spin dynamics, creating the AF spin ordering
fluctuations. The quartic and higher order in ~Si terms are cast into V(~Si) term in (2) as well,
compare [7]. To proceed, we single out the most important for the rest part of the spin-fermion
system action, that follows from the general expressions (1) and (2) and is conveniently written
in the Fourier representation, assuming summation over the momenta in 2D Brillouin zone of the
square lattice:

S̃ =
∫ β

0
dτ

[
∑
q,s

c+qs(∂τ + εq)cq,s + ∑
q,Q,s,s′

(
c+q+Q,s

~SQ(τ) ·~σss′cq,s′ + H.c.
)
+

∑
Q

(
∂τ~SQ · ∂τ~S−Q + v2

s (Q−QAF)
2|~SQ|2 + µ0|~SQ|2

)
+ λ ∑

Q,Q′
|~SQ|2 · |~SQ′ |2

]
(3)

where we have introduced the AF wave vector QAF = {π, π} expressed in the inverse units a−1 of the
square lattice, and vs is a spin-wave velocity, µ0 enters a ‘mass’ term, that defines finite correlation
length of the AF fluctuations, λ characterises coupling between the different spin fluctuations, and εq

is fermionic dispersion shifted by the chemical potential µe.
Leaving for the future work a solution of the 2+1D Higgs model that stems from the symmetries

of the Euclidean action in (3) [7,8], we consider here much simplified version, that nevertheless
demonstrates our major idea of the condensation of an instantonic Cooper-pairing ‘glue’.
Namely, we introduce Ising spin MQ instead of the Heisenberg spin ~SQ and, as an indulgence for the
loss of the local rotational degrees of freedom, introduce a local rotation frame with the spin polarization
axis changing direction on the scale of a ‘spin-bag’ size. The latter is of the order of the spin correlation
length ∝

√
µ0−1. Since we have introduced a local spin polarization axis in each bag e.g., aligned

along the z-axis, the scalar product of the Pauli matrices and Fourier component of the spin vector in a
particular ‘spin-bag’ could be substituted with the product of corresponding projections in the rotated
‘spin-bag’ reference frame: ~SQ ·~σ = MQ · σ, where σ = ±1/2. Simultaneously, the spin part of the
fermionic field operators should be transformed with the unitary 2× 2 matrix R̂(i, τ): ciσ → Ri,σσ′ · ciσ′

and c+iσ → c+iσ′R
†

i,σ′σ, that changes as a function of the point in the Euclidean space-time i, τ.
Then, the terms in (1), c+∂τc; c+c, generate dynamics of SU(2) guage field R̂(i, τ) and provide
corresponding extra terms in the Euclidean action (3) [7,8]. In what follows we consider approximately
complicated dynamics of the fermionic- c+, c, guage- R̂ and Higgs- ~S fields. Namely, the whole system
is divided into a conglomerate of the ‘spin-bags’, their number is of the order of N ∝ Vµ0

2 >> 1,
where V is 2D volume of the system. Each bag possesses space index i, now enumerating the ‘centers’
of the different bags inside the system. Each bag accommodates an antiferromagnetic spin-density
wave (SDW) fluctuation, polarized along the i-th bag’s (local) spin polarization axis. The amplitude
of the SDW fluctuation depends on the imaginary Matsubara time: Mi(τ), and possesses a single AF
wave-vector ~QAF. To allow for the change of the ‘spin-bag’ reference frames between the different
bags we introduce the fluctuating phases φi = Im{logMi(τ)}, that change at random as function of
the bag’s index i. Then, the Euclidean action (3) becomes:

S̃M =
∫ β

0
dτ

[
∑
q,σ

c+qσ(∂τ + εq)cq,σ + ∑
q,σ,i

(
c+q+QAF,σ Mi(τ)σcq,σ + H.c.

)]
+ SsM (4)

SsM =
∫ β

0
dτ

1
2gs f U2 ∑

i

{
(∂τ Mi)

2 + 2
µ2

0
λ

Mi
2 + Mi

4

}
. (5)
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Here space distribution of spin fluctuation projection on the ith bag’s local z-axis, possessing AF wave
vector ~QAF, is characterized by the Matsubara time dependent complex amplitude Mi(τ):

Mi(τ, r) = Mi(τ)eiQAF·r + Mi
∗(τ)e−iQAF ·r, Mi(τ) ≡ |Mi|eiφi (6)

Several remarks are in order now. Comparison of (3) and (5) with (1) shows that we have approximated
summation over SDW wave vector ~Q in the spin-fermion scattering terms with assignment of
a finite weight to a single AF wave vector ~QAF, assuming that this contribution dominates in
the integrations in the Eliashberg like equations with the spin-fermion vertices, compare [1].
Consequently, the real-space antiferromagnetic spin rigidity energy in (3), ∝ v2

s (~Q − ~QAF)
2|~S~Q|

2,

is dropped in (5), as we consider only spin fluctuations with the wave vectors ~Q ≈ ~QAF. Besides,
we have chosen a local spin polarization axis in each ‘spin-bag’, thus substituting scalar product
of Fourier component of the spin vector ~SQ ·~σ and of fermion spin operator~σ with the product of
corresponding projections in the rotated reference frame of the i-th bag [7]: ~SQ ·~σ = Mi · s. Since bosonic
spin field must be τ-periodic, the amplitude in (6) obeys periodicity condition:

Mi (τ + 1/T) = Mi(τ), (7)

where T is temperature, and dependence of Mi on coordinate is due to periodic variation of the
prefactor ∼ eiQAF ·r with AF wave vector ~QAF. We have absorbed the coupling constant U in the
definition of Mi in the spin-fermion coupling (second) term in (4) . This gives then a renormalized
coupling constant: gs f → gs f U2. We shall consider below the case when mean-field SDW order is
missing, though 〈Mi(τ)〉 is ‘macroscopic’, i.e., proportional to the volume of a ‘spin-bag’. This means
that a SDW in each spin-bag accommodates instanton-anti-instanton pairs, e.g., considered previously
within effective 0 + 1D model [9]. Then, the following condition is obeyed:

∫ β

0
dτ〈Mi(τ)〉 = 0 (8)

Hence, we call such ‘invisible SDW’ a quantum SDW (QSDW), to emphasise the absence of the static
antiferromagnetic order.

Now we define expression for the partition function of the system. We take into account
randomness of the phases φi ascribed to the different ‘spin-bags’ by applying a ‘random phase
approximation’, i.e., by taking average over φi from 0 to 2π in the partition function:

Z = Z f ZAF

∫
Adτ0∏

i

∫
Dφi

〈〈
Tτ exp

{
−
∫ β

0
∑

q,σ,i

(
c+q+QAF ,σ(τ)Mi(τ + τ0)σcq,σ(τ) + H.c.

)}〉
AF

〉
f (9)

Here an interaction representation for the spin-fermion coupling term in Equation (4) is used [10],
and Matsubara time τ ordering procedure is applied to the products of the quantum field-operators,
as is indicated with the sign Tτ. The Hibbs averaging is indicated by the angle brackets 〈...〉,
being performed with the statistical weight provided by the noninteracting parts of the action of
the magnetic SsM subsystem, see (5), and of the fermionic subsystem, S f , that equals respectively:

S f =
∫ β

0
dτ

[
∑
q,σ

c+qσ(∂τ + εq)cqσ

]
(10)

In what follows, we shall consider instanton-populated ‘spin-bags’ for the reason explained
below. Then, an integration over τ0 in the Equation (9) arises due to presence of the zero mode
in each ‘spin-bag’, accompanying the instantonic saddle-point solution M0(τ) of the magnetic
subsystem [11]. A detailed description is given below, see Equation (20) and the text after it.
Correspondingly, A-factor signifies Jacobian used for the integration over the zero mode of the magnetic
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action SAF [11], A ∼
√

Scl
AF, where Scl

AF = SAF(M0(τ)) is the saddle point value of the instantonic
magnetic action. Integration over random phases φi reflects existing symmetry of the spin subsystem
on the scale of the ‘spin-bag’ size, as explained above. We introduce a short-hand notation for the
farther convenience:

f (τ) = ∑
q,σ

c+q+QAFσ(τ)σcqσ(τ) ; f †(τ) = ∑
q,σ

c+qσ(τ)σc(τ)q+QAFσ (11)

Now, the time ordering Tτ permits us to rewrite (9) in the form of series expansion:

Z = Z f ZAF

∫
Adτ0 ∏

j

∫
Dφj ∑

n,m

(−1)n+m

n!m!
〈〈 n

∏
i,k=1

m

∏
i′ ,k′=1

∫ β

0
dτk

∫ β

0
dτ′k′Tτ f (τk) f †(τ′k′ )

