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Abstract: We derive the two-dimensional equation of state for a bosonic system of ultracold
atoms interacting with a finite-range effective interaction. Within a functional integration approach,
we employ a hydrodynamic parameterization of the bosonic field to calculate the superfluid equations
of motion and the zero-temperature pressure. The ultraviolet divergences, naturally arising from the
finite-range interaction, are regularized with an improved dimensional regularization technique.
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1. Introduction

A fluid perspective on the study of bosonic gases made of ultracold atoms may have
originated in the pioneering work of Landau [1], who correctly described the superfluid behavior
of He-4 as observed in his experiments [2]. From those years, several technical advances allowed
a precise experimental control of the atomic gases, culminating in the achievement of Bose–Einstein
condensation in 1995 [3–5]. Despite the rich phenomenology deriving from the variety of different
trapping potentials [6], the theoretical and experimental study of uniform gases gives a fundamental
insight into the intrinsic properties of the condensates. Particularly interesting is the case of two
spatial dimensions, in which quantum and thermal fluctuations play a fundamental role [7,8],
justifying the necessity of a beyond mean field theory. Historical results for a two-dimensional
Bose gas were obtained by Schick, who calculated the thermodynamics of a gas of hard-spheres [9],
improved by Popov derivation of the equation of state for a weakly-interacting superfluid [10].
Recent works provide an extension of the Popov approach [11], while the nonuniversal corrections to
the equation of state in D = 2, arising from a finite-range interaction between the atoms, have been
studied [12,13]. Thank to the tunability of interparticle interactions, it is possible to investigate
the static and dynamical properties of homogeneous quantum fluids in D-spatial dimensions in
regimes where finite-range corrections are relevant [14–16]. In this work, we provide an alternative
derivation of the zero-temperature equation of state by adopting an explicit superfluid parametrization
of the bosonic field. In particular, we develop an improved dimensional regularization technique to
regularize the zero-temperature pressure of a bosonic quantum fluid, whose particles interact with
a finite-range interaction.
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2. Zero-Temperature Equation of State of a Two-Dimensional Bosonic Quantum Fluid

2.1. Superfluid Parametrization of the Bosonic Field

We introduce the Euclidean Lagrangian L of a uniform quantum fluid of bosonic particles with
mass m, described by the complex field ψ(~r, t), namely [17]

L = ψ̄(~r, τ)

(
h̄∂τ −

h̄2∇2

2m
− µ

)
ψ(~r, τ) +

1
2

∫
dDr ′ |ψ(~r ′, τ)|2 V(|~r−~r ′|) |ψ(~r, τ)|2, (1)

where h̄ is Planck’s constant, µ is the chemical potential, and we suppose that the particles interact
with the isotropic two-body potential V(|~r−~r ′|). The imaginary time τ is introduced for uniformity
with a functional integration approach, but real time t can be recovered at any moment by performing
the Wick rotation τ → it. According to the least action principle, the Euler–Lagrange equations of the
system are obtained as the functional derivative of the action S[ψ̄, ψ], which reads

S[ψ̄, ψ] =
∫ βh̄

0
dτ
∫

LD
dDr L (2)

where LD is the volume in D dimensions containing the particles and β = 1/(kBT), with T the absolute
temperature, and kB the Boltzmann constant. Until the end of this paper, for reasons connected to the
dimensional regularization of the final results, we will not explicitly fix the spatial dimension to D = 2.
The minimization of the action of Equation (2) gives the Gross–Pitaevski equation for the complex
field ψ(~r, τ), which constitutes the macroscopic wavefunction of the condensate [18]. In this work,
however, we adopt a superfluid perspective through the following phase-amplitude parametrization
of the bosonic field [19]

ψ(~r, τ) =
√

ρ(~r, τ) eiθ(~r,τ), (3)

where ρ(~r, τ) = |ψ(~r, τ)|2 is a real field describing the system local density and θ(~r, τ) is the phase
field, which must be included because of the complex nature of the order parameter ψ(~r, τ). This field
transformation allows us to introduce the superfluid velocity ~vs, which is proportional to the gradient
of the phase, namely

~vs =
h̄
m
~∇θ. (4)

