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Abstract: In this research, we study the stability properties of chemical reactions of arbitrary orders.
In a given chemical experiment, we focus on the formation of a chemical equilibrium by optimizing
the reaction rate. Under infinitesimal simultaneous variations of the concentrations of reacting species,
the binary component equilibrium is achieved when either one of the orders or concentrations of
reactants vanishes. The chemical concentration capacities of the components are calculated to describe
the local stability of the equilibrium. The correlation between the components is obtained as the mixed
second-order derivative of the rate with respect to concentrations. The global stability analysis is
performed by introducing a symmetric matrix with its diagonal components as the chemical capacities
and off-diagonal components as the local correlation. We find that the local chemical stability requires
the orders of the reactants to be either negative or larger than unity. The corresponding global stability
requires the positivity of a cubic factor over the orders of the reactants. In short, our consideration
illustrates how a chemical reaction takes place by attaining its activation state and asymptotically
approaches the equilibrium when two components are mixed with arbitrary orders. Qualitative
discussions are provided to support our analysis towards the formation of an optimized equilibrium.
Finally, along with future directions, we discuss verification of our model towards the formation of
carbon-based reactions, formation of organic/inorganic chemical equilibria and catalytic oxidation of
CO− H2 mixtures in presence of Pt.
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1. Introduction

For several decades, the study of equilibrium in chemical reactions has provided a broad scope
for research in the field of chemical physics by exploiting the concept of collision theory [1]. From this
viewpoint of chemical kinetics, the equilibrium formation plays an important role in the occurrence of
a chemical reaction. According to the concept of collision theory, various atoms, molecules, and ions
collide with each other to create a pathway for the completion of the reaction. Thus, the temperature
and concentration of reacting species arise as the governing parameters of the corresponding chemical
rate. This follows from the notion of the collision energy and molecular structures [1,2]. It is worth
mentioning that the rate constant of the reaction varies as an exponential function of the temperature [2].
In this concern, it is well understood that an increase in the temperature increases the rate of the reaction,
therefore an enhanced formation of products.

Here, under varying concentrations and orders of reacting species, we focus on analytical solutions
of the rate equation of a given chemical reaction. Namely, our investigation allows to access the nature
of the chemical equilibrium as a function of input parameters. In the light of the collision theory, this is
realized by the existing information that a chemical reaction takes place based on a transition state
model [3]. Herewith, a product is formed via an intermediate state [4], when its corresponding energy
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crosses the barrier potential, termed as the activation energy, also see [5] for the associated quantum
mechanical effects. In the sequel, we illustrate functionalities of the chemical rate of an arbitrary single
stage reaction by considering its occurrence at a definite temperature and composition of the reaction,
viz. the concentration of constituents. Consequently, the forward and backward rates depend upon the
concentration of the reactants and that of the products, respectively. In this context [6], as a function of
the concentration of constituents, fluctuations in the chemical rate could explain the formation of an
irreversible reaction, as well.

Considering the microscopic aspects, molecular structures of various reacting species contribute
towards the happening of a chemical reaction [7,8]. Furthermore, the reaction rate varies with respect
to the frequency factor of the products, as well. Notice that the rate is directly related to the structural
complexities, viz. the collision frequency and orientation probability factor of the species [9]. Briefly,
parameters governing the rate of a chemical reaction are summarized [10] as follows. Firstly, at
a constant temperature, the rate generically decreases as a monotonic function with respect to its
duration. Secondly, at a given temperature, for an irreversible reaction, the rate largely depends on
the concentration of the participating species, see [11]. Thirdly, the rate constant depends on the
temperature as per the Arrhenius’s first law [6]. In a nutshell, at a constant temperature, the rate of an
arbitrary reaction can be factored as a weighted product of the concentrations of the species. Therefore,
for a given reversible reaction, the change of the concentration of the reactants per unit time (or that of
the product) define its rate.

To examine fundamentals concerning chemical interactions, we require an understanding of
the chemical affinity and reactivity of participating species, see [12] for experimental perspectives
concerning aqueous solution and its implications. For example, the notion of a chemical bond arises
from the concept of chemical affinity [13]. This occupies a key importance in chemistry to rationalize
the notion of the reactivity and performance of compounds, in addition to their variations of physical
states with respect to the temperature and pressure. We notice that the chemical affinity [12] can be
viewed as an electronic property, whereby dissimilar species form new chemical compounds. In this
concern, the reason follows from the physical properties of the atoms and molecules [7,8]. Specifically,
for a given set of dissimilar reactants, we can describe the tendency of atoms or compounds to form
a new state via the corresponding chemical reaction. In this scenario, it is worth stating that certain
atoms or molecules possess the ability to aggregate each other to form a definite bonding.

Mostly statistical and thermodynamic factors are used to determine characteristics of a given
chemical reaction [14,15]. Fundamentally, such notions emerge as factors affecting the rate of
the chemical reaction, see [13] for an introduction towards a universal chemical attraction and
combinations. Following the same, we can measure the chemical affinity of the reacting species
via their chemical rates [4,13]. Various aspects towards the happening of a chemical reaction are
governed via the formation of an equilibrium. As mentioned before, this concept well correlates with
the rate of a chemical reaction and its reversibility. Furthermore, Ref. [16] provides theoretical and
experimental accounts of chemical kinetics and chemical physics.

In the present study, we emphasize the chemical equilibrium formation by invoking the setup of
the fluctuation theory [17–22]. This had various applications in examining the stability properties of
condensed matter systems [17], black objects [18], equilibrium thermodynamics [19,20] and optical
systems [22]. In this concern, one of the authors [21] has demonstrated the associated geometric
perspectives of stability in the light of entropy functions. From this motivation, our primary objective
is to examine the nature of the chemical equilibrium and system stabilities when the concentrations
of one or more species are varied. Following the above viewpoints, we provide a detailed account of
fluctuation theory relations to chemical kinetics towards an optimal happening of chemical reactions.

Following the above observations, we discuss fluctuations of the rate of an arbitrary reaction to
offer guidelines towards the modeling of organic and inorganic chemical interactions [23]. Namely,
we provide the fluctuation theory analysis of the equilibrium formation under variations of the
concentrations {c1, c2} of reactants {A, B} with their partial orders {m, n}. As per the above analysis,
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for any positive concentrations c1 and c2 of the reactants A and B, we find that the stability of an
equilibrium solely depends on the partial orders m and n of the reactants. In this concern, we provide
a comparative analysis of various organic and inorganic chemical equilibrium formations with respect
to variations of the concentrations and orders of A and B.

Namely, for the zeroth-order reaction with its order m + n = 0, the stability of equilibrium
depends on the product of m and n. Similarly, for the first-order reactions, i.e., when m + n = 1, we
find that the fluctuation determinant vanishes identically. For a second- or higher-order reaction with
m + n ≥ 2, we notice that the sign of the fluctuation determinant varies as the negative of the product
of the partial orders m and n of the reactants A and B respectively. Indeed, our analysis remains valid
for fractional- and negative-order reactants and their equilibrium formation [24,25]. This is because
our analysis is valid for any real valued concentrations c1 and c2 and any real values of the partial
orders m and n of the reactants A and B forming the equilibrium. Our model is further supported
by various inorganic and organic equilibrium formations as well as a catalytic oxidation of CO− H2

mixtures in presence of Pt. This offers a clear-cut classification of the inorganic and organic chemical
equilibria, happening of an arbitrary chemical reaction and the formation of new products.

The rest of the presentation is organized as follows. In Section 2, we provide a brief account of
reaction mechanism and kinetic rate, viz. the notion of a chemical equilibrium and fluctuation theory.
In Section 3, we compute the stability quantities concerning a chemical equilibrium under fluctuations
of the reaction rate with respect to concentrations of the reactants. In Section 4, we offer qualitative
discussions of the results and their interpretations towards the formation of a chemical equilibrium.
In Section 5, we discuss verification of our model towards the formation of an inorganic or organic
equilibrium, and catalytic oxidation of CO− H2 mixtures in presence of Pt. The perspective directions
and future scope emerging from our proposition are highlighted in Section 6. In Section 7, we briefly
summarize by offering the conclusions.

2. Reaction Mechanisms and Kinetic Rates

In this section, we begin by recalling fundamentals of chemical reactions towards the formation
of a chemical equilibrium [26]. First, a chemical reaction is said to occur when the reactants change
into products. The progress of such a change is governed by the laws of chemical kinetics [2], which
deal with the changes that take place in a given reaction. Herewith, we mainly focus on the reaction
rate that depends on the concentration of reactants and products. Please note that the concentrations
taken here can be expressed either in the unit of the mass, molar or volume depending upon the state
of the reacting species.

2.1. Chemical Equilibrium

In this section, we provide a brief overview of the chemical rate to study its fluctuation theory
properties. From perspectives of a chemical equilibrium formation [26], we focus on an arbitrary
chemical reaction with a given set of reactants and products. From the viewpoints of chemical science,
the equilibrium is pictured as an extremal system at which the amount of the species involved remain
unchanged unless an external force is applied to it. For reason, a chemical equilibrium is formed at a
constant temperature, pressure, volume, and composition of the reacting species. Furthermore, it is
worth mentioning that a chemical equilibrium taking place in a closed system [27] can be represented as

Reactant ⇀↽ product, (1)

where “⇀↽" represents the chemical equilibrium among the reactants and products. In the sequel,
it follows that a chemical equilibrium can be understood based on macroscopic observations [7,8].
Normally, it is achieved when the forward and reverse reactions take place with a constant rate, where
the macroscopic amount of chemical species remains the same.
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Historically, an explanation for the conversion occurring in a given chemical reaction in an
equilibrium condition was proposed by Leopold Pfaundler von Hadermur during 1880’s. A priori,
von Hadermur hypothesized the concept of a chemical reaction based on his observations following
from the kinetic theory of gases with reference to collisions [1] between the molecules as early as 1867.
In particular, at a given temperature, he observed that the equal number of molecules were created
and dissociated in due course of their collisions. His theory also suggests that there cannot be the same
translational and internal energy for all molecules [7,8]. This is because the collisions of the selected
molecules can contribute to the formation of reaction, which solely happens by creating or dissociating
the molecules. Consequently, the concept of the chemical affinity arises via the kinetic and statistical
interactions among all possible molecules.