〉
f ×

Mi(τk + τ0)M∗i′ (τ
′
k′ + τ0)

〉
AF (12)

Independent averaging over the phases φj of the QSDW in the different ‘spin-bags’ gives nonzero
result under the conditions n = m and, simultaneously, couples into “Wick-like” pairwise products
the amplitudes {Mi}: Mi(τk + τ0)Mi′ (τ

′
k′ + τ0)δi,i′ , where δij is Kronecker delta. Hence, partition

function (9) reduces to:

Z = Z f ZAF

∫
Adτ0

〈〈
Tτ exp

{
−
∫ β

0

∫
0

β
dτdτ′ ∑

q,q′ ,σ,σ′ ,i
Di(τ + τ0, τ′ + τ0)σσ′c+q+QAF ,σ(τ)cq,σ(τ)×

c+q′ ,σ′ (τ
′)cq′+QAF ,σ(τ

′)
} 〉

AF

〉
f ; Di(τ + τ0, τ′ + τ0) = Tτ Mi(τ + τ0)Mi(τ

′ + τ0) (13)

where all Mi are now real. In the saddle-point approximation we substitute retarded interaction
Di(τ + τ0, τ′ + τ0) in the four-fermion interaction term in (13) by the instantonic propagator
D(τ − τ′) ∝

∫
dτ0 M0(τ + τ0)M0(τ

′ + τ0) defined below in Equation (25). Hence, we have
derived effective retarded interaction between the fermions inside a ‘spin-bag’, mediated by the
fluctuating QSDW.

Namely, we demonstrate that, under a strong enough spin-fermion coupling in the
Hamiltonian (4), a positive bare pre-factor µ2

0 in front of M2
i in (5) is renormalised and may become

negative: −µ2. An intrinsic mechanism of this sign reversal, that happens below a temperature T∗,
is a first order transition into a phase, that possesses a new saddle point of the Euclidean action
of the Fermi-system. The saddle point accommodates a complex macroscopic fluctuation, that
constitutes quantum antiferromagnetic ‘hidden’ order (QSDW) bound to a Cooper-pair condensate
inside each ‘spin-bag’. We show that as the temperature T is lowered within the temperature
interval T∗ < T < Tc, the energy of this fluctuation crosses zero and becomes negative below Tc.
This happens due to a growth of the amplitude of the antiferromagnetic QSDW, which is periodically
modulated in the imaginary Matsubara time and has zero mean.The latter property makes this QSDW a
‘hidden order’ [9]. The periodic modulation of the QSDW amplitude along the Matsubara
time axis is facilitated via sequence of (anti)instantons, an “instantonic crystal”, giving rise to
instanton-mediated Cooper-pairing ‘glue’. The strength of the ‘glue’ increases as the temperature
decreases, and the energy of the collective fluctuation passes through zero atTc. Below Tc

Cooper-pairing fluctuation turns into equilibrium superconducting condensate, and the amplitude
of the instantonic modulation of QSDW M0 saturates and remains finite in the T → 0 limit.
A clip-representation of the quint essence of this scenario is presented in Figure 1.
In the next section we remind derivation [9,12,13] of the zero mode instantonic propagator for
an ad hoc Lagrangian of the type (5), but with sign-changed coefficient µ2

0 → −µ2 < 0, (14).
The ‘hidden order’ behaviour of the QSDW characterized with this propagator is described. Next,
in Section 3 we use the instantonic propagator of Section 2 as a ‘glue boson’ in the Eliashberg
like system of equations, which is derived in the random-phase φi = Im{logMi(τ)} approximation,
and find analytic solution for the temperature Green’s functions of the Cooper-paired fermions,
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using a toy model in Equation (4), with dispersion εq possessing “nested” Fermi-surface regions.
In Section 4 a negative shift of the bare coefficient µ2

0 is calculated explicitly via a second order
variational derivative of the free energy decrease, ∆Ω, due to superconducting fluctuations:
δ2∆Ω/δM2(τ). As a result, an algebraic self-consistency equation for the coefficient −µ2 < 0 is obtained
and solved. Below a temperature T∗ this coefficient first becomes negative, which manifests transition
of the Fermi-system into a state with saddle-point fluctuation described as ‘hidden order’ inside of
each ‘spin-bag’ accommodating an antiferromagnetic QSDW coupled to superconducting condensate.
At strong enough spin-fermion coupling the T∗is greater than Tc, giving rise to a ‘strange metal’
region of the phase diagram of the Fermi-system. Namely, in the interval Tc < T < T∗, as the
temperature further decreases below T∗, the saddle-point solution splits into two. One of the two
saddle-points corresponds to µ ∝ µ0T∗/T and has free energy that decreases together with the
temperature and at Tc reaches an upper bound of the free energy of the equilibrium superconducting
state. Another saddle-point corresponds to µ ∝ µ0T/T∗ and has free energy that remains higher than
the equilibrium free energy value and, hence, remains a fluctuation down to and at Tc. Below Tc

the superconducting state coexists with ‘hidden’ QSDW order, that plays a role of ‘pairing glue’.
The relevance of the proposed instantonic mechanism of high-temperature superconductivity for
cuprates is discussed in the last Section 5.

!! !"!# !#U(!)Uo(!)!
!
$!%~&'√()!"#$%*!&!

$!%'()#%* #!&
ɺM
2
+ 2

µ
0

2

λ
M

2
+M

4 ɺM
2
− 2

µ 2

λ
M

2
+M

4

−µ 2 = µ
0

2
+

F

F

G

G

D D
+

δ 2

δM 2
(τ )
{ }

Figure 1. Instanton-mediated Cooper-pairing below T∗.

2. Instantonic Propagator: Cooper ‘Pairing Glue’ and ‘Hidden Order’

First, we remind our previous derivation [9] of the instantonic propagator, that was obtained
using imaginary time-periodic instanton-anti-instanton solution for a Lagrangian of the type used in
the Euclidean action (5), but with the negative pre-factor in front of M2-term:

L0
AF ≡

1
2gs f U2 ∑

i

{
(Ṁi)

2 + 2
µ2

0
λ

Mi
2 + Mi

4

}
→ Le f f

AF =
1

2gs f U2

{
Ṁ2 − 2

µ2

λ
M2 + M4

}
;

µ2
0 → −µ2 ; Ṁi ≡ ∂τ Mi . (14)
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Here temperature T and Matsubara time variable τ are assumed to be properly renormalized with
parameter

√
λ: τ̃ = τ

√
λ/2; β̃ =

√
λ/2β, and we’ll keep track of this in the final answers, avoiding

busy formulas in between, compare [11]. In (14) we also had dropped the spin-bag index i and
simplified notations by denoting QSDW amplitude Mi simply with M. It is straightforward to see that
saddle-point solution M0(τ) of Euclidean action S̃AF with Lagrangian (14), periodic in the imaginary
Matsubara time, obeys equation for the snoidal Jacobi elliptic function [14]. The saddle-point equation
is readily derived by equating the variational derivative of the action S̃AF to zero:

δS̃AF = δ

β∫
0

dτ
1

2gs f U2

{
Ṁ2 + (M2 − µ2

λ
)2 − µ4

λ2

}
= 0; (15)

Ṁ2 =

(
M2 − µ2

λ

)2

+ E ≡
(

M2 − ∆2
) (

M2 − k2∆2
)

, (16)

where new parameters ∆, E, and k are introduced as follows:

∆2(1 + k2) = 2
µ2

λ
; E = −∆4(1− k2)2

4
(17)

Indeed, Equation (16) has periodic solution expressed via the well known Jacobi snoidal
function [14], see Figure 2:

+!/√"

-!/√"
#ο

0 1/T

n=3

Figure 2. Schematic plot of a periodic saddle-point solution (20) with the number of
instanton-anti-instanton pairs n = 3. An arbitrary shift τ0 along the Matsubara axis is indicated
with the dashed line, its significance is discussed in the text.