We emphasize that the phase field θ(~r, τ) is defined in the compact interval [0, 2π] and is therefore
periodic of 2π: this fact constitutes the origin of many topological phenomena in condensed-matter
physics. Indeed, here we focus on two-dimensional systems, where the singularities of the phase
field—the vortices—are responsible for the Berezinskii–Kosterlitz–Thouless (BKT) transition [20,21].
However, in the following, we will study only the zero-temperature properties, for which the
vortex–antivortex phenomenology does not play a fundamental role and can be neglected. We will then
assume that the domain of definition of the phase field θ(~r, τ) can be extended to R and that its spatial
and time derivatives are well defined everywhere. In this case, the superfluid flow is irrotational,
thus it has zero vorticity

~∇×~vs = 0. (5)

We now substitute the parametrization of Equation (3) in the Lagrangian (1), obtaining

L = −µρ + ih̄ρ∂τθ +
h̄2

8mρ
(∇ρ)2 +

h̄2ρ

2m
(∇θ)2 +

1
2

∫
dDr ′ ρ(~r ′, τ) V(|~r−~r ′|) ρ(~r, τ), (6)
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where we omit for simplicity the dependence of the fields on their coordinates (~r, τ). The minimization
of the action (2), which now becomes a functional of ρ and θ: S = S[ρ, θ], leads to the Euler–Lagrange
equations for these fields. Recovering the real time t→ −iτ, we get the hydrodynamic equations

∂ρ

∂t
+ ~∇ · (ρ~vs) = 0 (7)

and

m
∂~vs

∂t
+ ~∇

(
1
2

mv2
s − µ +

∫
dDr ′ ρ(~r ′, τ) V(|~r−~r ′|)− h̄2

2mρ1/2∇
2(ρ1/2)

)
= 0, (8)

which are the continuity equation and the equation of motion of a superfluid with velocity ~vs and
number density ρ. Notice that, inside the parenthesis, Equation (8) contains the quantum pressure
term: if the density ρ of the fluid is slowly varying and this contribution can be neglected, Equation (8)
reduces to the familiar Euler equation of motion for an irrotational fluid without viscosity. For
a self-consistent derivation of these equations from the Gross–Pitaevski equation we refer the reader to
Reference [22].

2.2. Zero-Temperature Equation of State

We now adopt the superfluid parametrization of Equation (3) to derive the zero-temperature
equation of state of the quantum fluid, namely a relation at T = 0 between the pressure P and the
chemical potential µ. For the finite-range interaction, an explicit implementation of this relation will be
given in the next section.

In the grand canonical ensemble, we calculate the pressure of the bosonic fluid as P = −Ω/LD,
where Ω is the grand potential

Ω = − 1
β

ln(Z) (9)

and Z is the grand canonical partition function, which, within a functional integration perspective,
can be calculated as

Z =
∫
D[ρ, θ] e−

S[ρ,θ]
h̄ . (10)

To perform the explicit functional integration of the Lagrangian (6), we rewrite the local density
field ρ(~r, τ) as

ρ(~r, τ) = ρ0 + δρ(~r, τ), (11)

where ρ0 is the condensate density of the system in the broken-symmetry phase and δρ(~r, τ) is a real
field describing the density fluctuations.

We substitute the field transformation (11) in the Lagrangian of Equation (6), obtaining

L =− µρ0 − µ δρ + ih̄ρ0∂τθ +
h̄2

8mρ0
(∇δρ)2 +

h̄2ρ0

2m
(∇θ)2+

1
2

∫
dDr′ V(|~r−~r ′|)(ρ2

0 + δρ(~r, τ) + δρ(~r ′, τ) + ρ(~r, τ)δρ(~r ′, τ)),

(12)

where we keep only terms up to the second order in the fluctuation fields δρ(~r, τ) and θ(~r, τ),
thus making a Gaussian (one-loop) approximation.
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Considering the Lagrangian of Equation (12) inside the action S, which now becomes the
functional S = S[δρ, θ], it is particularly convenient to express it in terms of the Fourier series of
the fluctuation fields, namely

δρ(~r, τ) =
1√
LD ∑

~k ωn

ei~k·~re−iωnτ δρ(~k, ωn)

θ(~r, τ) =
1√
LD ∑

~k ωn

ei~k·~re−iωnτ θ(~k, ωn)

(13)
δρ(~k, ωn) =

1

βh̄
√

LD

∫ βh̄

0
dτ
∫

LD
dDr e−i~k·~reiωnτ δρ(~r, τ)

