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Abstract: We theoretically study the electric polarization in magnetic topological nodal semimetal
thin films. In magnetically doped topological insulators, topological nodal semimetal phases emerge
once the exchange coupling overcomes the band gap. Changing the magnetization direction, nodal
structure is modulated and the system becomes topological nodal point or line semimetals. We find
that nodal line semimetals are characterized by non-linear electric polarization, which is not observed
in nodal point semimetals. The non-linear response originates from the existence of the surface states.
Screening effect is self consistently included within a mean field approximation and the non-linear
electric polarization is observed even in the presence of screening effect.

Keywords: magnetic topological nodal semimetals; non-linear electric polarization; topological
response

1. Introduction

Topological semimetals are characterized by topological numbers and topological
responses [1–4]. One of the famous examples is a magnetic Weyl semimetal, which is characterized
by a Chern number defined on a closed surface enclosing a nodal point called Weyl point.
The Weyl points behave as a sink or source of Berry curvature, which leads to intrinsic anomalous Hall
effect [5]. Magnetic Weyl semimetals exhibit a semi-quantized anomalous Hall effect as a topological
response [1,6,7]. The intrinsic anomalous Hall effect in a magnetic Weyl semimetal is observed
in recent experiments [8,9]. On the other hand, nodal line semimetals are characterized by a Zak
phase [10]. The Zak phase is closely related to the electric polarization [11–13], so that we expect
non-trivial electric polarization in the nodal line semimetals [3,14]. However, the electric polarization
is well defined only in insulators and the applicability of the theory of polarization based on the Zak
phase is ambiguous in the nodal semimetals.

In this work, we theoretically study electric polarization in magnetic topological nodal semimetal
thin films. We consider magnetically doped topological insulators [15–19]. We assume ferromagnetic
ordering of magnetic moments and introduce the exchange coupling between the band electrons and
the magnetization. Once the exchange coupling overcomes the band gap, the system is brought into the
magnetic topological semimetal phases [1,20]. The topological property of the band structure depends
on the direction of the magnetization and the system becomes the nodal point and line semimetals
by changing the direction of the magnetization [2,21,22]. There are other candidate materials of the
magnetic topological semimetals [23,24], where the topology of the electronic structure depends on the
magnetic structure. We numerically calculate the band structure of the topological semimetal thin films
in the presence of the external potential. The screening effect is self-consistently included. We find that
nodal line semimetals exhibit non-linear electric polarization, which originates from the existence of
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the surface states. In the nodal point semimetals, the non-linear electric polarization is not observed.
Therefore, the nodal line semimetal phase is characterized by the non-linear electric polarization.

This work is organized as follows. In Section 2, we introduce model Hamiltonian which describes
electronic structures of topological insulators and exchange coupling between band electrons and local
magnetic moments. The screened external potential is also added. We explain the band structure
of bulk systems. In Section 3, we formulate a theoretical procedure to calculate a screened potential
and a self-consistently determined electric polarization. In Section 4, we show numerically calculated
band structures of the bulk and slab systems. We discuss the polarization of each state in the presence
of the external potential and the numerically calculated electric polarization. Conclusions are given
in Section 5.

2. Model Hamiltonian

We start with the lattice model for three-dimensional topological insulators (Bi2Se3, Bi2Te3,
and Sb2Te3) [25,26],

H0 = τxσxt sin kya− τxσyt sin kxa + τyt sin kza + mkτz, (1)

where t is a hopping parameter, a is a lattice constant, and mk is a mass term,

mk = m0 + m2 ∑
i=x,y,z

(1− cos kia). (2)

σ and τ are the Pauli matrices acting on the real spin and the pseudo-spin (orbital) degrees of freedoms.
The exchange coupling between the band electrons and the local magnetic moments is written as [27]