The concept of the chemical affinity [13] was further examined by equilibrium displacement
mechanism by Guldberg, Waage and Berthollet, which indicates that one cannot explain the formation
of an equilibrium only by the mass of the species in a given solution, see [28] for a recent account.
Thus, to achieve a chemical equilibrium, one eventually exploits the concept of the active masses of
the species, viz. their concentrations.

In general, given an arbitrary single component reaction A→ B with [A] as the concentration of
the reactant A, its rate [13] is defined as per the ratio

Rate := −∆[A]

∆t
, (2)

where ∆[A] represents the change in the concentration [A] in the time interval ∆t. Similarly, for the
product B having concentration [B], its corresponding rate [13] is defined as

Rate := +
∆[B]
∆t

(3)

It is worth mentioning that the above equilibrium is not immediately achieved. In practice,
it could be attained in a few micro to milli seconds. An optimized formation of such equilibria is
the subject matter of this research. Notice that the above rate law can be generalized to arbitrary
chemical reaction having finitely many reactants and products, as well. Namely, given the most general
chemical reaction

aA + bB + . . . ⇀↽ cC + dD + . . . (4)

taking place at a constant temperature, its corresponding rate [13] reads as per the power law

Rate = k[A]m[B]n . . . , (5)

where the constant k is termed as the rate constant of the reaction, exponents {m, n, . . .} represent
respective orders and {a, b, c, d, . . .} are the stoichiometric coefficients corresponding the constituents
{A, B, . . .}. Various chemical reactions have different rates, such as a faster reaction proceeds with a
higher rate; however, a slower reaction has a lower rate. First, it is worth emphasizing that a higher rate
is attained due to sudden decrease in the concentration of reactants, whereas a lower rate arises due to
a slow decrease of their concentrations. For a given chemical reaction, there are mainly four factors
that control its rate, viz. the (i) concentration of the reactants, (ii) their physical state, (iii) reaction
temperature and (iv) use of catalysts. As mentioned before, the number of collisions of the molecules
is directly proportional to the concentration of reactants [1,2]. In general, when more collisions of the
molecules occur, an increase in the rate of the reaction takes place. Thus, the concentration of reactants
plays an important role in happening of a chemical reaction.

Secondly, the physical state of a reaction depends on the collision frequency, which decides how
straightforwardly the reactants can combine. In a given phase of reactants, their molecules are brought
into contact by the random thermal motion whereby they get mixed to form a new state. If the phases
of reactants are different, the contact between them takes place only at the interface of the phases.
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Hence, there is a less possibility of the happening of the reaction. Quantum mechanically, it follows that
a vigorous stirring or grinding is needed for a fast happening of the reaction. In addition, the surface
area of reactants emerges as an essential quantity in determining the rate of the reaction. It is worth
mentioning that finer and smaller solid or liquid reactants—having a greater surface area—create
possible active sites for a reactant to interact with others. This leads a faster occurrence of the reaction.

Thus, the temperature plays an important role in enhancing the reaction rate, viz. it increases the
frequency of colliding molecules [1]. Namely, an increase in the frequency increases the interaction
between the participating molecules, whereby a boost takes place in the rate of the reaction. As the
kinetic energy of the molecules depended on their speed, therefore it increases as we increase the
temperature of the reaction. As a result, when larger number of molecules collide, we find an increase
in the chemical rate. Consequently, the rate of a chemical reaction is measured by changes in the
concentration of reactants or that of the products per unit time.

2.2. Fluctuation Theory

In this subsection, we focus on the behavior of the chemical rate as in Equation (5) with respect
to the concentrations {c1, c2}. To discuss the most general binary component chemical reaction, we
consider the formation of an equilibrium for the reaction as in Equation (4). As per this formulation,
given a pair of reactants {A, B} with their active concentrations {[A], [B]} and orders m and n
respectively, the forward rate rdir varies as the power law as given by Equation (5) with respect
to {[A], [B]}. Notice further that the orders {m, n} remain fixed in a given chemical experiment. With
reference to the above observation that {c1, c2} plays an important role, we investigate the formation
of an equilibrium as depicted in Equation (4).

To address the question how the reactants {A, B} form an equilibrium, we need to optimize the
corresponding rate under infinitesimal variations of {c1, c2}. Namely, at a given time t = t0, with their
respective concentrations as [A] = c1 and [B] = c2, from Equation (5), it follows [13] that we have the
following reaction rate

r(c1, c2) = kcm
1 cn

2 (6)

Depending upon the state of the reacting species, the concentrations {c1, c2}, when taken as (i) the
mass concentration, are measured in kg/m3, (ii) the molar concentration, are measured in mol/m3,
and (iii) the volume concentration, are dimensionless. Furthermore, it is worth mentioning that the
unit of the rate constant k depend upon the global order of a chosen reaction [4,13]. Namely, when the
concentrations {c1, c2} are measured in the units of mol/L, then for the above-mentioned chemical
reaction of the order (m + n), the rate constant k has units of mol1−(m+n)L(m+n)−1s−1. Thus, from
Equation (6), it follows that the rate r(c1, c2) has the unit mol/L/s.

In due course of the above reaction, when the concentration of only one of reactants varies and
that of the other is held fixed, we have the following transformations

c1 −→ c1 + δc1 with a modified rate r(c1 + δc1, c2)

c2 −→ c2 + δc2 with a modified rate r(c1, c2 + δc2) (7)

When both the concentrations {c1, c2} simultaneously change to {c1 + δc1, c2 + δc2}, the rate
r(c1, c2) as in Equation (6) changes as

r −→ r(c1 + δc1, c2 + δc2) = r′ (8)

In the limit of r ≈ r′, the chemical equilibrium is formed. That is, the equilibrium is formed at the
fixed point of the rate r(c1, c2) as in Equation (6). As per the fluctuation theory analysis [17–22], the
local nature of the chemical equilibrium depends on the sign of the chemical concentration capacities,
which are defined as the pure second derivatives of r(c1, c2) with respect to {c1, c2} respectively.
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The corresponding global nature of the equilibrium is characterized by the sign of the determinant of
fluctuation matrix of the rate r(c1, c2). Before proceeding further, let us consider a first-order reaction
with m = 1 and n = 1 as per the equilibrium

A + B ⇀↽ C + D (9)

In general, the equilibrium between the reactants A, B of their orders {m, n} and C, D of their
orders {p, q} is achieved when the rate of the forward reaction becomes same as that of the reverse
reaction. As mentioned before, up to a constant factor, the rate of the forward reaction varies as the
product of concentrations of the reactants as in Equation (5), viz. for two components {A, B} we have
the following power law

rdir = kdir[A]m[B]n, (10)

where the constant factor kdir is termed as the rate constant of the forward reaction [13]. Similarly, let
kinv be the rate constant of the backward reaction. Then, the corresponding rate modulates as per the
product of concentrations of the products {C, D} as

rinv = kinv[C]p[D]q, (11)

where [C] and [D] are their respective concentrations. Thus, it is understood that the law of mass
action arises as per the equality rdir = rinv. From the above equations, we find the equilibrium constant
K reads as the ratio of the rate constants of the forward reaction rdir to that of the backward reaction
rinv. Thus, in the light of chemical affinity [12], we have the following equilibrium constant

K =
[C]p[D]q

[A]m[B]n
(12)

Having determined the fluctuation properties of the forward reaction about the equilibrium
from Equation (12), we can also estimate that of the backward reactions, as well. Namely, for a given
equilibrium constant K, our present investigation helps in understanding the nature of a chemical
equilibrium formation as fluctuations over the law of mass action. Therefore, it is worth emphasizing
that a chemical reaction never proceeds till its end, but it rather attains an equilibrium state [26], which
exclusively depends upon the available number of reactants participating in the reaction [13]. It is
important to note that a reaction in its equilibrium retains its dynamic characteristics; however, its
forward and reverse directions eventually both possesses the same rate. This gives an impression of
the termination of a chemical reaction. For example, such an equilibrium formation is supported by
the following titration

NaOH + HCl ⇀↽ NaCl + H2O (13)

In this setup, a reaction can proceed in forward or backward direction depending upon external
conditions and catalysts present in the reaction. Indeed, in the light of various physiochemical
investigations [29], an equilibrium formation happens via the donation of a proton H+, whose
concentration [H+] defines the pH values of the solution as

pH = − ln[H+] (14)

Concerning the equilibrium formation, the pH value plays an important role. Historically, the
term pH represents the potential of hydrogen which corresponds to a numerical value indicating the
acidity or the basicity of a given aqueous solution. In short, the pH value of a solution is defined as the
negative logarithm of hydrogen ions concentration [H+] as in Equation (14). It is worth mentioning that
the value of pH ranges from 0 to 14 with the classification that its values less than 7 indicating an acidic
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solution, greater than 7, as a basic solution, and equal to 7 as the neutral [13]. Indeed, for non-aqueous
solutions, the pH measurement is realized by a different scale than its aqueous counterparts as above
in Equation (14), viz. the acidity functions, see [30]. Namely, the corresponding pH of a solvent as
the hydrogen ion activity depends on the chemical potential, state and the temperature governing
the system.

Subsequently, pH value emerges as an important conception in various studies including the
chemical equilibria, acid-base pairs, titration reactions, donor-acceptor and strong base formation.
Following the same, in Section 6, we provide the below statistical fundamentals behind the reaction
mechanism and chemical equilibrium formation for various chemical reactions that pave path for
industrial developments.