θ(~k, ωn) =
1

βh̄
√

LD

∫ βh̄

0
dτ
∫

LD
dDr e−i~k·~reiωnτ θ(~r, τ),

where ωn = 2πn/(βh̄) are the bosonic Matsubara frequencies. Notice that, since we are supposing
that the phase field θ(~r, τ) is defined on R, its Fourier components are non-numerable and can assume
continuous values, thus they can be treated like ordinary functional integral variables. The action in
the Fourier space is obtained by simply substituting these expressions in S and using the definition of
the D + 1-dimensional delta function. Moreover, we also substitute the Fourier series Ṽ(k) of the real
space interaction potential and we define with g0 the zero-range interaction strength g0 = Ṽ(k = 0).
In this way, the action can be rewritten as the sum of two contributions

S = S0 + Sg. (14)

The first is the action of the homogeneous system S0, namely

S0 = βh̄LD(− µρ0 +
1
2

g0ρ2
0
)
, (15)

which does not depend on the functional integration variables: using Equations (9) and (10), one can
employ S0 to calculate Ω0, the mean field contribution to the grand potential

Ω0 =
(
− µρ0 +

1
2

g0ρ2
0
)

LD. (16)

The second contribution to the action S is the Gaussian action Sg, which is given by

Sg = βh̄ ∑
~k ωn

[
h̄2k2ρ0

2m
θ(k)θ(−k) +

(
h̄2k2

8mρ0
+

Ṽ(k)
2

)
δρ(k)δρ(−k) + h̄ωnθ(k)δρ(−k)

]
, (17)

where, for simplicity of notation, we define δρ(±k) = δρ(±~k,±ωn) and θ(±k) = θ(±~k,±ωn). Since Sg

is quadratic in the fluctuation fields δρ(k) and θ(k), one can rewrite it in the following matricial form:

Sg =
h̄
2 ∑
~k ωn

(
θ(k) θ(−k) δρ(k) δρ(−k)

)
M(k)


θ(k)

θ(−k)
δρ(k)

δρ(−k)

 , (18)
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where M(k), the inverse of the propagator, is the 4× 4 matrix

M(k) = β


0 h̄2k2ρ0

m 0 h̄ωn
h̄2k2ρ0

m 0 −h̄ωn 0
0 −h̄ωn 0 h̄2k2

4mρ0
+ Ṽ(k)

h̄ωn 0 h̄2k2

4mρ0
+ Ṽ(k) 0

 . (19)

The functional integral of the real fluctuation fields θ(k) and δρ(k) can be performed explicitly [23],
obtaining the corresponding Gaussian grand canonical partition function Zg as

Zg = ∏
~k ωn
kz>0

[det M(k)]−1/2, (20)

which, considering the definition of the grand potential of Equation (9), leads to the Gaussian
contribution to the grand potential

Ωg =
1

2β ∑
~k ωn

ln[β2(h̄2ω2
n + E2

k)]. (21)

Here, we find the gapless excitation spectrum Ek of the quantum fluid in the form

Ek =

√
h̄2k2

2m

(
h̄2k2

2m
+ 2ρ0Ṽ(k)

)
, (22)

where, within a perturbative approach, ρ0 is determined by the saddle point condition ∂Ω0/∂ρ0 = 0,
which leads to

ρ0 =
µ

g0
(23)

and whose substitution in the excitation spectrum gives EB
k , the renowned Bogoliubov spectrum [24]

EB
k =

√
h̄2k2

2m

(
h̄2k2

2m
+ 2µ

Ṽ(k)
g0

)
. (24)

The sum over the Matsubara frequencies ωn in the Gaussian grand potential of Equation (21)
can be performed according to the prescriptions described in the Appendix A, obtaining the grand
potential as the sum of three contributions

Ω = Ω0 + Ω(0)
g + Ω(T)

g , (25)

where Ω0 = −LDµ2/(2g0) due to Equations (16) and (23), and

Ω(0)
g =

1
2 ∑

~k

EB
k (26)

is the zero-temperature Gaussian grand potential encoding quantum fluctuations, while

Ω(T)
g =

1
β ∑

~k

ln(1− e−βEB
~k ) (27)
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is the finite-temperature Gaussian grand potential, encoding thermal fluctuations. Finally, we explicitly
write the zero-temperature equation of state, namely, we calculate the pressure as the opposite of the
grand potential of Equation (25) at T = 0:

P(µ, T = 0) =
µ2

2g0
− 1

2LD ∑
~k

EB
k . (28)

In the thermodynamic limit of L → ∞, the sum over ~k can be rewritten as a D-dimensional
integral in momentum space (2π/L)D ∑~k =

∫
dDk, and, substituting again the Bogoliubov

spectrum (24),the equation of state becomes

P(µ, T = 0) =
µ2

2g0
− 1

2

∫ dDk
(2π)D

√
h̄2k2

2m

(
h̄2k2

2m
+ 2µ

Ṽ(k)
g0

)
, (29)

where the integral can be calculated after the explicit choice of Ṽ(k).