Hex = J0M̂ · σ + J3τz M̂ · σ, (3)

where J0, J3 are exchange coupling constants and M̂ is a unit vector representing the direction of
magnetization. In this work, M̂ is set on the x-z plane, as shown in Figure 1a. The first term is a
usual exchange coupling and the second term originates from non-equality of the exchange coupling
constants between two orbitals considered here, i.e., p-orbitals of (Bi, Sb) and (Te, Se). In magnetic
topological insulators [16,18,19], Cr atoms are substituted for Bi or Sb atoms. As a result, there is the
non-equality of exchange coupling between p-orbitals of (Bi, Sb) and (Te, Se). The total Hamiltonian is
given as

Hk = H0 + Hex + U(r), (4)

where U(r) is the screened external potential. In the following calculation, we self-consistently include
the screening effect and the detail of the numerical procedure is given in the next section.

The topological phase diagram of bulk system with no-external electric field is shown in
Figure 1b for θ = 0 and Figure 1c for θ = π/2. The system becomes topological semimetal phase when
the exchange coupling overcomes the band gap. In the present system, both topological nodal line
and point semimetal phases emerge. At θ = 0, the system becomes a nodal line semimetal in J0 < J3

and a nodal point semimetal in J0 > J3. At θ = π/2, on the other hand, the system becomes a nodal
line semimetal in J0 > J3 and a nodal point semimetal in J0 < J3. This means that the topological
property of the electronic structure can be modulated by manipulating the magnetization direction.
The topologically non-trivial band structure in nodal line semimetals is characterized by the Zak phase

θZak(ky, kz) = −i
occ.

∑
n

∫ π/a

−π/a
〈unk|

∂

∂kx
|unk〉dkx (mod 2π), (5)
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where the summation is over the occupied states and |unk〉 is an eigenstate of the bulk Hamiltonian.
In Section 4, we discuss the relation between the Zak phase and existence of surface states.

With a surface boundary for x direction as represented in Figure 1a, the wave function is
written as

ψ(r) =
1√
LyLz

eikyy+ikzzφ(x), (6)

where ψ(r) and φ(x) are four component spinors, and Ly and Lz are the system sizes along y and z
directions. The Schrödinger equation becomes

εnkφ(x) =
[
(m0 + 3m2)τz + (J0 + J3τz)M̂ · σ + U(x)

]
φ(x)

+
it
2

τxσy [φ(x + a)− φ(x− a)] + t(τxσx sin kya + τy sin kza)φ(x)

− m2

2
τz [φ(x + a) + φ(x− a)]−m2τz(cos kya + cos kza)φ(x). (7)

We numerically diagonalize the above Hamiltonian and derive the eigenstates and the energy bands.
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Figure 1. (a) Schematic picture of the slab system. M represents magnetization set on the x-z plane, and
θ is an angle between the z axis and M. We assume the open boundary condition for the x direction,
and the periodic boundary condition for the y and z directions. Topological phase diagram of bulk
system for: (b) θ = 0; and (c) θ = π/2. The topological nodal semimetal phases emerge once the
exchange coupling overcomes the band gap.

3. Electric Polarization Induced by the Screened Potential

We calculate electronic structure in the presence of the external electric field. The screening
effect is self-consistently included within a mean field approximation by simultaneously solving the
Schrödinger equation and the Poisson’s equation. Our numerical procedure is as follows. We set an
initial value for the external potential as

U0(x) = eE0

(
x− Nxa

2

)
, (8)

where Nxa is the width of the slab. We derive eigenstates in the presence of the external potential.
We consider the slab as multilayers of zero-thickness planes with charge density ρ2D(x). Using the
derived eigenstates, ρ2D(x) is calculated as

ρ2D(x) = −e ∑
n

∫
BZ

d2k
(2π)2 f (εnk)|φnk(x)|2, (9)

where f (εnk) is the Fermi distribution function. The electric field is calculated as

E(x) = E0 +
1

2κ

(
nx

∑
j=0

∆ρ2D(ja)−
Nx

∑
j=nx+1

∆ρ2D(ja)

)
, (10)
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where κ is the permitivity and nx = b x
a c. ∆ρ2D(ja) is the induced charge density,