3. Chemical Equilibrium Formation

In this section, we commence by describing binary component chemical reactions and their
equilibrium formation [30]. Here, by following the above-mentioned fluctuation theory perspective,
we examine equilibrium formation for binary component chemical reactions, their associated flow
components, capacities, and fluctuation quantities regarding the local and global chemical stabilities
as below.

In this work, we mainly focus on the behavior of the above rate as in Equation (6) with respect to
fluctuations of the concentrations {c1, c2}. To address the question how the reactants {A, B} form an
equilibrium, we need to determine an optimized rate r(c1, c2) under infinitesimal variations of {c1, c2}.
Before proceeding further, let us emphasize that we offer an equilibrium formation via an intrinsic
perspective of the fluctuation theory.

3.1. Flow Components

Given two reactants {A, B} with their concentrations {c1, c2}, the associated rate r(c1, c2) takes
a power law of the form as in Equation (6). In this context, the ith flow component is defined as the
first partial derivative of the chemical rate r(ci) with respect to the concentration ci. Herewith, under
fluctuations of {c1, c2}, we have the following flow components

r1 =
∂r
∂c1

= kmcm−1
1 cn

2 (15)

with respect to c1, and that of the other with respect to c2 as

r2 =
∂r
∂c2

= kncm
1 cn−1

2 (16)

Thus, it follows that an equilibrium—defined as the simultaneous roots of flows equations
r1 = 0 = r2 as in Equations (15) and (16)—is formed when either one of the orders {m, n} vanishes or
one of the concentrations {c1, c2} vanishes. More precisely, the reaction attains its steady state when
we have either (i) m = 0 and n = 0 or (ii) c1 = 0, or (iii) c2 = 0.

3.2. Concentration Capacity

As per the above fluctuation theory analysis [17–22], the chemical concentration capacity of the
components A takes the following power law form

r11 =
∂2r
∂c2

1
= km(m− 1)cm−2

1 cn
2 (17)

For all non-zero concentrations {c1, c2}, we see that r11 (representing the local stability of the
chemical system with respect to fluctuations in the concentration of the component A) vanishes
identically whenever we have either m = 0 or m = 1. Similarly, the chemical concentration capacity of
the components B simplifies as
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r22 =
∂2r
∂c2

2
= kn(n− 1)cm

1 cn−2
2 (18)

Herewith, for all non-zero concentrations {c1, c2}, r22 (representing the local stability of the chemical
system with respect to fluctuations in the concentration of the component B) vanishes whenever it is
of the zero or unit orders, viz. n = 0, 1.

3.3. Concentration Correlation

It follows that the correlation between the components A and B is given by

r12 =
∂2r

∂c1∂c2
= knmcm−1

1 cn−1
2 (19)

Please note that r12 signifying simultaneous fluctuations of the components A and B vanishes
only when either one of them is of zeroth order at non-vanishing concentrations {c1, c2}. Thus, the
corresponding rate r(c1, c2) becomes independent of either c1 or c2.

3.4. Equilibrium Stability

To study the stability of the equilibrium [17–22], let us define the fluctuation matrix as

H =

[
r11 r12

r12 r22

]
(20)

Thus, from the above evaluation of the chemical capacities {r11, r22} as in Equations (17) and (18) and
the associated correlation r12 as in Equation (19), we have the following fluctuation matrix

H = kcm−2
1 cn−2

2

[
m(m− 1)c2

2 mnc1c2

mnc1c2 n(n− 1)c2
1

]
(21)

Consequently, it is direct to see that the determinant ∆ := r11r22 − r2
12 of H simplifies as

∆ = k2mn(1−m− n)c2m−2
1 c2n−2

2 (22)

Herewith, we see that the determinant ∆ vanishes identically when one of the concentrations (c1, c2)

vanishes or one of the reactants is of the zero order or the sum of orders of the reactants is unity.
In particular, it is worth mentioning that we have ∆ = 0 along the line m + n = 1. For example, such
an equilibrium arises for the chemical reaction with an equal order of reactants {A, B} with its rate
r = k

√
c1c2. Furthermore, from Equation (22), it follows that the determinant ∆ is identically zero for

all pair of reactants {A, B} with their respective orders as {m, 1−m}.

3.4.1. Local Stability

It is interesting to note that the local chemical equilibrium stability requires a positive value of
either m(m− 1) or n(n− 1). This results into the condition that the orders m and n should either be
negative or larger than unity. In other words, the system is locally unstable for an arbitrary pair of
reactants {A, B} with their orders m, n ∈ (0, 1).

3.4.2. Global Stability

From Equation (22), we see that the global stability of the chemical equilibrium requires the
positivity of a cubic factor mn(1− m− n) under variations of {m, n}. This happens for the orders
{m, n} such that (i) 1 > m + n with m and n having the same signatures, and (ii) 1 < m + n with m
and n having the opposite signatures.
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Furthermore, concerning the chemical fluctuation invariants, another interesting quantity is
the trace tr(H) := r11 + r22 of the fluctuation matrix H. From Equation (21), the concentrations
{1/c1, 1/c2} lie on a conic section whenever the ratio of the trace tr(H) and the chemical rate r(c1, c2)

as in Equation (6) takes a constant value. In this case, it follows that {c1, c2} satisfy

m(m− 1)
c2

1
+

n(n− 1)
c2

2
= ke, (23)

where ke = tr(H)/kc−m
1 c−n

2 . In the sequel, for various values of the orders {m, n}, we offer
qualitative features of the fluctuations quantities {r, r1, r2, r11, r22, r12, ∆, tr(H)} under variations of
the concentrations {c1, c2}. Notice also that all the other fluctuation quantities vanish identically for
a zeroth-order chemical reaction, except its rate r(c1, c2). In the next section, the above fluctuations
quantities are plotted for a set of typical orders (m, n) as

C := {(−1,−1), (−1, 1/2), (−1, 2), (1/2, 1/2), (1/2, 2), (2, 2)} (24)

It is worth noticing that the set C includes all the types of possibilities concerning a stable chemical
equilibrium formation for the reactants {A, B}.

4. Discussion of the Results

Below, for the above-mentioned typical orders (m, n) as in Equation (24), we provide qualitative
discussion of the fluctuation quantities. Namely, we highlight the qualitative features of the fluctuation
theory analysis by varying the rate in the concentration plane of the reactants. As mentioned before,
the concentrations are measured in mol/L and the corresponding rate r(c1, c2) is measured in the unit
of mol/L/s. With reference to the Figures 1–6, the X-axis and Y-axis denote the concentrations c1 and
c2 respectively.

4.1. Chemical Reactions with Orders (−1,−1)

For chemical reactions with the reactants {A, B} of their respective orders as m = −1 and n = −1,
we give qualitative behavior of the rate r(c1, c2) in the Figure 1a. In this case, we see that r has four
peaks of fluctuations where the two them have a positive amplitude of the order 0.2, while the other
two have a negative amplitude of the same order. Furthermore, for given concentration of the reactants,
we observe that there are fluctuations solely along the limiting lines c2 → 0 and c1 → 0. As we
approach the origin (0, 0) in the concentration plane, the equilibrium is achieved as a long-term effect,
i.e., r takes a constant value.

From the Figure 1b, we find that the rate of change of r1(c1, c2) has a negative amplitude of the
order −0.1 for a positive value of the concentration c2 of the reactant B. However, for the other case
c2 < 0, we observe symmetrical fluctuations of the same order of the positive amplitude. Furthermore,
we notice a satellite peak for decreasing concentration c2 with an alternating spike while approaching
the concentration axis c2 = 0.

From Figure 1c, we see an analogous behavior of the rate of change of the flow component
r1(c1, c2) with a right-angle rotation of the concentration of the reactants {A, B}. Interestingly, the
amplitude of fluctuations of r1(c1, c2) remains the same and only the axes are being exchanged in the
interval of −50 < c1, c2 < 50.

With the above observations of {r1, r2}, we notice from Figure 1d that the same number of four
peaks of fluctuations in the capacity r11(c1, c2) occurs around the origin (0, 0). On the other hand,
for c1 → 0, a constant positive capacity r11 is maintained along the negative c2-axis. Furthermore,
a constant negative capacity r11 is followed along the positive c2-axis.
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Figure 1. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = −1
and n = −1 plotted in the interval −50 ≤ c1, c2 ≤ 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2),
(c) flow r2(c1, c2), (d) capacity r11(c1, c2), (e) correlation r12(c1, c2), (f) capacity r22(c1, c2), (g) trace tr(H)

and (h) determinant ∆(c1, c2). (Note: with c1, c2 measured in mol/L on X and Y axis respectively, the
other quantities on Z-axis are measured in the units as: r →mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H)→
mol−1 L s−1; ∆→mol−2 L2 s−2).

From the above Figure 1e, it is evident that the cross-correlation r12(c1, c2) of the rate of the
reaction takes a positive value for any {c1, c2} with a maximum amplitude of 0.06. For a given pair of
concentrations {c1, c2}, the cross-correlation r12 increases steeply as we approach the origin (0, 0) in
the concentration plane. Interestingly, we find that the chemical equilibrium is uniformly maintained
between A and B throughout the concentration plane, except the origin (0, 0).