M0(τ) ≡ k∆sn(∆τ; k). (18)

Here 0 ≤ k ≤ 1 is called elliptic modulus, and Matsubara time periodicity (8) of the saddle-point field
M(τ) imposes conditions:

∆ = 4K(k)nT, K(k) =
1∫

0

dx(1− x2)−1/2(1− k2x2)−1/2, (19)

where K(k) is elliptic integral of the first kind [14], and n is integer equal to the number of
instanton-anti-instanton pairs inside a single period of the Matsubara’s time 1/T, and T is the
temperature. Hence, the periodic saddle-point solution is:

M0(τ, τ0) ≡ 4kK(k)nTsn(4K(k)nT(τ + τ0), k) =

= k
µ√
λ

√
2

(1 + k2)
sn

(
µ√

(1 + k2)
(τ + τ0), k

)
. (20)

In (20) a shift τ0 along the Matsubara axis signifies existence of a zero mode excitation ∝ ∂τ M0(τ)

causing an arbitrary shift of the saddle-point solution (20) along the Matsubara time axis without
a change of the Euclidean action S̃AF(M0(τ)), [11]. In passing from the first to last equality
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in (20) we had rescaled Matsubara time: τ → τ
√

λ/2, to match notations in [11]. Simultaneously,
using the first integral of the saddle-point differential Equation (16) we express the saddle-point
action S̃AF(M0(τ)) as:

S̃0 ≡ S̃AF(M0(τ)) =

β∫
0

dτ
1

2gs f U2

{
2Ṁ0

2 − E− µ4

λ

}
= (21)

=
µ4

2gs f U2Tλ

{
8n

3(1 + k2)2K(k)

[
(1 + k2)E(k)− (1− k2)K(k)

]
− 4k2

(1 + k2)2

}
. (22)

In the limit k → 1 Jacobi function (18) acquires infinite period ∝ K(k = 1) = ∞ and turns into
hyperbolic tangent:

M0(τ; k = 1) = ± µ√
λ

tanh
(

µ√
2
(τ + τ0)

)
, (23)

while S̃0 becomes 2n-times the well known single instanton action [11], but shifted by the mean-field
action offset:

S̃0(k = 1) =
1

2gs f U2

{
2n

(
2
√

2µ3

3λ

)
− µ4

Tλ

}
(24)

The 2n factor arises due to imposed Matsubara time periodicity of the Hubbard-Stratonovich
field M(τ), see condition (8), thus leading to an instanton-anti-instanton pairs contribution,
with n being the number of such pairs on the interval [0, 1/T], the latter being the “thickness”
of the Euclidean space slab along the Matsubara time axis. It is important to mention, that
combination of conditions (17) and (19) imposes bounds on the independent change of parameters n, k,
and temperature T entering snoidal solution (20). Namely, to keep µ finite at k→ 1 one has to assume
nK(k)T ∝ µ = const < ∞. A choice, that minimises Euclidean action (24), would be to fix n = 1 and let
TK(k) < ∞, [11]. We’ll return to this later in Section 4.

2.1. Instantonic Zero-Mode Enhancement of the Spin-Wave ‘Pairing Glue’

Using instantonic saddle-point solution M0(τ) (20) we define an instantonic propagator:

D(τ1 − τ2,~r1 −~r2) = T cos(~QAF · (~r1 −~r2))
∫ β

0
M0(τ1 + τ0)M0(τ2 + τ0)dτ0 (25)

The coordinate space dependent pre-factor arises from the nesting wave-vector QAF of the QSDW (6).
According to the Hamiltonian in the action (4), this propagator describes coupling of the fermions
to the spin excitations in the saddle-point approximation for M(τ, r) → M0(τ)e±i~QAF~r, and allows
for the zero mode via averaging over τ0 along the Matsubara time interval [0, 1/T]. Since we have
absorbed the coupling constant U into definition of M in the spin-fermion interaction term in (4),
the spin-density correlator taken in the saddle-point approximation, K = 〈TτS(τ1,~r1)S(τ2,~r2)〉 is related
to the propagator D in a simple way:

K(τ1 − τ2,~r1 −~r2) =
D(τ1 − τ2,~r1 −~r2)

U2 . (26)

Now, as it was demonstrated in [9], propagator D can be calculated in explicit form from
Equations (25) and expression M0(τ) in Equation (20) using Fourier expansion for Jacobi elliptic
function sn [14]:

M0(τ) = 4πnT
∞

∑
m=0

sin(ωmτ)

sinh
(
(2m + 1)q

2

) ; (27)

ωm = 2πnT(2m + 1); q = πK(k′)/K(k); (28)
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where k′2 + k2 = 1. After substitution of expression Equation (28) into Equation (25) one finds readily:

D(τ,~r) =
∞

∑
m=0

(4πnT)2 cos(ωmτ) cos(~QAF ·~r)

2 sinh2
(
(2m + 1)q

2

)
≡ D(τ) cos(~QAF ·~r). (29)

Next, the sum in Equation (29) is expressed via the contour integral [10] :

D(τ) = (2πnT)2

8πiTn

∫
C

e−2zτ
(

1 + tanh
z

2Tn

)
sinh2(

zq
2πinT

)
dz (30)

where only the real-space Fourier component with wave-vector ~Q is kept. The integration
contour surrounds imaginary axis of z, and Matsubara time variable τ is taken inside the interval
0 < τ < 1/(2nT) being the half-period of function M(τ). Within the latter interval of Matsubara time
the integrand in (30) converges fast enough to zero, thus allowing to stretch the contour C along the
real axis, leading to equality:

D(τ) = (2πnT)22π2nT
q2

+∞

∑
s=−∞

1

1 + e−
zs
nT

[
e−

zs
nT

1 + e−
zs
nT
− 2τ

]
e−2zsτ ; zs =

2π2Tns
q

, (31)

where summation runs over all integers s. In the limit k→ 1, equivalent to q→ 0, see definition in (28),
the propagator takes especially simple form, that approaches ‘sawtooth’ curve along the Matsubara
axis, with the period 1/nT:

D(τ) = π2α2

8q2 [4nTτ (1− cth{2νnTτ})− 1 + 2(1− 2nTτ)cth{ν(1− 2nTτ)}] ; (32)

0 ≤ τ ≤ 1
2nT

; α2 ≡ (4πnT)2; ν ≡ π2

q
. (33)

In the interval 1/2nT ≤ τ ≤ 1/nT one finds D(�) using relations:

D(−τ) = D(τ); D(τ) = D
(

1
nT
− τ

)
. (34)

Finally, approximate expression for the instantonic propagator D(τ) in the k→ 1 limit takes the
form below, with relations (17) being used:

D(τ) = µ2

2λ

[1− 4nTτ]; 0 < τ < 1/(2nT);

[4nTτ − 3]; 1/(2nT) < τ < 1/(nT).
(35)

At this point it is convenient to compare the scale of the instantonic propagator found in Equations (32)
and (35), D(τ) ∝ µ2/λ, with the common spin-wave propagator, see e.g., [1]. For the latter case we use
the general recipe of [10] and find an amplitude of the harmonic oscillator in the vicinity of the local
mean-field minima of the Euclidean action (15) characterised with Lagrangian:

Lm f
AF =

1
2gs f U2

{
δ̇2 +

µ2

λ
δ2 − µ4

λ2

}
, Mm f = ±

µ√
λ

; M = Mm f + δ. (36)

From (36) it is straightforward to check that just opposite to (35):

D0(τ) = − < Tτδ(τ)δ(0) > ∝

√
λ

µ
(37)
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Comparison of (35) and (37) indicates that exchange with instantons in the semiclassical limit,
µ2/λ � 1, provides stronger ‘pairing glue’ than exchange with the spin-waves. The same is true
for the spin-waves of the bare Lagranian in (14), in that case one can use (37), but exchange µ for µ0

in the estimate.

2.2. Instantonic Propagator as ‘Hidden Order’

Before considering in the next section the role of instantonic exchange in the triggering of
superconducting transition at ‘high temperature’, we first demonstrate why instantonic SDW
(i.e., QSDW) is ‘hidden order’.

Namely, it is instructive to use (35) and calculate for a particular case of n = 1 Fourier components
of D(τ) along the Matsubara axis of bosonic frequencies ωn = 2πmT:

D(ωm) =
∫ 1/T

0
D(τ)eiωmτdτ =∝ −

∫ 1/2T

0
eiωmτ

(
τ − 1

4T

)
d τ −

−
∫ 1/T

1/2T
eiωmτ

(
3

4T
− τ

)
d τ =

2
ω2

m
(1− (−1)m) . (38)

This calculation demonstrates (proven for the general case in [9]) a unique property of the propagator D to
possess only second order poles, i.e., to have zero residues. This comes out from Equation (29), reflecting
the fact that M0(τ) in Equation (20) is Jacobi’s elliptic double periodic function in the complex plane
of τ [14]. Hence, using the general recipe [10], one finds zero cross section dσ(~q, ω) of the neutron
scattering on the instantonic QSDW (6):

dσ ∼ ImDR(~q, ω)

U2(1− exp (−ω/kBT))
≡ 0, (39)

where retarded Green function is obtained by analytic continuation of the propagator (25) from the
imaginary Matsubara’s axis to the real axis of frequencies, see [9]:

DR(ω) ∝ − (2πTn)3

q2

+∞

∑
m=−∞

1
(ω + 2zm + iδ)2 = − πTn

2sin2(ω̃T2/4)
(40)

zm = 2π2Tnm/q ; T2 = K(k′)/(K(k)nT) ; ω̃ = ω + iδ (41)