2.3. Explicit Implementation for Finite-Range Interaction

We now provide an explicit implementation of the zero-temperature equation of state (29) for
a bosonic quantum fluid of particles interacting with the finite-range effective interaction

Ṽ(k) = g0 + g2k2, (30)

where g0 = Ṽ(k = 0) is the usual zero-range interaction coupling, and

g2 =
1
2

∫
d2r r2 V(|~r|) (31)

is the first nonzero correction in the gradient expansion of an isotropic interaction potential V(|~r|).
At zero temperature, we expect the finite-range corrections to the equation of state to be detectable,
but small with respect to the zero-range result of Reference [25]. By using scattering theory in
two spatial dimensions, these couplings can be linked with the s-wave scattering length as and the
characteristic range R of the real interatomic two-body interaction [12,26,27]

g0 =
4πh̄2

m| ln(na2
s )|

, g2 =
πh̄2R2

m| ln(na2
s )|

, (32)

where n is the number density of the system in D = 2.
The equation of state (29) becomes, with the finite-range interaction of Equation (30)

P(µ, T = 0) =
µ2

2g0
+ P(0)

g , (33)

where we define the zero temperature Gaussian pressure P(0)
g as

P(0)
g = −1

2

∫ dDk
(2π)D

√
h̄2k2

2m

(
h̄2k2

2m
λ + 2µ

)
, (34)

with
λ = 1 +

4m
h̄2

µ

g0
g2. (35)
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Since the integrand function depends only on the modulus of the momentum |~k|, we rewrite the
integral in P(0)

g using D-dimensional spherical coordinates, namely

P(0)
g = − SD

2(2π)D

∫ +∞

0
dk kD−1

√
h̄2k2

2m

(
h̄2k2

2m
λ + 2µ

)
, (36)

where SD = 2πD/2/Γ[D/2] is the solid angle in D-dimensions and Γ[D/2] is the Euler
Gamma function. In order to integrate this equation, we introduce the adimensional variable
t = h̄2k2λ/(4mµ), obtaining

P(0)
g = − µ

λ1/2Γ[D/2]

(
mµ

πh̄2λ

)D/2 ∫ +∞

0
dt t

D−1
2 (1 + t)1/2. (37)

As a consequence of the substitution of the real interatomic potential with an effective interaction,
the zero-temperature Gaussian pressure P(0)

g is ultraviolet divergent. In our framework, an efficient

way to regularize P(0)
g is constituted by the technique of dimensional regularization [28]. The basic

idea of this approach is to rewrite a diverging integral in terms of the Euler beta and gamma functions,
whose integral representation for x, y, z > 0 is given by

B(x, y) =
∫ +∞

0
dt

tx−1

(1 + t)x+y , (38)

Γ(z) =
∫ +∞

0
dt tz−1 e−z. (39)

Thanks to the properties B(x, y) = Γ(x)Γ(y)/Γ(x + y) and Γ[z + 1] = z Γ[z], one can extend the
domain of definition of the gamma and beta functions by analytic continuation of their arguments
x, y, z also to negative values, which usually appear in many physical problems. However, despite this,
the dimensional regularization procedure can be successfully used to regularize many ultraviolet
diverging integrals, in our peculiar two-dimensional case the procedure described above would lead
to a result containing the gamma function evaluated for negative integer values, which is again
a diverging quantity. To avoid this residual divergence, we extend the dimensions of the system to the
complex value D = D− ε, and we formally perform the integration of Equation (37). We obtain

P(0)
g =

κε

2

(
µ

πλ

)(D+1)/2(m
h̄2

)D/2 Γ[(D− ε + 1)/2] Γ[(ε− D− 2)/2]
Γ[(D− ε)/2]

, (40)

in which the wavevector κ is introduced for dimensional reasons. Notice how in D = 2 and for ε = 0
the Gaussian pressure is still divergent. To regularize it, we rely on the following small-ε expansion of
the gamma function [29]

Γ(−n + ε) =
(−1)n

n!