Figure 1f depicts the variation of the capacity r22(c1, c2) as a function of the concentrations
−50 < c1, c2 < 50. It could be analyzed thus that there are symmetrical fluctuations in r22 taking place
around the origin (0, 0) with a reduced amplitude in comparison to the rate r as in Figure 1a. We see
a pair of pulse-like oscillations in r22 both in the positive and negative directions about the origin.
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In addition, fluctuations along the c1-axis are notably observed as c2 → 0. A uniform and constant
capacity r22 of a positive amplitude is maintained along the negative c1-axis, whereas the capacity r22

possesses a constant negative amplitude along the positive c1-axis.
The above Figure 1g represents common characteristics at the origin as mentioned in the previous

observations. Thus, we notice steady and equal oscillations in the value of the trace tr(H) of the
fluctuation matrix H of the rate of the reaction. Similarly, a constant dip in tr(H) is observed along the
c1 axis as c2 → 0. In contrast to the above, viz. as x → 0, a constant positive trace is found along c2

axis under fluctuations of {c1, c2}.
Figure 1h shows a similar behavior for the determinant ∆(c1, c2) of the fluctuation matrix of the

chemical rate to the cross-correlation r12 as depicted above in Figure 1e. It follows that ∆ and r12

both have positive amplitudes of fluctuations for any values of {c1, c2}. In contrast to the chemical
correlation r12, we find that ∆ possesses a smaller amplitude of fluctuations with its maximum value
of the order 0.01. For a given pair of concentrations {c1, c2}, it is observed that ∆ equally increases
steeply as {c1, c2} approach the origin. Concerning the quest of a global stability, it follows that
the equilibrium is uniformly maintained between the reactants {A, B} as long as the concentrations
{c1, c2} take non-zero values.

4.2. Chemical Reactions with Orders (−1, 1
2 )

We depict below the characteristics of the chemical fluctuations in Figure 2 for various chemical
concentrations {c1, c2} of the reactants A and B of their order m = −1 and n = 1/2 respectively.

For c2 > 0, there are fluctuations in the rate r(c1, c2) for m = −1 and n = 1/2 for the reactants A
and B. Namely, from Figure 2a it follows that the rate has fluctuations with the maximum amplitude of
3 when c1 approaches the origin from its small positive value. On the other hand, for c1 approaching
the origin from its small negative value, there is a dip in the rate with its maximum negative value −3.
Furthermore, the fluctuations in r(c1, c2) are asymmetric about the line c1 = 0. In contrast to the above,
the rate remains constant for c2 < 0. The same observation holds for c2 > 0 with a large positive or
negative value of c1.

From Figure 2b, along the concentration line c1 = 0, we see that the flow component r1(c1, c2) has
a valley as c2 increases from the origin, which emerges symmetrically as we approach c1 = 0 from its
corresponding small positive and negative values. The amplitude of r1 increases as we increase c2,
namely, we find that r1 has the maximum amplitude of −2.0 at c2 = 50 and it declines as c2 reaches
the origin. Furthermore, there are no fluctuations in r1 for any value of c1 with c2 < 0. Also, r1 remains
constant far away from the region c1 = 0 and c2 > 0.

From the Figure 2c, it follows that the amplitude of r2(c1, c2) decreases as either c1 or c2 increases
from the origin. There is a small positive damping uphill in r2 with an amplitude 0.15 as we approach
the concentration c2 = 0 with an increasing value of c1 > 0. Similarly, there is an uphill in r2 in the
region c1 = 0 as c2 approaches the origin from its positive values. In the region c1 < 0 and c2 > 0, we
see that there is an asymmetric peak of the negative amplitude −0.5 as we approach the regions (i)
c1 = 0 for c2 > 0 and (ii) c2 = 0 for c1 < 0. Furthermore, for all value of c1, we notice that r2 remains
constant for c2 < 0.

From the Figure 2d, it is observed that the capacity r11(c1, c2) has fluctuations for c2 > 0, for
species of A and B of the orders m = −1 and n = 1/2 respectively. In contrast to the rate of the reaction
r(c1, c2), the capacity has the maximum amplitude 1.5 when c1 approaches the origin from its small
positive values with c2 > 0. When c1 approaches the origin from its small negative values, we find
a crest of negative amplitude −1.5. Moreover, we see that the capacity r11 fluctuates asymmetrically
about the region c1 = 0 and c2 > 0. In this case, we find that r11 takes a small constant value for any c1

with c2 < 0. Furthermore, r11 a small constant value for c2 > 0 with a large value of |c1|.
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Figure 2. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = −1
and n = 1

2 plotted in the interval −50 ≤ c1, c2 ≤ 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2),
(c) flow r2(c1, c2), (d) capacity r11(c1, c2), (e) correlation r12(c1, c2), (f) capacity r22(c1, c2), (g) trace tr(H)

and (h) determinant ∆(c1, c2). (Note: with c1, c2 measured in mol/L on X and Y axis respectively, the
other quantities on Z-axis are measured in the units as: r →mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H)→
mol−1 L s−1; ∆→mol−2 L2 s−2).

As depicted in Figure 2e, we find that there are no fluctuations in the correlation r12(c1, c2) for any
value of c1 with c2 < 0. On the other hand, for all positive values of c2, we notice a valley in the region
c1 = 0. At the origin, it follows that r12 has a negative peak with the amplitude 0.08. Furthermore,
there are small non-vanishing fluctuations in r12 in the concentration region c2 = 0 within the limit
−20 < c1 < 20. For all other values of c1 and c2, there are no fluctuations in the cross-correlation.

The capacity r22(c1, c2) is plotted in Figure 2f for various values of the concentrations {c1, c2}
with orders m = −1 and n = 1/2 of the reactants A and B respectively. In this case, we see that there
are fluctuations of positive amplitude of the order 0.04 for small negative values of c1 with a positive
value of c2. On the other hand, for c1 > 0, we notice a downhill in r22 along the concentration axis
c2 = 0. Furthermore, in the region c1 = 0, there exists an uphill in the capacity r22 as we approach the
line c2 = 0 from a positive value. In the region c1 < 0 and c2 > 0, we observe an asymmetric peak of
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negative amplitude 0.04. In short, the capacity r22 has fluctuations in the region (i) c1 = 0 for c2 > 0
and (ii) c2 = 0 for c1 < 0. Furthermore, it remains constant for all value of c1 with concentration c2 < 0.

In the above Figure 2g, we provide qualitative behavior of the trace tr(c1, c2) of fluctuations of
the reactants {A, B} with their orders m = −1 and n = 1/2. Specifically, we find that tr(H) takes
a similar fluctuation property to that of the capacity r11 with its maximum amplitude 1.5 when the
concentration c1 approaches the origin from a positive value of c2. For c1 approaching the origin from
a negative value, the trace tr(H) shows a negative value of the amplitude 1.5. In the region c2 > 0,
we observe that tr has asymmetric fluctuations around c1 = 0. For the orders m = −1 and n = 1/2,
for various values of c1, from the Figure 2g, it follows that tr vanishes for all c2 < 0. In this case, it is
worth mentioning that tr disappears for c2 > 0 and |c1| > 20.

The Figure 2h depicts qualitative feature of the determinant ∆(c1, c2) of the fluctuation matrix
of the rate of reaction with orders m = −1 and n = 1/2. In this case, we observe that the reaction
could become unstable only along c1 = 0. In particular, for c2 > 0, we see a negative value of the
determinant ∆. In the limit of c1 → 0 with c2 > 0, we find the amplitude of −0.02 for ∆(c1, c2). For the
negative value of c2, we find a positive uphill in ∆ along the line c1 = 0 with its maximum amplitude
of 0.02 around the origin. In the remaining part of the reaction plane, viz. for large values of c1, we
notice that ∆(c1, c2) vanishes identically for all values of c2.

4.3. Chemical Reactions with Orders (−1, 2)

In Figure 3a, we give qualitative behavior of the rate r(c1, c2) for the orders m = −1 and n = 2 of
the reactants {A, B}. We see that the rate r possess an asymmetric nature about the line c1 = 0 and
has symmetric fluctuations about the concentration axis c2 = 0. Namely, for a large positive c2, the
rate r has a negative amplitude of the order 1000 when we approach the axis c1 = 0 from its small
negative values. On the other hand, for c2 > 0, we observe a positive amplitude of the order 1000 for
the rate r while approaching c1 = 0 from its positive values. Similarly, for c2 < 0, it is observed that r
takes the same negative amplitude of 1000 while one approaches c1 = 0 from its negative end. Indeed,
as we approach c1 = 0 from a negative value, the rate r receives a positive value of 1000 for c2 < 0.
Furthermore, for all other values of c2, there are no fluctuations in r for a large |c1| > 20.

For m = −1 and n = 2, the flow component r1(c1, c2) as plotted in Figure 3b shows that we
have large negative fluctuations about the concentration axis c1 = 0 for extreme positive and negative
values of c2. Namely, for c2 = ±50, the rate r1 takes a negative value of 600. Furthermore, the behavior
of r1 remains symmetric about the axes c1 = 0 and c2 = 0. Indeed, there are no fluctuations in r1 far
away from axis c1 = 0.

The variations in the flow component r2(c1, c2) with chemical concentration {c1, c2} at orders
−1 and 2 of the reactants A and B are demonstrated in Figure 3c. The graph shows that r2 gradually
increases from its minimum value of −40 to its maximum value of 40 when c2 varies from 50 to −50
while approaching c1 = 0 from its negative values. When approaching c1 = 0 from its positive values,
r2 decreases from its maximum value of 40 to its minimum −40 as c2 decreases from +50 to −50.
Consequently, we find a dual characteristic of r2 along the axis c1 = 0. Interestingly, we see that there
are no fluctuations in r2 for large absolute values of c1.