Hence, we see, indeed, that QSDW (6) has zero scattering cross section in meand field approximation,
as it should be since it does not dissipate energy already at finite temperatures. Also the energy transfer
W between the external “force” f (t) and the QSDW (6) is strictly zero:

W ≡ −i
∫ +∞

−∞

dω

2π
ωDR(ω)| f (ω)|2 ≡ 0 (42)

3. Eliashberg Equations with Instantonic Propagator as a Cooper Pairing ‘Glue’

The Eliashberg equations, with instantonic propagator D(τ) cos(~QAF ·~r) of (25) playing role
of spin excitation mode for the Cooper pairing, differ from the common ones [1,4,15] by the
self-consistency condition applied to the instantonic propagator D(τ), as is explained in detail
below and symbolically expressed in the last but one line in Figure 3. The last line in
Figure 3 contains the ‘common’ third equation for the pairing boson propagator and is written in the
brackets for comparison, see e.g., [1,4]. We derive the ‘Eliashberg equations’ using effective retarded
interaction Di(τ + τ0, τ′ + τ0) in (13) substituted by the instantonic propagator D(τ) cos(~QAF ·~r) from
Equation (25). Then, the ‘usual’ integral equations for the self-energy functions Σ1p,σ and Σ2p,σ are
obtained [15].The latter become much simplified under an assumption of the nesting with QSDW’s
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wave-vector QAF and a d-wave symmetry of the superconducting order parameter in comparison
with [15] (see Appendixes A and B for details):

Σ1p,σ(ω) = ∑
Ω

DQ(Ω)
(
−i(ω−Ω)− εp−Q − Σ∗1p−Q,σ(ω−Ω)

)
| − i(ω−Ω) + εp−Q + Σ1,p−Q,σ(ω−Ω)|2 + |Σ2p−Q,σ(ω−Ω)|2 ; (43)

Σ2p,σ(ω) = ∑
Ω

−DQ(Ω)Σ2,p−Q,σ(ω−Ω)

| − i(ω−Ω) + εp−Q + Σ1p−Q,σ(ω−Ω)|2 + |Σ2p−Q,σ(ω−Ω)|2 , (44)

where ω = πT(2m + 1) and Ω = 2πTm, m = 0,±1, ... are fermionic and bosonic frequencies,
respectively [10], and here and everywhere below we use notation Q for the AF wave vector QAF in
order to simplify notations. The d-wave symmetry of Cooper pairing in combination with ‘nesting’
conditions for the bare fermionic dispersion leads to the following relations (compare [4]):

εp−Q = −εp ≡ −ε; Σ2p−Q,σ = −Σ2p,σ; Σ1p,σ = −Σ∗1p−Q,σ ; (45)

Σ1p,σ(ω) = f (ε, ω) + is(ε, ω); f (−ε, ω) = − f (ε, ω); s(ε,−ω) = −s(ε, ω). (46)

In the k → 1 limit the saddle-point action (22) of the spin subsystem reaches the lowest value,
while the instantons acquire a hyperbolic tangent form (23). Simultaneously, the instantonic propagator
D(�) acquires the sawtooth shape (35). Under these conditions parameter q in (28) becomes small:
q→ 0, and self-energy function Σ1p,σ (46) can be found in algebraic form (see Appendixes A and B):

Σσ(ε, ω) = ε · f + iω · s; (47)

where f and s are slowly dependent on ω and ε functions.

= + +

= +
F

G

D D

DD

= +F G( )

F G

−µ 2 = µ
0

2
+

δ 2

δM 2
(τ )
{

F

F

+
G

G

}

Figure 3. The Eliashberg equations, with instantonic spin excitation propagator D(τ) of (25) displaying
Cooper pairing boson.

Bound States Along the Axis of Matsubara Time

When conditions (47) hold, the second Eliashberg Equation (44) for superconducting self-energy
Σ2(ε, ω) is transformed into the Schrödinger’s equation on the Matsubara time axis of coordinates,
with instantonic propagator D(τ) playing a role of periodic ‘potential’. For this purpose we introduce
definition of the ‘kernel’ K(τ) ≡ T ∑ω K(ω)e−iωt:

K(τ) = T ∑
ω

e−iωt

ω2(1− s)2 + ε2(1 + f )2 + |Σ2|2
=

sinh
[

g
(

1
2T − |τ|

)]
2g(1− s)2cosh

( g
2T
) ; (48)
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and:
g2 =

ε2(1 + f )2 + |Σ2|2
(1− s)2 (49)

The kernel possesses the following property:

∂2K(τ)
∂τ2 = g2K(τ)− δ(τ)

(1− s)2 , (50)

where δ(τ) is Dirac Delta function. Above we have approximated self-energy in the denominator
of the sum in (48) as ω-independent function of energy ε: Σ2(ε, ω) → Σ2(ε, 0) ≡ Σ2,
provided, that ω-dependence of the self-energy Σ2 is slow enough and it can be taken at ω ≈ 0.
Using definition (48) of the kernel K(τ) we introduce new unknown function σ(ε, τ) instead of Σ2,σ(ε, ω)

(the ε indices are dropped below to simplify notations):

σ(ω) ≡ K(ω)Σ2(ω), σ (τ) ≡
∫ 1/T

0
K (τ − τ‘)Σ2 (τ‘) dτ‘, (51)

σ

(
τ +

1
T

)
= −σ (τ) . (52)

The last antisymmetry condition is due to Fermi-statistics. Then, we rewrite the second Eliashberg
Equation (44) for superconducting self-energy Σ2(ε, ω) in the integral form:

σ (τ) =
∫ 1/T

0
K (τ − τ‘)D (τ‘) σ (τ‘) dτ‘. (53)

Now, using property (50) of the kernel K(τ) and differentiating Equation (53) twice over τ we obtain
the following Schrödinger like equation:

− σ‘′ (τ)− 1
(1− s)2D (τ) σ (τ) = −g2σ (τ) ; D

(
τ +

1
nT

)
= D (τ) , (54)

where, indeed, propagator D(τ) plays the role of periodic ‘Bloch potential’, while unknown function
σ(τ) plays the role of the ‘wave function’, with −g2 being an eigenvalue. In Figure 4 the instantonic
propagator (32) is plotted (blue line), thus manifesting a ‘sawtooth’ curve. According to (52) the ‘wave
function’ should posses at least one (odd number of) zero inside the interval {0, 1/T} of Matsubara
slab. Hence, we are looking for the first excited state with eigenvalue E1 = −g2

1, which is closest one to
the bottom of the ‘energy band’. The ground state wave function does not posses zeroes, according to
quantum mechanics, and is real and periodic by virtue of the Bloch’s theorem, see e.g., [14]. Examples
of a single zero and a triple zero wave functions, that were calculated numerically, are plotted in
Figure 4. Now, substituting (35) into (54) we find the following equivalent equation within a single
period 1/nT of the ‘potential’ D(τ):

− σ‘′ (τ) +
µ24nT

2λ(1− s)2 |τ|σ (τ) =

(
µ2

2λ(1− s)2 − g2
)

σ (τ) , − 1
2nT

≤ τ ≤ 1
2nT

. (55)
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(a) (b)

Figure 4. Effective ‘Bloch potential’ (blue line)D(τ)/(1− s)2 and eigen ‘wave function’ σ0(p, τ) (yellow
line) corresponding to the following set of parameters: µ2/(2λ(1− s)2) = 315.83, nT = 1, T = 1;
(a) g2

3 ≈ 0; (b) g2
1 = 305.34.

According to Figure 4b, the lowest possible eigenvalue, −g2
1, could be approximated by the minimal

value of the sawtooth potential itself, thus, leading to the following solution of the second Eliashberg
Equation (44):

ε2(1 + f )2 + |Σ2|2 = g2
1(1− s)2 ≈ µ2

2λ
. (56)

Hence, nonzero self-energy Σ2 exists in the interval of energies around the Fermi-level, {−εM, εM}:

− εM ≤ ε ≤ εM ; ε2
M ≡ {g2

1
(1− s)2

(1 + f )2 , w2}|min, (57)

where w is a width of the energy interval around the bare chemical potential, inside which the nesting
condition (45) holds. Other solutions with smaller eigenvalues −g2 do exist as well, see e.g., Figure 4a,
g2

3 = 0; Σ2 ≡ 0, but they correspond to excited states of Cooper-pairs condensate.