∆ρ2D(ja) = ρ2D(ja) − ρ2D
0 (ja), where ρ2D

0 (ja) is the charge density in the absence of the external
potential. Here, we assume charge neutrality of the slab, E(x) = E0 (x < 0, Lx < x) or
∑j ∆ρ2D(ja) = 0. Integrating the above electric field, the screened potential is calculated as

U(x) = e
∫ x

0
E(x′)dx′ + U(0), (11)

where we set a boundary condition for the screened potential so that the average of the screened
potential is zero, ∑j U(ja) = 0. We perform numerical iteration so that the screened potential converges.
The strength of the screening is characterized by a dimensionless parameter α defined as

α =
e2

κta
. (12)

Using the eigenstates with the screened potential, we calculate the electric polarization of
each eigenstate,

pnk = − e
LyLz

Nx

∑
j=0
|φnk(ja)|2

(
j− Nx

2

)
. (13)

The total electric polarization from the occupied eigenstates is written as

Px = ∑
nk

f (εnk)pnk

= −e ∑
n

∫
BZ

d2k
(2π)2 f (εnk)

Nx

∑
j=0
|φnk(ja)|2

(
j− Nx

2

)
. (14)

In the following section, we numerically diagonalize Equation (7) and self-consistently determine
the electric polarization.

4. Numerical Results

As represented in Figure 1a, we consider the open boundary condition for the x direction, and
the periodic boundary condition for the y and z directions. We set the parameters as m2/t = 1,
m0/t = −0.5, J0/t = 1, and Nx = 30. First, we consider a nodal line semimetal phase, θ = π/2.
Figure 2 shows the band structure of nodal line semimetals for several parameters. At J3 = 0, there is a
nodal line on the kx = 0 plane in the bulk system. In Figure 3, we see that the Zak phase is quantized
as π when the integration path goes through the area enclosed by the nodal line. Otherwise, the Zak
phase becomes zero. In the slab system, the wave number kx is discretized and we obtain subband
structures. In Figure 2b, we show the lowest subbands. There are degenerate flat bands in the wave
numbers (ky, kz) enclosed by the nodal line where the Zak phase is quantized as π. The flat band states
are localized on the left and right surfaces. In the presence of the external potential, the degenerate flat
bands are gapped, as shown in Figure 2c. The colored bar represents the polarization of each state.
We see that the surface states localized on the left surface are occupied and on the right surface are
empty. It means that the surface states are completely polarized and the surface electric polarization
occurs. The occupied bulk states are polarized to the opposite direction so that the surface electric
polarization is screened. At finite J3, the qualitative behavior is the same as J3 = 0 but the band
structure is slightly modified. The nodal line is not bounded on ε = 0 and the surface bands are
bended. As a result, a larger external potential is required in order to achieve complete surface
polarization compared with the flat surface bands, i.e., J3 = 0.
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Figure 2. Band structure of nodal line semimetals: (a) in the bulk system; (b) in the slab system with
no E-field; and (c) in the slab system with E-field. We set the parameters as m2/t = 1, m0/t = −0.5,
J0/t = 1, Nx = 30, and α = 0.1.
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Figure 3. (a) The black closed curve represents nodal line in the Brillouin zone. Two paths C1 and C2

are depicted by red arrows and give the Zak phase π and 0, respectively. (b) The Zak phase calculated
at fixed (ky, kz). The Zak phase is quantized as π in the area enclosed by the nodal line projectoed on
ky-kz plane and it is zero in the other area.