In Figure 3d, we provide the local stability properties of a chemical system for the reactant A and
B of their orders m = −1 and n = 2 respectively. In particular, we see that the capacity r11(c1, c2) is
symmetric about the axis c2 = 0. Namely, it follows that r11 takes large negative value of the order 600
as we approach c1 = 0 from its negative values. In contrast, r11 receives a large positive amplitude of
the order 600 as we approach c1 = 0 from its positive values. Thus, we see a saddle behavior in r11

along the axis c1 = 0. As in the previous cases, there are no fluctuations in r11 for |c1| > 20.
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Figure 3. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = −1
and n = 2 plotted in the interval −50 < c1, c2 < 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2),
(c) flow r2(c1, c2), (d) capacity r11(c1, c2), (e) correlation r12(c1, c2), (f) capacity r22(c1, c2) and (g) trace
tr(H). (Note: with c1, c2 measured in mol/L on X and Y axis respectively, the other quantities on
Z-axis are measured in the units as: r → mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H) → mol−1 L s−1;
∆ →mol−2 L2 s−2).

From the Figure 3e, we see that the cross-correlation r12(c1, c2) increases along the axis c1 = 0 as
the concentration c2 decreases from 50 to −50. In particular, there is a negative peak of fluctuations of
the order 20 in r12 for large positive values of c2 along the axis c1 = 0. On the other hand, we find that
r12 has a positive amplitude of the order 20 for large negative values of c2. Furthermore, we observe
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symmetric fluctuations in r12 along c1 = 0 for all values of c2. In this case, for all values of c2, the
cross-correlation r12 vanishes identically for a large |c1| > 20.

In Figure 3f, it is shown that the capacity r22(c1, c2) becomes independent of c2, and therefore
it displays a rectangular hyperbolic behavior with c1, viz. we have c1r22(c1, c2) = 2. Herewith, the
capacity r22 increases indefinitely as c1 approaches the origin from its positive values. Similarly, it
tends to a large negative value while c1 approaches the origin from its negative values. Namely, the
reaction happens only for positive value of c1, whereby its intensity decreases as c1 increases further.
Physically, we see that the chemical system is not stable in initial stages of the reaction.

From Figure 3g, we find that trace tr(c1, c2) possess a symmetric behavior about the line c2 = 0
for the orders m = −1 and n = 2 of the reactants A and B respectively. In this case, it is observed that
the trace tr has a large negative peak of the amplitude 600 as we approach the axis c1 = 0 from its
negative values. On the other hand, we observe that tr(H) takes a positive value of the order 600 while
approaching c1 = 0 from its positive values. As in the case of r11, it follows that tr(H) has a saddle
point behavior along the concentration axis c1 = 0. Furthermore, it is worth mentioning that tr(H)

differs from the capacity r11 largely in the limit of small values of c1. It is observed for m = −1 and
n = 2 that tr(H) of the fluctuation matrix H vanishes for |c1| > 20.

4.4. Chemical Reactions with Orders ( 1
2 , 1

2 )

The Figure 4 represent the fluctuation quantities as a function of the chemical concentrations
{c1, c2} for m = 1

2 and n = 1
2 of the reactants {A, B} plotted in the interval −50 < c1, c2 < 50. Namely,

from Figure 4a, we see that the rate r(c1, c2) shoots up as both the active chemical concentrations
{c1, c2} increase. On the other hand, it remains constant for both an increasing value of c1 and
decreasing c2, or vice-versa. Moreover, it follows that r falls off for decreasing values of {c1, c2}.

The flow component r1(c1, c2) as the rate of change of the r(c1, c2) with respect to c1 as shown
in Figure 4b increases in the second quadrant as c1 decrease from 50 to 0 and c2 increases from 0 to
50. The same behavior of r1 is found in the fourth quadrant when c1 increases from −50 to 0 and c2

decreases from 0 to −50. In the limit of c1 → 0, two extreme values of the amplitude 2.5 of r1 are
achieved as c2 takes it maximum and minimum values. However, in the first and third quadrants, we
notice no fluctuations in r1 under variations of {c1, c2}.

From Figure 4c, we find that the flow component r2(c1, c2) shows an inverse behavior of the
component r1(c1, c2) as depicted in Figure 4b. Specifically, it follows that r2 increases when we have
either an increasing c1 ∈ (0, 50) and decreasing c2 ∈ (0, 50), or an increasing c2 ∈ (−50, 0) and
decreasing c1 ∈ (0,−50). In this case, an extreme value of r2 = 2.5 is found for the maximum and
minimum values of c1 in the limit c2 → 0. Moreover, there are no changes in r2 whenever c1 and c2

have contrasting variations.
From the above Figure 4d, it is interesting to note that the capacity r11(c1, c2) decreases in the

first quadrant to its minimum value −0.6 as c2 approaches to the origin from its small positive values
along the axis c1 = 0. Also, r11 increases to its maximum value 0.60 in 3rd quadrant along c1 = 0 when
c2 approaches the origin from its small negative values. In the intermediate quadrants 2 and 4, we
observe that r11 remain constant with a vanishingly small negative value.

As c1 and c2 decrease in the first quadrant, from Figure 4e, we see that the cross-correlation
r12(c1, c2) increases to its maximum value of 0.1 in the absence of the reactants. Furthermore, we find
that r12 attains its minimum value of −0.1 as (c1, c2) approaches the origin from their small negative
values. It is noteworthy that the behavior of r12 in 3rd quadrant is asymmetrical in its nature to that of
the 1st quadrant. In this representation, there is no cross-correlation r12 in the 2nd and 4th quadrants,
i.e., when (c1, c2) take their values with an opposite signature.
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Figure 4. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = 1
2

and n = 1
2 plotted in the interval −50 < c1, c2 < 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2),

(c) flow r2(c1, c2), (d) capacity r11(c1, c2), (e) correlation r12(c1, c2), (f) capacity r22(c1, c2), and (g) trace
tr(H). (Note: with c1, c2 measured in mol/L on X and Y axis respectively, the other quantities on
Z-axis are measured in the units as: r → mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H) → mol−1 L s−1;
∆ →mol−2 L2 s−2).

Figure 4f provides a qualitative behavior of the capacity r22(c1, c2). Here, we find that it decreases
in the first quadrant to its minimum value of −0.6 as c1 approaches to its extreme value along the
c2 = 0. As observed in the case of the capacity r11(c1, c2), in this case we notice that r22 takes its
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maximum value 0.6 in 3rd quadrant along the axis c2 = 0 when c1 decreases from the origin to its large
negative values. In this case, we also see that r22 takes a small negative value in 2nd and 4th quadrants
of the concentration plane.

From Figure 4g, the trace tr(c1, c2) increases for decreasing value of c1 for c2 = 0 and it again
increase for decreasing values of c2 along the axis c1 = 0. Similarly, in the 3rd quadrant, along the
axis c1 = 0, it decreases for increasing values of c2. Furthermore, it decreases along the line c2 = 0 for
increasing values of c1. Interestingly, the amplitude of the maximum and minimum values of the tr
takes a constant value of 0.6. In the 2nd and 4th quadrants, there are no fluctuations in the tr for all
non-zero values of c1 and c2.

4.5. Chemical Reactions with Orders ( 1
2 , 2)

In Figure 5a, it is demonstrated that the rate r(c1, c2) varies largely for the concentration c1 > 0
away from the axis c2 = 0 for the orders m = 1

2 and n = 2 of the reactants A and B respectively.
Namely, as we move away from line c2 = 0, it shows a parabolic behavior for a large c1 with an
amplitude of the order 2000. For a small c1, the rate r also shows a semi-parabolic behavior as a
function of non-vanishing c2 about the axis c1 = 0. On the other hand, there are no real fluctuations in
r for a negative value of c1. Indeed, it follows that r has a symmetric behavior about the line c2 = 0.

In the above Figure 5b, we depict qualitative behavior of the flow component r1(c1, c2) for the
order m = 1

2 and n = 2 of the reactants {A, B}. For large positive or negative values of c2, we find that
r1 has a large amplitude of the order 800 about the axis c1 = 0. Notice further that it has a symmetrical
behavior along c2 = 0, namely, it is a parabolic function of c2 for a given value of c1. At a large absolute
value of c2, it follows that r1 attains a minimum value of 200 as c1 reaches to its extreme positive and
negative values. For all values of c2, there are no real fluctuations in r1 for c1 < 0. Furthermore, as we
augment the absolute value of the concentration c2, the intensity of r1 increases at any given c1 > 0.

From Figure 5c, we find that the flow component r2(c1, c2) decreases as c2 decreases in the interval
(−50, 50) while c1 increases in the interval (0, 50). For a large positive value of c1, the amplitude of r2

takes a maximum value of 600 at c2 = 50, while it takes a minimum value of −600 at c2 = −50. For a
large positive c2, it worth noticing that r2 displays a semi-parabolic behavior along the line c2 = 50
with a positive c1. However, for all c1 > 0, we have an oppositely vertex parabola along the line
c2 = −50. In this case, as a real valued function, r2 remains constant for all negative values of c1.

The variations of capacity r11(c1, c2) with various concentrations {c1, c2} are plotted in Figure 5d
for orders 1/2 and 2 of the reactants A and B respectively. In this case, we see that r11 has a symmetric
behavior about the line c2 = 0. For the extreme values of c2, r11 takes a large negative amplitude of the
order 200. Furthermore, it follows that r11 vanishes identically along the line c2 = 0 for any values of
c1. Moreover, for all values of c2, there are no fluctuations in r1 far away from the concentration axis
c1 = 0.

For given orders of m = 1/2 and n = 2 of the reactants A and B, the cross-correlation r12(c1, c2)

of the chemical rate r(c1, c2) is depicted in Figure 5e as a function of the concentrations c1 and c2.
Thus, for all c1, we see that r12 vanishes identically along the axis c2 = 0. For c2 < 0, we find that r12

takes negative values with its amplitude of the order 30 as c1 approaches zero from its positive values.
On the other hand, we observe a sudden fall in r12 for c1, c2 < 0. Similarly, in the region c2 > 0, we
notice a positive peak of the amplitude 30 in r12. Interestingly, we see an amplitude of the order 20
corresponding to the sub-leading fluctuations in r12(x, y). Indeed, from Figure 5e, it is evident that
there are no cross correlations far away from the axis c1 = 0.