4. Instanton Driven ‘Strange Metal’ and Superconducting Transitions

Now we use standard procedure [10] to calculate free energy change ∆Ω per ‘spin-bag’ due to
instanton-mediated superconducting pairing (thus dropping the spin-bag index i introduced in (4)) :

∆Ωs = −T ln
Tr
{

e−
∫ β

0 Hint(τ)dτG(0)
}

Tr {G(0)} ≡ Ωs −Ω0; G(0) ≡ e−βH0 ; (58)

Hint =
(

c+q+Q,s M0(τ)scq,s + H.c.
)

(59)

where H0 is the first term in the sum in (4) respectively. We use the instantonic amplitude α defined
in (33), as a formal variable coupling strength in the spin-fermion interaction Hamiltonian Hint in (59)
and calculate the free energy derivative:

∂Ωs

∂α
= T

∫ β

0

〈
∂Hint(τ)

∂α

〉
dτ = −T

α

∫ β

0

∫ β

0

〈
〈Hint(τ)Hint(τ

′)
〉
〉τ0 dτdτ′, (60)
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where thermodynamic averaging in (60) together with an averaging over the ‘zero mode’ shift τ0 of
the instantons leads to the following relation, see Appendixes A and B:

∂Ωs

∂α
=

T2

α ∑
Ω,ω p,σ

D(Ω)

{
Σ2,p−Q,σ(ω)Σ2p,σ(ω−Ω) + Σ2,p−Q,σ(ω)Σ2p,σ(ω−Ω)

Φ(ω)Φ(ω−Ω)
+

+
2Re

[
(iω + εp − Σ1,p,σ(ω))(i(ω−Ω) + εp−Q − Σ1,p−Q,σ(ω−Ω))

]
Φ(ω)Φ(ω−Ω)

 (61)

where:
Φ(ω) = (iω− εp − Σ1,p,σ(ω))(iω + εp + Σ∗1,p,σ(ω))− Σ2p,σ(ω)Σ2p,σ(ω) (62)

Now, we take into account ‘nesting’ conditions with vector ~QAF expressed in (45) and (46), and
further use definition of ‘kernel’ K(ω) in (48) in combination with Eliashberg Equations (43) and (44).
Along this route we finally obtain, after subtraction of the ‘normal state’ free energy, ∆Ωs ≡ Ω1 −
Ω1(Σ2 = 0), the following expression:

∂∆Ωs

∂α
= −2T

α ∑
ω,p,σ

K(ω)
∣∣Σ2,p,σ(ω)

∣∣2 ≈ − tanh (g1/2T)
α(1− s)2g1

∑
p,σ

∣∣Σ2,p,σ(ω = 0)
∣∣2 , (63)

where we had inferred K(τ = 0) from (48) and approximated self-energy Σ2,p,σ(ω) with a frequency
independent function of momentum p at ω = 0. Now, we use solution (56) for the self-energy Σ2 and
pass from summation over momentum p to an integration over energy ε = ε(p), simultaneously
introducing a bare density of states ν0 in the vicinity of the Fermi-level. Then, relation (63)
further yields:

∂∆Ωs

∂α
= − 2ν0

αg1
tanh

( g1
2T

) εM∫
0

dε

[
g1

2 − ε2 (1 + f )2

(1− s)2

]
=

= − 2ν0
αg1

tanh
( g1

2T

) [
g1

2εM −
ε3

M
3

(1 + f )2

(1− s)2

]
(64)

where upper limit of integration εM is defined in (57). To proceed, one uses the following relation that
follows from Equations (17), (28) and (33):

g2
1 ≡ α2 A2 ≈ µ2

2λ(1− s)2 ; A2 =
π2

8q2(1− s)2 . (65)

Following the well known procedure of calculation of the free energy of an interacting system [10],
we substitute α→ x in (64) and integrate over x from 0 to α, thus, finding ∆Ωs:

∆Ωs =
∫ α

0

∂∆Ω
∂x

dx = −4ν0
3

∣∣∣∣ 1− s
1 + f

∣∣∣∣ A2
∫ α

0
x tanh

(
xA
2T

)
dx. (66)

Before we proceed one important observation is in order. The above integration in (66) neglects
dependence of coefficients f , s on α: see Equations (81)–(85). This leads to a simplified result for T∗

below, (86). When allowing for α dependence of f , s one finds more involved expression for T∗, (87),
that results in Figure 5. A detailed derivation will be published in the paper under preparation.
Now, neglecting mentioned above effect, we obtain a simple expression, that depending on ratio
αA/2T, has two limits:

∆Ωs = −
2ν̃0
3


α3 A3

3T
≡

(g2
1)

3/2

3T
; αA/2T � 1;

α2 A2 ≡ g2
1; αA/2T � 1.

; ν̃0 ≡ ν0

∣∣∣∣ 1− s
1 + f

∣∣∣∣ . (67)
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Now, using (67), one is in a position to find self-consistently a phase transition from the bare ‘spin-wave’
Lagrangian to an ‘instantonic’ Lagrangian, as is indicated in (14), which is induced by Cooper pairing
fluctuations. Namely, in the above derivation of (67) an instantonic pairing ‘glue’ propagator (32)
was used to evaluate the lowest energy eigenvalue −g2

1 of the ‘Schrödinger’s’ Equation (54). Hence,
using (67), we can relate a value of the free energy per ‘spin-bag’ decrease due to superconducting
fluctuations, ∆Ωs, to pairing ‘glue’ amplitude, g2

1(1− s)2 ≈ µ2/2λ, and infer from this a mechanism of
(sign) change of the pre-factor: µ2

0 → −µ2 in the Lagrangian (14). A value of parameter µ has to be
determined self-consistently, which is described in the next subsection.

g

T
*/
µ

0
, 
T
c
/µ

0

Figure 5. Analyticallyevaluated schematic plot of the instanton mediated Cooper-pairing T∗ (blue
line) and superconducting Tc (yellow line) dependences on effective instanton-fermion dimensionless
coupling strength g = (

√
ν0gs f U)/µ0.

4.1. Self-Consistency Equation for Instantonic Phase Formation

An idea of the following derivation is to cast energy decrease (67) into a form:

∆Ωs = −2c2T

β∫
0

dτ
1

2gs f U2 M2
0 (τ) , (68)

which then leads to the following expression for effective Euclidean action S̃0 of the system:

S̃0 =
∆Ωs

T
+

β∫
0

dτL0
AF =

β∫
0

dτ
1

2gs f U2

{
Ṁ2 − 2

µ2

λ
M2 + M4

}
; (69)

µ2 + µ2
0 = c2. (70)

Here (70) follows immediately from definitions (68), (69), and (14). In order to find coefficient c2

from (68), we calculate variation of the both sides of equality (68) under an infinitesimal variation of
the function M0 (τ) at a time instant τ. The variation of the left hand side of (68), ∆Ωs, can be found
using well known formula [16], that relates variation of e.g., eigenvalue −g2

1 of the Schrödinger’s
Equation (54) to an infinitesimal change of potential D (τ) at a time instant τ:

δg2
1τ =

1
(1− s)2 δD (τ) σ∗1 (τ)σ1(τ), (71)
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where σ1(τ) is eigenfunction of the Schrödinger’s Equation (54) corresponding to the eigenvalue −g2
1 ,

and variation of the potential is derived readily from (25):

δD (τ) = δM (τ) M0 (2τ) . (72)

Substituting (72) into (71) we obtain:

δg2
1τ =

1
(1− s)2 δM (τ) M0 (2τ) σ∗1 (τ)σ1(τ) (73)

Choosing a zero origin of the Matsubara time interval {0, 1/T} at M0 (τ = 0) = 0 and taking into
account strong localisation of the eigenfunction σ1(τ) in the vicinities of the minima of potential D (τ),
see Figure 4b, we rewrite (73):

δg2
1τ =

2
(1− s)2n

δM (τ) M0 (τ) , (74)

where factor 1/n arises due to normalisation of the eigenfunction σ1(τ) in the n minima of potential
D (τ) possessing period 1/nT. Using (74), it is straightforward to find variation of ∆Ωs:

δ {∆Ωs}τ = −2ν̃0
3

δM (τ) M0 (τ)


g1

T(1− s)2n
; g1/2T � 1;

2
(1− s)2n

; g1/2T � 1.
. (75)

Simultaneously, variation of the right hand side of (68) is found trivially:

δ

−2c2T

β∫
0

dτ
1

2gs f U2 M2
0 (τ)


τ

= − 2c2

gs f U2 δM (τ) M0 (τ) . (76)

Now, equating results in (75) and (76) and using Equation (80) and known value of g1 from (56) one
finds self-consistency equation for the pre-factor µ2 of the effective instantonic action (69):

c2 ≡ µ2 + µ2
0 =

ν̃0gs f U2

3


µ

T
√

2λ|1− s|3n
;

µ

2T
√

2λ|1− s|
� 1;

2
(1− s)2n

;
µ

2T
√

2λ|1− s|
� 1.