Figure 4 shows the band structure of nodal point (Weyl) semimetal phase, θ = 2π/5.
When the magnetization has a finite component along z direction, the nodal line is gapped except
for a pair of nodal points and the system becomes nodal point (Weyl) semimetals. In the slab system,
there are chiral surface states localized on the left or right surfaces and they are seamlessly connected
to the bulk states. The velocity of the chiral surface states increases with the decrease of θ and it
becomes maximum at θ = 0. In the presence of the external potential, the left surface states are pushed
down and the right surface states are pushed up. Consequently, the surface electric polarization
occurs but it is weak compared with that in the nodal line semimetals. In the nodal line semimetals,
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we observe the surface electric polarization which is proportional to the number of surface states in
the sufficiently strong external potential. On the other hand, the required external potential to achieve
the surface electric polarization which is proportional to the number of the surface states in the nodal
point semimetals is much larger than that in the nodal line semimetals.
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Figure 4. Band structure of nodal point (Weyl) semimetals: (a) in the bulk system; (b) in the slab system
with no external potential; and (c) in the slab system with an external potential. We set the parameters
as m2/t = 1, m0/t = −0.5, J0/t = 1, Nx = 30, and α = 0.1.

Using the self-consistently derived electronic states, we calculate the electric polarization in the
slab system. Figure 5 shows the electric polarization as a function of the external electric field for
several parameters. In the nodal line semimetal (Figure 5a), we see that the system exhibits non-linear
electric polarization. In the absence of the screening effect (α = 0), the electric polarization abruptly
changes at E0 = 0. In the bulk limit, the electric polarization is induced by infinitesimal electric field
and discontinuously changes at E0 = 0. However, in our numerical calculation, the electric polarization
continuously changes at E0 = 0 because of the finite size effect. In the presence of the screening effect,
the step structure is broadened and the electric polarization vanishes at E0 = 0. However, the kink
structure of the electric polarization is preserved. Figure 5b shows the electric polarization for finite
chemical potential µ/t = 0.03. Even in the finite chemical potential, the kink structure is observed,
though the kink appears at a finite electric field. This kink structure is broadened by the screening
effect. In finite J3 term (Figure 5c), the surface bands are bended and the situation is similar to the
finite chemical potential case (Figure 5b), so that the qualitative behavior is the same. In the nodal
point semimetal (Figure 5d), the electric polarization is proportional to the external electric field and
there is no kink structure. Therefore, the kink structure is characteristic to the nodal line semimetals
and is closely related to the topological property of the system.
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Figure 5. Polarization as a function of the external electric field for several screening strength α.
There are the kink structures only in the nodal line semimetals.

Figure 6a shows the electric polarization as a function of the angle θ. There are peak structures
of the electric polarization at θ = π/2 because the system becomes the nodal line semimetal at this
angle and exhibits large electric polarization originating from the surface states. With the increase of J3,
the peak value becomes smaller. This is because the surface bands are bended and the kink structure is
broadened. Figure 6b shows variation of the total energy defined as

∆E(θ) =
1

Nx

∫
BZ

d2k
(2π)2 ∑

n
[εnk(θ) f (εnk(θ))− εnk(θ = 0) f (εnk(θ = 0))] , (15)

where εnk(θ) is an eigenenergy of the slab system with the magnetization angle θ. The variation of the
total energy also becomes maximum at θ = π/2 and decreases away from θ = π/2. Unlike the electric
polarization, ∆ε(θ) weakly depends on J3 and varies slowly compared with the electric polarization.
This is because the electric polarization is almost determined by the property of the surface states but
the variation of the total energy is almost determined by the bulk band structure. Figure 6b means that
the magnetization easy axis is parallel to the surface.
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Figure 6. (a) The total polarization; and (b) the total energy as a function of the angle θ. We set
E0 = 0.01t/(ea), α = 0.1, and µ = 0.

5. Conclusions

We investigated the electronic structure in the magnetically doped topological insulator thin films.
We found that the system becomes topological nodal semimetal phases when the exchange coupling
exceeds the band gap and the topological property of the band structure is modulated by changing the
magnetization direction. We calculated the electric polarization in the topological nodal semimetal
thin films. We self-consistently included the screening effect and found that the nodal line semimetals
exhibit non-linear electric polarization even in a finite chemical potential. This is a topological response
and the nodal line semimetals are characterized by the non-linear electric polarization, which is not
observed in the nodal point (Weyl) semimetals.
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