The capacity r22(c1, c2) plotted in Figure 5f for the products A and B of their orders m = 1/2 and
n = 2. Thus, we see that r22 solely depends on c1. Here, we have a parabola with its vertex at c1 = 0.
As c1 increases, we see that r22 indefinitely increases as well. It is clear that there are no possibilities of
the occurrence of such a reaction for the concentration c1 < 0 at this order.
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Figure 5. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = 1
2 and

n = 2 plotted in the interval −50 < c1, c2 < 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2), (c) flow
r2(c1, c2), (d) capacity r11(c1, c2), (e) correlation r12(c1, c2), (f) capacity r22(c1, c2), (g) trace tr(H) and
(h) determinant ∆(c1, c2). (Note: with c1, c2 measured in mol/L on X and Y axis respectively, the other
quantities on Z-axis are measured in the units as: r → mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H) →
mol−1 L s−1; ∆→mol−2 L2 s−2).

Figure 5g provides a qualitative behavior of the trace tr(c1, c2) of the fluctuation matrix H for
orders m = 1/2 and n = 2 of the species as a function of {c1, c2}. The trace appears to possess a
similar qualitative behavior to the capacity r11. Along the axis c1 = 0, it has fluctuations of a negative
amplitude of the order 200 for large positive and negative values of c2. For the all values of c1, tr(H)

has a symmetric behavior along the line c2 = 0. There are no real fluctuations in tr(H) for c1 < 0.
For all value of c2 as c1 increases, the trace tr(H) increase from its large negative value to the order 200.
Finally, it follows that tr(H) vanishes asymptotically as c1 takes a large value.
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In Figure 5h, we depict the characteristic feature of the determinant ∆(c1, c2) of the fluctuation
matrix with the orders m = 1/2 and n = 2. As a function of the concentrations {c1, c2}, we see
that ∆ takes a large positive amplitude of the order 1500 as we approach the axis c2 = 0 from its
negative values. For c1 > 0, we observe a large negative amplitude of the order 1500 in ∆ along
c1 = 0. Furthermore, for all values of c1, we find that ∆ remains symmetric along the line c2 = 0.
Notice further that at a given value of c1 < 0, the amplitude of ∆ increases as we increase the value
of |c2|. In contrast to above, for all values of c1 > 0, it follows that ∆ decreases as we increase |c2|. In
addition, for all values of c2, the fluctuations in ∆ of a given chemical reaction remains constant for all
concentrations {c1, c2} far away from the axis c1 = 0.

4.6. Chemical Reactions with Orders (2, 2)

The rate r of the chemical reaction of reactants A and B of their orders m = 2 and n = 2 is shown
in Figure 6a over the concentrations {c1, c2} in the rang (−50, 50). In this case, we find an increasing
value of r of the order 6× 106 as c1 and c2 increase to large positive or negative values. We find that it
remains symmetric about both axes c1 = 0 and c2 = 0 with its vanishing amplitude at the point (0, 0).
For a given value of c1 or c2, the rate r emerges as parabola in either c1 or c2 respectively.

In Figure 6b, we demonstrate qualitative behavior of the flow component r1(c1, c2) as a function of
the concentrations {c1, c2} for the given chemical reaction with the reactants of the order 2. In particular,
for a given non-zero c1, we find a parabolic behavior of r1 as a function of c2. For a large c2, we observe
respective positive and negative amplitudes of fluctuations of their orders 2× 105 in r1 for large
positive and negative values of c1. For all c1 6= 0, it follows from Figure 6b that the fluctuations in r1

remain symmetric along the axis c2 = 0.
The characteristic behavior of the component r2(c1, c2) is shown in Figure 6c with respect to

{c1, c2} for the reacting species of the order 2. For all values of c2, we notice that r2 has a symmetric
behavior along the axis c1 = 0. The maximum amplitude of r2 is found to be of the order 2.55 as c1

tends to its extreme values ±50 for the value of c2 = 50. Similarly, its minimum value of the order
−2.55 is achieved at the concentration line c2 = −50. Given any value of c1, it follows that r2 has
positive valued fluctuations for c2 > 0 and negative valued fluctuations for c2 < 0.

Figure 6d represent the capacity r11(c1, c2) of the reaction with products {A, B} of their orders 2.
This condition illustrates parabolic variations as the capacity r11(c1, c2) = 2c2

2 remain symmetric about
the concentration c2 = 0.

The variation of the cross-correlation r12(c1, c2) with respect to the concentrations {c1, c2} of the
species {A, B} having orders 2 is shown in Figure 6e. In this case, we observe that r12 attained a
maximum value of the order 104 for large positive values of {c1, c2} and a minimum value of the order
−104 for a large positive c1 and negative c2, and vice-versa. Moreover, from Figure 6e, it follows that
r12 has no variations when either c1 or c2 vanishes.

The capacity r22(c1, c2) of the products of their orders 2 as a function of the concentrations {c1, c2}
is equally represented by Figure 6d. Namely, the variations in r22 are similar to the capacity r11(c1, c2)

with a replacement of c2 to c1. Thus, we find parabolic variations in the capacity r22 with respect to the
concentration c1, viz. we have a symmetric capacity r22 = 2c2

1. In this case, it follows that r22 vanishes
identically in the limit of c1 = 0.

Figure 6f represents the qualitative nature of the trace tr(c1, c2) over the concentrations c1 and c2

of species of the orders 2. Herewith, we observed that tr(c1, c2) takes a maximum positive amplitude
of the order 104 for large positive or negative values of {c1, c2}. As a matter of the fact, there are no
fluctuations in the tr(H) in the limit of either c1 = 0 or c2 = 0. Furthermore, at a fixed value of c1 or c2,
it follows that tr(H) arises as a shifted parabola in c2 or c1 respectively.

In Figure 6g, we depict the determinant ∆(c1, c2) of fluctuations in the rate of the happening of
the chemical reaction with products {A, B} of their order 2. For given values of {c1, c2}, we find that ∆
arises as an inverted image of the rate r(c1, c2) with different values of its amplitude of fluctuations.
Namely, as c1 and c2 take large positive or negative values, we notice that ∆ takes a large negative
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amplitude of the order 7× 107. Thus, there are no fluctuations in ∆ when either of the concentration c1

or c2 vanishes. Finally, from Figure 6g, it follows that ∆ remains symmetric about both the concentration
axes c1 = 0 and c2 = 0.

Figure 6. The fluctuation quantities as a function of the chemical concentrations {c1, c2} for m = 2 and
n = 2 plotted in the interval −50 < c1, c2 < 50 against (a) the rate r(c1, c2), (b) flow r1(c1, c2), (c) flow
r2(c1, c2), (d) capacity r11(c1, c2) (remains the same for the capacity r22(c1, c2) with the replacement
of c1 by c2, (e) correlation r12(c1, c2), (f) trace tr(H) and (g) determinant ∆(c1, c2). (Note: with c1, c2

measured in mol/L on X and Y axis respectively, the other quantities on Z-axis are measured in the
units as: r →mol/L/s; r1, r2 → s−1; r11, r12, r22, tr(H)→mol−1 L s−1; ∆→mol−2 L2 s−2).
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5. Verification of the Model

In this section, following the fact that the rate of a reaction offers valuable guidelines in modeling
chemical interactions [23], we provide fluctuation theory analysis of equilibrium formation under
variations of the rate and order of reactants. Namely, given an arbitrary chemical rate r, we discuss
equilibrium formation as the function of the concentrations {c1, c2} and partial orders {m, n} of the
reactants {A, B} respectively. The formation of the chemical equilibrium can be represented as

A + B ⇀↽ Products

c1 c2

m n (25)

As per the analysis as in the previous section, for any positive concentrations c1 and c2 of the
reactants A and B, we see that the stability of the equilibrium largely depends on the partial orders
m and n. Namely, we find that the determinant ∆ takes a positive value for all m and n satisfying
mn(1−m− n) > 0. Similarly, for all m and n, the capacity r11 takes a positive value wherever we have
m(m− 1) > 0. In this concern, a comparative analysis of the equilibrium with the reaction rate r with
respect to variations of the orders m and n is summarized in the Table 1.

Table 1. A comparative analysis of the stability of the equilibrium as a function of the rate r with
respect to the orders m and n of the reactants.

SN m n O = m + n ∆ r11

1 0 0 0 0 0
2 1 0 1 0 0
3 0 1 0 0 0
4 1 1 2 - -
5 1 2 3 - -
6 2 1 3 - -
7 2 2 4 - -
...

...
...

...
...

...

In Table 1, O is the overall order of the reaction. Thus, for ∆ > 0, we find that a stable equilibrium
is formed when we have either r11 or r22 is positive. The equilibrium will be unstable when the rate
reaches its maximum, i.e., we have either r11 or r22 is negative. On the other hand, we need a refined
analysis when either r11 or r22 vanishes identically. As per our analysis, a new matter will be formed
when we have ∆ < 0. In the case, when m and n are even, the factor c2m−2

1 c2n−2
2 of ∆ does not change

its sign. Therefore, when the total order m + n < 1, the reaction capacity r11 is positive if we have
either m < 0 or m > 1. However, we anticipate an improved analysis for the either of the partial orders
m, n = 0, 1 of the reactants A and B. It is worth emphasizing that the sign of ∆ depends only on the
orders of A and B. For the zeroth-order reaction, i.e., m + n = 0 the sign of ∆ varies as the product of
m and n. Further when either of the reactants A or B has order zero, it follows that the determinant ∆
vanishes identically. Similarly, for the first-order reaction i.e., when m + n = 1, we have ∆ = 0. In such
cases, we need an improved analysis. Such an investigation we leave open for a future study.