(77)

Hence, we found that positive bare coefficient µ2
0 in the Lagrangian may turn into a negative coefficient

−µ2 in the effective Lagrangian (14) due to Cooper pair condensate formation, thus manifesting
formation of an ‘instantonic phase’. The latter would be manifested by a nonzero constant g2

1, see (56)
and Figure 4.

4.2. ‘Strange Metal’ Phase Below Transition Temperature T∗

Our strategy is to investigate evolution with temperature of the Euclidean action S0(T) of the
system (24), starting from origination of the instantonic phase, S0(T∗) > 0 (likely called ‘strange metal’
phase in high-Tc cuprates), until transition to superconducting phase, S0(Tc) < 0. We proceed by solving
Equations (77) simultaneously with Eliashberg equations for the constants f and s, defined in (47),
that follow from (43), see Appendixes A and B. First, consider the ‘high temperatures’ interval
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g1/2T � 1. Then, the first of the Equations (77) constitutes a quadratic equation, and together with
equations for the constants f and s read:

µ2 − 2G̃2

T
µ + µ2

0 = 0; G̃2 =
ν̃0gs f U2

6
√

2λ|1− s|3n
; ν̃0 ≡ ν0

∣∣∣∣ 1− s
1 + f

∣∣∣∣ (78)

s2 − s + G2 = 0; G2 ≡ µ2

24λn2T2 ;
( g1

2T

)2
=

µ2

8λT2(1− s)2 � 1 (79)

f + 1 =
G2

G2 − s2 . (80)

An inequality in (79) hints to smallness of G2 parameter, leading indeed, to a consistent solution:

s± =
1
2

(
1±

√
1− 4G2

)
; (81)

s− ≈ G2; f− =
s2
−

G2 − s2
−
≈ G2; (82)

ν̃0 ≡ ν0

∣∣∣∣ 1− s
1 + f

∣∣∣∣ ≈ ν0; (83)

µ± =
G̃2

T
±

√
G̃4

T2 − µ2
0; (84)

G̃2 ≈
ν0gs f U2

6
√

2λn
. (85)

The choice of “−” sign in (81) is dictated by consistency with inequality (79). Hence, from (84) one
readily finds a temperature T∗, at which transition to an instantonic phase first takes place:

T∗ =
G̃2

µ0

∣∣∣∣∣n=1 ≈
ν0gs f U2

6
√

2λµ0
(86)

In relation with remark made after Equation (66), an account of s, f dependence on α leads to a more
involved relation (derivation is pending in the paper under preparation):

T∗2 =
(ν0gs f U2)2

36(µ0
√

λ)2

[
1±

√
1−

12µ4
0

(ν0gs f U2)2

]
, (87)

where the upper sign brunch leads to result (86), while the lower sign brunch leads to a saturation of T∗

at µ0/(
√

6λ) in the large limit of dimensionless coupling constant g =
√

ν0gs f U2/µ0. The two branches
of the instantonic amplitude µ± originate at T∗ according to (84), and split in the temperatures interval
T∗ > T > Tc while starting from the common initial value µ±(T = T∗) = µ0:

µ+(T) ≈ 2
G̃2

T
; (88)

µ−(T) ≈ T
µ2

0
2G̃2 ; T∗ >> T > Tc (89)

where both expressions are given in the ‘low temperature’ limit Tc << T << T∗. In order for these
solutions to exist the following condition must hold:

G(T∗) =
µ(T∗)

2
√

6λT∗
≡

µ2
0√

3ν0gs f U2
< 1/2. (90)

Thus, temperature dependences of the Euclidean action S0(T) of the system (24) corresponding to the
two instantonic brunches µ±(T) differ. While branch µ+(T) finally leads to a condensation of Cooper
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pairs in superconducting state at Tc, the other branch µ−(T) remains a (macroscopic) fluctuation mode,
that gradually softens (S0(µ−(T)) ∝ T3) as the temperature decreases.

4.3. Superconducting Transition Inside the Instantonic Phase: Tc

Consider now an expression for the effective Euclidean action S0(T) of the system (24) with
normal metal Euclidean action being subtracted, see (69). It is obvious, that transition from instantonic
phase to superconducting thermal equilibrium state is manifested by S0(T) becoming negative.
Hence, equation that defines superconducting transition temperature Tc is just:

S̃0(Tc) =
1

2gs f U2

{
2n

(
2
√

2µ(Tc)3

3λ

)
− µ(Tc)4

Tcλ

}
= 0; n = 1. (91)

It is straightforward to infer from (91) and definition (65) that:

µ(Tc)

Tc
√

λ
= 2

(
2
√

2
3
√

λ

)
;

g1
2Tc

=
µ(Tc)

2Tc
√

2λ|1− s|
≡ 2

3
√

λ|1− s|
� 1. (92)

Hence, in the vicinity of Tc one has to use the second of Equations (77) and also equations for the
constants f and s, that are valid in the limit: g1

2Tc
� 1 (see Appendixes A and B):

µ2 + µ2
0 =

2ν̃0gs f U2

3(1− s)2 ; (93)

s2 − s− G2
1 = 0; G2

1 ≡
2µ2

λg2
1

; (94)

f =
s2

G2
1 − s2

. (95)

g2
1 =

µ2

2λ(1− s)2 . (96)

Next, one substitutes (94) into (95), and also (96) into (94), leading after a simple algebra to the
following relations:

f = −s;

s = 1;

s = 4
3 .

(97)

Then, a choice consistent with inequality (96) and finiteness of the instantonic amplitude in (93)
would be:

s = − f =
4
3

. (98)

Finally, substituting (98) into (93) one finds Tc from (92):

Tc =
3

4
√

2

(
6ν0gs f U2 − µ2

0

)1/2
. (99)

It is interesting to observe, that a necessary condition for existence of solution for Tc follows from (99):

ν0gs f U2

µ2
0

>
1
6

, (100)

and is less restrictive than condition for existence of T∗ solution in (87): ν0gs f U2/µ2
0 >

√
12.

Thus, there may exist an interval of intermediate coupling strength, 1/6 < ν0gs f U2/µ2
0 <

√
12,

in which Tc is not preceded by T∗, i.e., ‘strange metal’ phase is absent above the superconducting
dome. This feature is indeed present in the phase diagram of high-Tc cuprates in the ‘underdoped’
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regime [17–19]. Both transition temperatures are found from Eliashberg like system of equations,
but with spin wave instantonic propagator playing role of pairing boson. Figure 5 contains plots
of the analytically evaluated T∗, (86), and Tc, (99), dependences on effective instanton-fermion
dimensionless coupling strength g = (

√
ν0gs f U)/µ0, that surprisingly resemble phase diagram in

the temperature-doping coordinates, see e.g., [17–19]. To get the second part of the superconducting Tc

dome in the ‘overdoped’ region of high-Tc cuprates an assumption should be made on the dependences
on doping of e.g., bare density of ‘nested’ fermionic states ν0, (64), and related cut-off energy εM, (57).
Simultaneously, a numerical self-consistent solution of the ‘Eliashberg equations’ (43), (44), and (76) in
the whole interval of coupling g should be made. Finally, we mention that transition temperatures T∗

and Tc derived above depend on the powers of √ν0gs f U, rather than on U exp{−1/(ν0gs f )} typical for a
weak-coupling BCS theory, compare e.g., [2].

5. Conclusions

To summarise, an instantonic mechanism of high temperature superconductivity is proposed
as part of a wider picture. Namely, it is demonstrated that in principle, an instantonic quantum
nematic can emerge as a ‘hidden order’, that self-consistently provides pairing glue for Cooper pairs.
This may happen as a 1-st order phase transition, since according to Equation (84), the negative
sign coefficient −2µ0

2/λ appears discontinuously at transition temperature T∗, when it substitutes
the bare positive coefficient 2µ0

2/λ in front of the quadratic term in the effective AF spin action (5).
Since the instantonic action of a QSDW-populated ‘spin-bag’ (24), (69) remains positive in the interval
of temperatures Tc < T < T∗, the ‘spin-bags’ could be considered as fluctuations of ‘annealed’ type
with preformed Cooper pairs inside. At superconducting Tc the instantonic action of ‘spin-bag’ passes
zero and becomes negative at T < Tc according to (91). Hence, the ‘spin-bags’ condense, becoming
a ‘quenched’ quantum disorder, that is dressed with the condensate of Cooper pairs. The picture
may be different, since depending on the strength of effective spin-fermion coupling, a temperature
of nematic phase transition, T∗, either precedes superconducting transition temperature Tc, or ceases
to exist, with instantonic quantum nematic condensing together with the superconducting Cooper
pairs. Quantumness of emergent nematic state is provided by periodic in Matsubara time instantonic
modulation of the amplitude of ‘hidden’ QSDW order. A detailed calculation of the measurable
characteristics of the instanton-anti-instanton populated ‘spin-bags’ phases in 2+1D spin-fermion
system is in progress and will be presented elsewhere.
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Appendix A. Self-Energy Parts and Dyson Equations

Let G and F be normal and anomalous fermionic Green’s functions respectively, where D is
instantonic Green’s function (25), compare [9]. Then, normal and anomalous self-energy parts of the
fermionic Green’s functions, Σ1 and Σ2 respectively, take the form:

Σ1p,σ(ω) = T ∑
Ω

DQ(Ω)Gp−Q,σ(ω−Ω) (A1)

Σ2p,σ(ω) = T ∑
Ω

DQ(Ω)Fp−Q,σ(ω−Ω) (A2)

Σ1,−p,σ(−ω) = T ∑
Ω

DQ(Ω)G−p+Q,σ(−ω + Ω) (A3)

Σ2p,σ(ω) = T ∑
Ω

DQ(Ω)Fp−Q,σ(ω−Ω) (A4)

Σ1,p−Q,σ(ω) = T ∑
Ω

DQ(Ω)Gp,σ(ω−Ω) (A5)

Σ2,p−Q,σ(ω) = T ∑
Ω

DQ(Ω)Fp,σ(ω−Ω) (A6)

Σ1,−p+Q,σ(−ω) = T ∑
Ω

DQ(Ω)G−p,σ(−ω + Ω) (A7)

Σ2,p−Q,σ(ω) = T ∑
Ω

DQ(Ω)Fp,σ(ω−Ω). (A8)

Now, having the list above, one derives a closed set of the Dyson equations, that will be solved in
algebraic form with respect to the yet unknown Green functions expressed via the self-energies to be
found from the Eliashberg equations derived below.

A set of Dyson equations based on the Hamiltonian in the Euclidean action (4) is as follows
(everywhere below the AF wave vector ~QAF is indicated simply as Q in order to simplify notations):

(iω− εp)Gp,σ(ω) = 1 + Σ1p,σ(ω)Gp,σ(ω) + Σ2p,σFp,σ(ω); (A9)

(iω + εp)Fp,σ(ω) = −Σ1,−p,σ(−ω)Fp,σ(ω) + Σ2p,σGp,σ(ω); (A10)

(−iω− εp)G−p,σ(−ω) = 1 + Σ1,−p,σ(−ω)G−p,σ(−ω) + Σ2p,σFp,σ(ω); (A11)

(−iω + εp)Fp,σ(ω) = −Σ1p,σ(ω)Fp,σ(ω) + Σ2p,σG−p,σ(−ω); (A12)

(iω− εp−Q)Gp−Q,σ(ω) = 1 + Σ1,p−Q,σ(ω)Gp−Q,σ(ω) + Σ2,p−Q,σFp−Q,σ(ω); (A13)

(iω + εp−Q)Fp−Q,σ(ω) = −Σ1,−p+Q,σ(−ω)Fp−Q,σ(ω) + Σ2,p−Q,σGp−Q,σ(ω); (A14)

(−iω− εp−Q)G−p+Q,σ(−ω) = 1 + Σ1,−p+Q,σ(−ω)G−p+Q,σ(−ω)+

Σ2,p−Q,σFp−Q,σ(ω); (A15)

(−iω + εp−Q)Fp−Q,σ(ω) = −Σ1,p−Q,σ(ω)Fp−Q,σ(ω) + Σ2,p−Q,σG−p+Q,σ(−ω). (A16)

Solving the algebraic system of Equations (A9)–(A16) for G’s and F’s we find (introducing shorthand
notation: Σ1p,σ(ω) ≡ Σ1,−p,σ(−ω)):
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Gp,σ(ω) =
−iω− εp − Σ1p

(iω + εp + Σ1p)(−iω + εp + Σ1p) + Σ2pΣ2p
; (A17)

Fp,σ(ω) =
−Σ2p,σ

(iω + εp + Σ1,−p,σ(−ω))(−iω + εp + Σ1p,σ(ω)) + Σ2p,σΣ2p,σ
; (A18)

G−p,σ(−ω) =
iω− εp − Σ1p,σ(ω)

(−iω + εp + Σ1p,σ(ω))(iω + εp + Σ1,−p,σ(−ω)) + Σ2p,σΣ2p,σ
(A19)

Fp,σ(ω) =
−Σ2p,σ

(−iω + εp + Σ1p,σ(ω))(iω + εp + Σ1,−p,σ(−ω)) + Σ2p,σΣ2p,σ
; (A20)

Gp−Q,σ(ω) =
−iω− εp−Q − Σ1,−p+Q,σ(−ω)

(iω + εp−Q + Σ1,−p+Q,σ(−ω))(−iω + εp−Q + Σ1,p−Q,σ(ω)) + Σ2,p−Q,σΣ2,p−Q,σ
; (A21)

Fp−Q,σ(ω) =
−Σ2,p−Q,σ

(iω + εp−Q + Σ1,−p+Q,σ(−ω))(−iω + εp−Q + Σ1,p−Q,σ(ω)) + Σ2,p−Q,σΣ2,p−Q,σ
; (A22)

G−p+Q,σ(−ω) =
iω− εp−Q − Σ1,p−Q,σ

(−iω + εp−Q + Σ1,p−Q,σ(ω))(iω + εp−Q + Σ1,−p+Q,σ(−ω)) + Σ2,p−Q,σΣ2,p−Q,σ
; (A23)

Fp−Q,σ(ω) =
−Σ2,p−Q,σ

(−iω + εp−Q + Σ1,p−Q,σ(ω))(iω + εp−Q + Σ1,−p+Q,σ(−ω)) + Σ2,p−Q,σΣ2,p−Q,σ
. (A24)

Now, using the above expressions for the Green’s functions we provide derivation, that leads from
Equation (60) to Equation (61):

∂Ωs

∂α
= −T

α

∫ β

0

∫ β

0

〈
〈Hint(τ)Hint(τ

′)
〉
〉τ0 dτdτ′ =

T2

α ∑
Ω,ω p,σ

D(Ω)Gp,σ(ω)Gp,σ(ω−Ω); (A25)

where a product of the generalised Greeen’s functions reads:

Gp,σ(ω)Gp,σ(ω−Ω) = Gp,σ(ω)Gp−Q,σ(ω−Ω) + G−p,σ(ω−Ω)G−p+Q,σ(ω)+

Fp,σ(ω)Fp−Q,σ(ω−Ω) + Fp,σ(ω)Fp−Q,σ(ω−Ω) (A26)

Now, substituting into (A26) the above expressions for the Green’s functions (A17)–(A24) and taking
into account relations (A35) derived in Appendix B below, one obtains Equation (61) in the main text.

Appendix B. Eliashberg Equations

Now, substituting into Equations (A1)–(A8) relations (A17)–(A24), and allowing for a relation:
Σ2,p−Q,σ(ω − Ω) = Σ∗2,p−Q,σ(ω − Ω), to be checked below a posteriori, we obtain eight coupled
Eliashberg equations:

Σ1p,σ(ω) = T ∑
Ω

DQ(Ω)
(
−i(ω−Ω)− εp−Q − Σ1,−p+Q,σ(−ω + Ω)

) [
(i(ω−Ω) + εp−Q+

Σ1,−p+Q,σ(−ω + Ω))(−i(ω−Ω) + εp−Q + Σ1,p−Q,σ(ω−Ω)) + |Σ2,p−Q,σ(ω−Ω)|2
]−1

; (A27)

Σ2p,σ(ω) = −T ∑
Ω

DQ(Ω)Σ2,p−Q,σ(ω−Ω)
[
(−i(ω−Ω) + εp−Q+

Σ1,p−Q,σ(ω−Ω))(i(ω−Ω) + εp−Q + Σ1,−p+Q,σ(−ω + Ω)) + |Σ2,p−Q,σ(ω−Ω)|2
]−1

; (A28)

Σ1,−p,σ(−ω) = T ∑
Ω

DQ(Ω)
(

i(ω−Ω)− εp−Q − Σ1,p−Q,σ(ω−Ω)
) [

(−i(ω−Ω) + εp−Q+

Σ1,p−Q,σ(ω−Ω))(i(ω−Ω) + εp−Q + Σ1,−p+Q,σ(−ω + Ω)) + |Σ2,p−Q,σ(ω−Ω)|2
]−1

; (A29)
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Σ2p,σ(ω) = −T ∑
Ω

DQ(Ω)Σ2,p−Q,σ(ω−Ω)
[
(i(ω−Ω) + εp−Q+

Σ1,−p+Q,σ(−ω + Ω))(−i(ω−Ω) + εp−Q + Σ1,p−Q,σ(ω−Ω)) + |Σ2,p−Q,σ(ω−Ω)|2
]−1

; (A30)