For a second- or higher-order reaction, i.e., when m + n ≥ 2, we notice that the sign of ∆ varies
as the negative of the product of the partial orders m and n of the reactants A and B. Thus, for all
m, n ≥ 0, we have a negative ∆, wherefore new products are formed. On the other hand, when either
m or n takes a negative value, we have a different result than the above, i.e., a new product is formed
when either r11 or r22 takes a negative value. In this concern, our analysis takes an account of the
fractional- and negative-order reactants and their equilibrium formation. This is because our analysis
is valid for any real valued concentrations c1 and c2 and any real values of the partial orders m and n
of the reactants A and B.
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In the sequel, we concentrate on the nitrogen-based reactants, organic reactions, and catalytic
oxidation of Co-H2 mixtures.

5.1. An Inorganic Equilibrium Formation

In this subsection, we offer an experimental prediction of our analysis for an inorganic reaction,
see [31] in the light of the reaction mechanism and chemical kinetics of inorganic reactions towards the
experimental and theoretical studies. To do so, let us consider an equilibrium between ammonium
and nitrite ions [31,32] as a nitrogen-based reaction with the reactants as A = NH+

4 and B = NO−2 ,
i.e., the reaction of ammonium and nitrite ions in water at 25 ◦C as per the equilibrium

NH+
4 + NO−2 ⇀↽ Products

c1 c2

m = 1 n = 1 (26)

Thus, the rate of the reaction is given by

r = [NH+
4 ][NO−2 ] (27)

In this case, we see that the overall order of the reaction is m + n = 2. Thus, for all c1 and c2, we have
∆ < 0, and therefore our analysis predicts formation of new products via the reaction of the reactants
NH+

4 and NO−2 .

5.2. An Organic Equilibrium Formation

To illustrate our analysis for organic reactions let us consider hydrolysis of the CH3CO2H
molecules. As per the Bronsted-Lowry theory [33,34], this reaction is mediated by the
following equilibrium:

CH3CO−2 + H3O+ ⇀↽ CH3CO2H + H2O

c1 c2

m = 1 n = 1 (28)

Thus, the rate of the above reaction is given by

r = [CH3CO−2 ][H3O+] (29)

Here, it is known [33,34] that the partial order of the reactants CH3CO−2 and H3O+ are m = 1 and
n = 1 respectively. Thus, the overall order of the reaction is m + n = 2. As in the previous case, in this
case also for all c1 and c2, we observe that the determinant ∆ takes a negative value, whereby the new
products CH3CO2H and H2O are formed. In the sequel, we discuss an oxidation of CO− H2 mixtures
in presence of Pt as the catalyst.

5.3. A Catalytic Oxidation of CO− H2 Mixtures

In the sequel, we provide verification of our results for the oxidation of CO− H2 mixtures, i.e., an
equilibrium with catalyst Pt to make the oxidation of CO− H2 mixtures [35]. Consider the general
oxidation of a mole of CO with b mole of H2 as per the equilibrium

a CO + b H2
Pt−⇀↽− c CO2 + d H2O (30)

forming c mole of CO2 and d mole of H2O. The equilibrium takes place [35] with the following
intermediate steps
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CO + ?
k1−⇀↽− CO?

O2 + ?
k2−⇀↽− O?

2

O?
2

k3−⇀↽− O? + O?

CO?
k4−⇀↽− CO2(↑) + 2 ?

H2 + 2?
k5−⇀↽− 2H?

H? + O? k6−⇀↽− OH? + ?

OH? + H? k7−⇀↽− H2O + 2?, (31)

where the ki, i = 1, 2, . . . , 7 are the respective rate constants of the above intermediate reactions. In this
case, it is found [35] that the order of the reactants, viz. CO and H2 take their respective values as
m = 1 and n = −1/2 respectively. Thus, the oxidation is described as per the equilibrium

a CO + b H2
Pt−⇀↽− c CO2 + d H2O

c1 c2

m = 1 n = −1/2 (32)

Thus, the associated rate of the above oxidation reaction reads as

r = [CO][H2]
−1/2 (33)

Therefore, the overall order of the reaction is m + n = 1/2. Herewith, we see that the determinant
∆ takes a negative value. Thus, in this case, new matters are formed, that is, a catalytic oxidation of
CO− H2 mixtures in presence of Pt results into the formation of CO2 and H2O.

6. Future Scope of the Work

In this section, we offer highlights and applications of the fluctuation theory analysis towards
reaction mechanisms, donation of a proton, titration analysis, fall of the proton, Bronsted-Lawry
equilibrium, buffer capacity, pH value and the issues of acid raining as below.

6.1. Proton Donor-Acceptor Equilibrium

An optimized formation of the proton donor-acceptor equilibrium plays an important role in
various chemical industries, see [36] for molecular interactions and electron donor-acceptor complexes
in the light of the proton affinity. Thus, we offer a general method to describe such an acid-base
equilibrium of an arbitrary acid HA with its conjugate base A−. Depending on the nature of A, the
electric charges of the reacting species is decided. However, the base A− always possesses a negative
charge comparison to the acid HA. Therefore, an acid-base system consists of at least a pair of species
governing the equilibrium of chemical reactions.

To study acid-base equilibrium in a quantitative way, there are two problems that come into
picture. Firstly, an inability of the proton to exist independent in a solution is a major issue. Chemically,
this makes an inadequate prediction of the acid or base to donate or accept a proton individually.
To overcome this situation, the acid-base system must be compared and evaluated up to an extent
at which the base and acid compete for combining with the proton. Thus, our proposed fluctuation
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theory-based optimization of the chemical rate is anticipated to precisely illustrate the formation of
an equilibrium.

The second pitfall is the dual nature of water which exists both as the acid and base, see [37] for
the corresponding vibrational spectroscopic evidence. In general, most experiments on the acid-base
chemistry involve the presence of aqueous solution. Therefore, for dealing with an acid HA in the
aqueous solution, it is necessary to consider an acid with its conjugate base to form an acid-base pair.
An optimized formation of such a pair is in the future scope of this work.

6.2. Fall of the Proton

As far as the fall of the proton is concerned, an acid is known as the proton donor with respect to
a base that can accept the proton. However, a base accepts a proton, if there exists an acid which can
donate a proton in a given aqueous solution. In general, there are energetic conditions that must be
fulfilled in order that a base accepts a proton, involves a lowering in its free energy compared to the
corresponding acid, see [38]. Thus, a given acid-base reaction takes place, if the proton released from
the acid fall to a lower free energy level. Indeed, acids act as a source of the protons, which move to a
base acting as a sink.

For the aqueous solutions, the water turns out to be the best sink for an acid, as it normally loses
protons to H2O to form H3O+ as the strongest acid [39]. This is termed as the leveling effect which
plays an important role in connection with the fall of the protons. All strong acids that are said to
be 100% dissociated in an aqueous solution, if they possess a large equilibrium constant, therefore
they are bound to endure a fall in the respective free energy. In this concern, various strong acids, e.g.,
HCl, H2SO4 and others encounter H2O solely via an existence of the H3O+, see [12] for experimental
perspectives. Energetically, this follows because there exists a definite capacity of H2O to act as a
proton sink by maintaining a non-vanishing free energy [38].

On the other hand, a weak acid, e.g., HCN does not undergo dissociation sharply without the
presence of an energy source. This happens because HCN has a positive free energy, which the proton
must attain for its dissociation. Concerning a titration with such weak acids, we know [40] that the
hydroxyl ion OH− can equally act as a proton sink. Namely, upon the addition of a strong base, e.g.,
NaOH, KOH, an acid lowers the free energy of the total configuration as the fall of its protons H+

from a relatively higher energy state into OH− of the base according to the reaction

H+ + OH− −→ H2O (34)

Therefore, a titration could be realized as the mechanism to obtain a lower free energy sink that converts
the acid by draining off the protons into their respective conjugate bases. As mentioned before, the
pH of an arbitrary solution is generally defined based on the available hydrogen ion concentration on
the logarithmic scale. Based on the above energy constraints, the pH scale specifies an accessibility
of protons in the solution, which incidentally reflects the capacity of the chosen solution to supply
more protons to a base. To illustrate our optimization analysis, we may consider a mixture of weak
acid-base systems, e.g., various biological fluids and natural water sources such as ocean, see [41] for
the associated protides. In such cases, existing protons jump into the lowest possible free energy state
to form a chemical equilibrium.

Initially, this begins by accommodating a lowest energy sink, therefore filling up the succeeding
energy levels. This process continues until all the proton vacant sites in a given base are filled
with an optimum cutoff energy, which largely depends upon characteristics of the considered acid.
This analysis is left open for a future research. Chemically, by various thermal excitations, the highest
protonated species donate protons to H2O to form H3O+ whose concentration largely depends on
concentrations of different species. In short, an optimized amount of H3O+ concentration enables us
in defining the equilibrium pH of the corresponding solution. In other words, a pH measurement
points out the relative free energy of protons required to preserve the highest protonated species in
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their acid forms [12,38]. Herewith, it is worth emphasizing that our discussion can be applied for the
determination of the proton free energy by pH scale measurements.

6.3. Buffer Capacity

In the light of quantitative treatments of chemical equilibria, we focus on acid-base phenomena
arising from the hydronium ion [39]. In this aspect, a titration can happen in non-aqueous solvents,
as well. Such acid-base systems came into the existence by independent investigations of Bronsted
and Lowry in 1923, see [39] for related fundamentals and their historical accounts. Subsequently, in
both the aqueous and non-aqueous solvents, an acid can be regarded as the species that can donate
a proton and the corresponding base as the species that can accept it. Examples of non-aqueous
solvents include alcohol, benzene, ether, carbon tetrachloride, acetone, and other organic solvents,
while the liquid ammonia, disulfide and sulfuric acid arise in the category of the inorganic solvents.
In this regard, for a given acid HA and base B, our optimization analysis is explained by the following
chemical equilibrium.