Σ1,p−Q,σ(ω) = T ∑
Ω

DQ(Ω)
(
−i(ω−Ω)− εp − Σ1,−p,σ(−ω + Ω)

) [
(i(ω−Ω) + εp+

Σ1,−p,σ(−ω + Ω))(−i(ω−Ω) + εp + Σ1p,σ(ω−Ω)) + |Σ2p,σ(ω−Ω)|2
]−1

; (A31)

Σ2,p−Q,σ(ω) = −T ∑
Ω

DQ(Ω)Σ2p,σ(ω−Ω)
[
(−i(ω−Ω) + εp+

Σ1p,σ(ω−Ω))(i(ω−Ω) + εp + Σ1,−p,σ(−ω + Ω)) + |Σ2p,σ(ω−Ω)|2
]−1

; (A32)

Σ1,−p+Q,σ(−ω) = T ∑
Ω

DQ(Ω)
(
i(ω−Ω)− εp − Σ1p,σ(ω−Ω)

) [
(−i(ω−Ω) + εp+

Σ1p,σ(ω−Ω))(i(ω−Ω) + εp + Σ1,−p,σ(−ω + Ω)) + |Σ2p,σ(ω−Ω)|2
]−1

; (A33)

Σ2,p−Q,σ(ω) = −T ∑
Ω

DQ(Ω)Σ2p,σ(ω−Ω)
[
(i(ω−Ω) + εp+

Σ1,−p,σ(−ω + Ω))(−i(ω−Ω) + εp + Σ1p,σ(ω−Ω)) + |Σ2p,σ(ω−Ω)|2
]−1

. (A34)

It is easy to check that above equations admit the following relations:

Σ2,p,σ(ω) = Σ∗2,p,σ(ω); Σ1p,σ(ω) ≡ Σ1,−p,σ(−ω) = Σ∗1p,σ(ω); Σ1,p−Q,σ(ω) = −Σ∗1p,σ(ω). (A35)

In this case we have only four independent Eliashberg Equations (A27), (A28), (A31), and (A32),
that acquire compact form:

Σ1p,σ(ω) = T ∑
Ω

DQ(Ω)
(
−i(ω−Ω)− εp−Q − Σ∗1,p−Q,σ(ω−Ω)

)
| − i(ω−Ω) + εp−Q + Σ1,p−Q,σ(ω−Ω)|2 + |Σ2,p−Q,σ(ω−Ω)|2 ; (A36)

Σ2p,σ(ω) = T ∑
Ω

−DQ(Ω)Σ2,p−Q,σ(ω−Ω)

| − i(ω−Ω) + εp−Q + Σ1,p−Q,σ(ω−Ω)|2 + |Σ2,p−Q,σ(ω−Ω)|2 ; (A37)

Σ1,p−Q,σ(ω) = T ∑
Ω

DQ(Ω)
(
−i(ω−Ω)− εp − Σ∗1,p,σ(ω−Ω)

)
| − i(ω−Ω) + εp + Σ1p,σ(ω−Ω)|2 + |Σ2p,σ(ω−Ω)|2 ; (A38)

Σ2,p−Q,σ(ω) = T ∑
Ω

−DQ(Ω)Σ2p,σ(ω−Ω)

| − i(ω−Ω) + εp + Σ1p,σ(ω−Ω)|2 + |Σ2p,σ(ω−Ω)|2 . (A39)

Now, it is straightforward to check that combined ‘nesting’ and d-wave symmetry relations (45) reduce
four Equations (A36)–(A39) to the two equations in the main text: (43) and (44). Solutions for Σ1p,σ

and Σ2p,σ of the latter couple of equations might be sought for in the form (47) and (54) respectively.
Combining (A35) with (47) and applying these relations to Equation (A36), we find equations for the
‘constants’ f and s assumed to be slow functions (approximately independent of) ω and ε respectively:

ε f − iωs ≡ Σ∗1p,σ(ε, ω) = T ∑
Ω

DQ(Ω) (i(ω−Ω) + ε + ε f − is(ω−Ω))

|i(ω−Ω) + ε + ε f − is(ω−Ω)|2 + |Σ2|2
. (A40)

Equation (A40) splits into two algebraic equations for the constants f and s, and after taking into
account expression for the instantonic propagator DQ(Ω), (29), one finds:
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f = − α2(1 + f )
8nT(1− s)2


4nTπ2

q2[(iω)2 − g2]
+

tanh
iω + g

4nT

2gsin2
[
(iω + g)q

4πnT

] − tanh
iω− g

4nT

2gsin2
[
(iω− g)q

4πnT

]+
α2

q2

∞

∑
k=1

 1

4nTcosh2 zk
4nT

[
1

(zk − iω− g)(zk − iω + g)
+

1
(zk + iω + g)(zk + iω− g)

]
−

2tanh
zk

4nT

[
zk − iω

(zk − iω− g)2(zk − iω + g)2 +
zk + iω

(zk + iω + g)2(zk + iω− g)2

]}}
; (A41)

s ·ω =
α2

16πnT(1− s)

−
2π2ω4πnT
q2(ω2 + g2)

+ πi

 tanh
iω + g

4nT

sin2
[
(iω + g)q

4πnT

] +
tanh

iω− g
4nT

sin2
[
(iω− g)q

4πnT

]
−

2πi
α2

q2

∞

∑
k=1

 1

4nTcosh2 zk
4nT

[
iω− zk

(zk − iω− g)(zk − iω + g)
+

iω + zk
(zk + iω + g)(zk + iω− g)

]
−

tanh
zk

4nT

[
1

(zk + iω + g)(zk + iω− g)
− 1

(zk − iω− g)(zk − iω + g)
+

2(zk + iω)2

(zk + iω + g)2(zk + iω− g)2 −
2(zk − iω)2

(zk − iω− g)2(zk − iω + g)2

]}}
. (A42)

where the following notations defined previously in Equations (28), (31) and (33), (56) are as follows:

α ≡ (4πnT); q = πK(k′)/K(k); zk =
2π2Tnk

q
; ε2(1 + f )2 + |Σ2|2 = g2(1− s)2 (A43)

where K(k) is elliptic integral of the first kind [14], and we neglected ω-dependence of Σ2, as explained
in the main text after Equation (50). Next, we consider limit k → 1, equivalent to q → 0, since it
corresponds to the least energy per instanton, as explained in the text after Equation (24). Two limits
could be treated in analytic form: i) g � nT, and g � nT. We start with the general case n ≥ 1,
but ultimately will consider n = 1, as explained after Equation (24) in the main text.

Appendix B.1. High Temperatures Limit: g� nT

Expanding hyperbolic tangents in small parameter g/nT in the numerators in (A41) and (A42)
as well as trigonometric sine functions in small parameter q in denominators, one finds the main
contributions ∝ 1/q2 (with an accuracy ∼ O(1)) to the f expression and with an accuracy ∼ O(q) to the s
expression:

f =
α2(1 + f )π2

96T2n2(1− s)2

(
1
q2 + O(1)

)
; (A44)

s ·ω =
α2

16πnT(1− s)

(
2π3ω

12nTq2 + O(q)
)

(A45)

These results were used for derivation (via straightforward algebra) of Equations (79) and (80).
Constant G defined in (79), was derived directly from expression (A45), that leads to definition for G in
expression (79) by virtue of equations that connect parameter α, (33), with parameters µ and λ via
expressions (17), (19) and (28):

G2 ≡ α2π2

96q2n2T2 =
µ2

24λn2T2 . (A46)
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Appendix B.2. Low Temperatures Limit: g� nT

In the limit g � nT we substitute hyperbolic tangents with unity in the numerators in (A41)
and (A42), while still expanding trigonometric sine functions in denominators in powers of small
parameter q. This leads with an accuracy ∼ O(T/g) to the following results:

f =
α2(1 + f )π2

2(1− s)2q2g2

(
1 + O

(
nT
g

))
; (A47)

s ·ω = − ωα2π2

2(1− s)q2g2

(
1 + O

(
nT
g

))
. (A48)

These results were used for derivation (via straightforward algebra) of Equations (94) and (95).
Constant G1 defined in (94), was derived directly from expression (A48), that leads to definition
for G1 in expression (94) by virtue of equations that connect parameter α, (33), with parameters µ and λ

via expressions (17), (19) and (28):

G2
1 ≡

α2π2

2q2g2 =
2µ2

λg2 . (A49)
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