HA ⇀↽ H+ + A−

H+B ⇀↽ BH+ (35)

From the perspective of the Bronsted and Lowry [39], the notion of a chemical equilibrium is
based on the proton itself and not on the hydronium ion, whereby one finds a solvent independent
of the chemical equilibrium. Specifically, because of an accepting behavior of the proton H+ of A−,
it acts as a base as above in the first reaction as in Equation (35). However, in the second reaction as
in Equation (35), BH+ behaves as an acid since it donates a proton H+ to the base B. This yields the
following Bronsted-Lowry acid-base [39] chemical equilibrium.

Acid ⇀↽ H+ + Base (36)

Essentially, as per the above acid-base pair having a deficit of the proton H+ as in Equation (36),
an optimized conjugate acid-base pair is anticipated to arise via our fluctuation theory analysis. Indeed,
the above-mentioned Bronsted-Lowry definition of the acid-base pair does not state the type of the
charges present in either of the acid or base, i.e., the chemical equilibrium formation has nothing to do
with electronic charges of the species and it is rather independent of their ionization properties [39].
In short, we may recite the formation of an acid-base equilibrium by stating that an acid has one
more positive charge than its corresponding conjugate base. This offers a perspective application of
our proposal to pharmaceutical systems and their thermodynamic characterization. In the highlight
of the same, it is worth anticipating that an optimized chemical equilibrium is formed by the acid
CH3CH2COOH with its conjugate base CH3CH2COO− by exchanging a proton H+.

To perform chemical composition analysis [42], the titration offers a conventional laboratory tool
to calculate unknown concentration of a set of given chemical species. Thus, among various types of
titration methods, we focus on an optimized acid-base titration, which anticipated to emerge as an
important topic of current research. Namely, in a given solution, our proposition involves the concept
of an optimal neutralization of an acid-base pair. Here, the concentration of the chosen acid or base is
calculated by the addition of the respective base or acid with their known concentrations. In this case,
we can add a pH indicator to the solution to determine the optimal point of the solution by observing
a change in its color.

Therefore, our method support that the buffer capacity arises as the resistance to pH change of
a solution. Namely, given an acid with its conjugate base, the buffer capacity plays a vital role in
determining the relative dissociation, which follows via Châtelier principle [43,44]. In general, an
aqueous solution consists of a weak acid and its conjugate base or vice-versa, therefore the formation
of a buffer solution. One of the main characteristics of buffer solutions is to maintain a steady pH
value upon an addition of a strong acid or base. Thus, the pH buffers arise as the best alternatives to
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maintain a constant pH value of chemical solutions. In the setup of Bronsted and Lowry theory, viz.
Equation (36), buffer solutions acquire an optimized resistance to pH change due to the formation
of a chemical equilibrium between the weak acid HA and its conjugate base A−. Thus, for a given
buffer solution, its buffer capacity yields a quantitative measurement for determining the optimal
resistance of pH change [12,38] upon an addition of hydroxide ions. Such issues we leave open for
future research and developments.

6.4. Acid Raining

In the sequel, we focus on the nature of an optimized rate via the acid-base chemistry. In general,
we are interested in chemical reactions which are optimally formulated in the light of the acid-base
chemistry. Acid-base reaction can be described as the reaction between hydrogen ions with other
electrically charged species or neutral ones. The reaction between acid and base is considered to be
a reversible reaction. This means, the product obtained could react among themselves to give the
reactant back. In the light of acid-base chemistry, this idea is the root cause towards an optimized
chemical equilibrium formation [26] in the realism of chemical kinetics.

Various environmental problems arise because of the acid raining, see [45] for environmental
problems and their existing remedies. Notice that acid rain refers to presence of acid in the rain
water due to effects of pollutants exhausted into the atmosphere such as automobiles and factories.
In this regard, sulfur dioxide and nitrogen oxides accounts for the main pollutants responsible for
the cause. When such gaseous species react with the water and oxygen molecules present in the
atmosphere, it results in the formation of acids such as sulfuric acid and nitric acid in rain water. Thus,
acid rain creates various damage such as corrosion of metals and their salt hydrates [46], damage to
buildings [47], etc. Thus, one finds diverse effects of CO2 water. It is reported that the amount of CO2

in the atmosphere is increasing day by day due to the burning of fossil fuels in the presence of oxygen.
The above-mentioned CO2 tend to dissolve in the ocean water by forming carbonic acid. Thus, to
safeguard the natural resources, an optimized emission of CO2-based species falls in the domain of the
future scope of this research.

7. Summary and Conclusions

In the present research, we have thoroughly examined the optimized formation of chemical
equilibria via the fluctuation theory. Our consideration was based on the formation of an intermediate
state of products whose energy crosses the potential barrier to form the final state. Various
concentrations of reacting species in a given chemical reaction can fluctuate. At a constant temperature,
fluctuations in the rate are characterized by a weighted product of concentrations of the reacting
species with different orders. We observed that the stability of the equilibrium depends mainly on
these parameters of the reactants.

As far as the fluctuation theory is concerned, our analysis is based on the statistical and
thermodynamic factors that determine the characteristic properties of a given chemical reaction.
We have provided fluctuation theory perspective towards the formation of chemical equilibria of
arbitrary orders. Here, the progress of a chemical reaction is governed by a step by step infinitesimal
modification of the law of mass action. This is realized by varying the reaction rate governing the
changes in a given chemical reaction. It is worth mentioning that the above equilibrium is not
immediately achieved, but it arises as a collective phenomenon. An apt formation of such equilibria is
the subject matter of this research.

Given a binary component chemical reaction, we have computed the flow components, chemical
capacities, chemical correlation, and associated fluctuation quantities concerning the global stability
of an equilibrium. Under fluctuations of the reactant’s concentrations, we find that the equilibrium
is formed when either one of the orders of the reactants vanishes or either of their concentrations
vanishes. The chemical concentration capacities of the components are calculated to describe the
local stabilities of the equilibrium. The correlation between the components is obtained as the mixed
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second-order derivative of the rate with respect to the concentrations. To be precise, we find that the
local system stability requires the order of the reactants to be either negative or larger than the unity.

On the other hand, for a binary component reaction, the global stability analysis is performed
by introducing a symmetric matrix with its diagonal components as the chemical capacities and
off-diagonal components as the chemical correlation. The global stability of the system requires the
positivity of a factor over the orders of the reactants that we have examined both quantitatively
and qualitatively. For reactants of the order less than two, we infer from our observations that the
fluctuations are mostly originating at the points where either of the concentration approaches zero
value. However, for the reactants of second orders, we find a global instability as the corresponding
determinant of the fluctuation matrix takes a large negative value of the order 107. In addition, for
a pair of reactants of their orders of the same sign, the reaction is globally stable when the sum of
their orders is less than unity. This well coincides with the observations for the reactions of the orders
(−1,−1) as in Figure 1. The instability gets introduced as the orders gradually change to their values
(−1, 1/2), (−1, 2), (1/2, 1/2), (1/2, 2) and (2, 2) as depicted in Figures 2–6 respectively.

Subsequently, we have offered verification of our model. Following the above theory, we focus on
stability structures of the chemical equilibrium formation of the carbon materials under variations of
concentrations of the participating species while the other parameters of the reaction are held fixed.
To understand the formation of a chemical equilibrium as a statistical sample, we have introduced
simultaneous fluctuations over active masses, i.e., the concentrations of reacting species with the
associated rate as an embedding function. This offers the optimization properties of a given chemical
equilibrium and thus the formation of products. Thus, we have discussed the stability of chemical
equilibria and formation of products involving carbon materials such as an organic reaction and a
catalytic oxidation of CO− H2 mixtures in presence of Pt and other inorganic reactions, as well.

Our proposition can be understood based on macroscopic observations governing the forward
and reverse reactions. Namely, a chemical equilibrium arises as an average of the microscopic concept
that takes place when a given amount of chemical species remains same. The global stability of an
equilibrium originates via collisions between the molecules, therefore the dissociation of the reacting
species. Furthermore, in the vicinity of equilibrium, the fluctuation analysis can be exploited by
varying either the forward rate over the concentration of the reactants, or the backward rate of the
products. This is because the equilibrium constant reads as the ratio of the rate constants of the forward
reaction to that of the backward reaction. It is evident from our observations that a chemical reaction
never proceeds until its end; instead, it attends an equilibrium state when the available amount of
participating species in the reaction does not fluctuate. From the above perspectives, we find that all
the fluctuation quantities vanish identically for a zeroth-order chemical reaction, except its rate. In
addition, we have classified all possibilities concerning the stability of the equilibrium formed by a
given pair of reacting species with different orders.

In general, the fluctuation theory-based chemical equilibrium can equally depend on the
temperature, pressure, volume, and chemical compositions of the reacting species, as well. This can
provide further possibilities for research. Indeed, our proposal can be generalized for arbitrary chemical
reactions with finitely many reactants and products, as well. Other directions include unification of
the fluctuation theory analysis with the physical state of the reacting species, reaction temperature
and use of a catalyst. This depends on the collision frequency, phase of reactants and random thermal
motion of molecules to form a new state. Also, the temperature variations enhance the reaction rate,
namely, they increase the collision frequency between the molecules of interacting species.

Finally, we anticipate future scope of our work in the light of the acid-base chemistry, fall of
the protons, thermal excitations, formation of hydronium ions, buffer capacity as well as industrial
implications towards the thermodynamic properties of pharmaceutical configurations, formation
of buffer solutions, corrosion of metals, protection of building, environment and ecosystems, and
pollutant exhaust management for automobiles and factories. Moreover, it worth mentioning that a
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chemical equilibrium requires an understanding of the electron affinity and reactivity of the species, as
well. Such investigations we leave open for future research and developments.
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