[
1
ε
+ Ψ(n + 1) +

ε

2

(
π2

3
+ Ψ(n + 1)2 −Ψ′(n + 1)

)
+ o(ε2)

]
, (41)

where Ψ(n + 1) is the digamma function and Ψ′(n + 1) is its derivative. Moreover, we express the
exponentiation of a generic coefficient xε for ε→ 0 as

xε = exp(ε ln(x)) ∼ε→0 1 + ε ln(x) + o(ε2). (42)
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With this recipe, the Gaussian pressure P(0)
g in D = 2 gives

P(0)
g =

mµ2

2π3/2h̄2λ
3/2

[
π1/2

2
1
ε
+

π1/2

8
(ln(16)− 2γ− 1) +

π1/2

4
ln
(

πλh̄2κ2

mµ

)
+ o(ε)

]
, (43)

where γ ≈ 0.55722 is the Euler–Mascheroni constant. Finally, we delete the o(ε−1) divergence
in the square bracket [30] and we rewrite the zero-temperature equation of state P(µ, T = 0) of
Equation (29) as

P(µ, T = 0) =
mµ2

8πh̄2λ3/2

[
ln
(

ε0

µ
λ

)
− 1

2

]
, (44)

where we define the energy cutoff ε0 as

ε0 =
4πh̄2κ2

m exp(γ− 4πh̄2λ3/2

mg0
)

. (45)

The equation of state (44) improves the one derived for bosons with a zero-range interaction [10]
by Popov, whose result can be reproduced by setting λ = 1, i.e., g2 = 0. We emphasize that,
with a precise tuning of the interparticle interaction (see Reference [12] for a detailed discussion),
the finite-range corrections derived within our Gaussian approximation become larger than the
zero-range beyond-Gaussian ones obtained by Mora and Castin [31]. For weakly-interacting bosons
with na2

s � 1, where as is the two-dimensional s-wave scattering length, we expect that the
nonuniversal corrections of Equation (44) arise for R ≥ as, where R is the characteristic range of
the interaction. In this intermediate regime, the neglection of higher order terms in the gradient
expansion of Equation (30) is justified but, at the same time, the finite-range contributions are of
comparable size to the zero-range ones.

3. Conclusions

In this work, we derive the two-dimensional zero-temperature equation of state for a bosonic
quantum fluid with a generic isotropic interaction. The superfluid perspective is emphasized by
performing the Gaussian functional integration within a phase-amplitude parametrization of the
complex order parameter. For a system with zero-range interaction, we reproduce the classical
result by Popov. Nonetheless, we apply a novel dimensional regularization recipe to reproduce the
nonuniversal corrections for a finite-range interaction potential. We expect, with a fine-tuning of
the experimental interaction parameters, the finite-range correction to produce sizable corrections to
the thermodynamics of the weakly-interacting superfluid. Our derivation of the zero-temperature
equation of state is also valid for other interparticle interactions. In particular, the previous results
can be extended for a quasi-two-dimensional system of dipolar bosons whose polarization direction
is perpendicular to the plane of confinement. For a generic orientation, however, it is necessary to
consider the dependence of the interaction on the in-plane angle between the particles and to include
it consistently in the dimensional regularization procedure.
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Appendix A

We illustrate here the procedure to calculate the summation over the bosonic Matsubara
frequencies ωn, which are defined as

ωn =
2πn
βh̄

, (A1)

where n ∈ Z are integer numbers. The most common sum that one has to perform is in the form

I[ξ~k] =
1

2β

+∞

∑
n=−∞

ln[β2(h̄2ω2
n + ξ2

~k
)]. (A2)

Using the properties of the logarithm and considering that the summation involves all n ∈ Z
integers, both positive and negative, I[ξ~k] can also be rewritten in the useful form

I[ξ~k] =
1
β

+∞

∑
n=−∞

ln[β(−ih̄ωn + ξ~k)]. (A3)

Taking the derivative of I[ξ~k] with respect to ξ~k in Equation (A2), we get

∂I[ξ~k]
∂ξ~k

=
1
β

+∞

∑
n=−∞

ξ~k
h̄2ω2

n + ξ2
~k

. (A4)

In the zero temperature limit, the difference

∆ω = ωn −ωn−1 =
2π

βh̄
−−−→
β>>1

dω (A5)

becomes infinitesimal and we can substitute the sum over n with an integral over ω, obtaining

∂I[ξ~k]
∂ξ~k

=
1
β

∫ +∞

−∞
dω

βh̄
2π

ξ~k
h̄2ω2 + ξ2

~k

=
1
2

, (A6)

which is the zero-temperature contribution to I[ξ~k]. If the temperature is relatively low, but non-zero,
we cannot substitute the sum in Equation (A4) with an integral, but we can rewrite it as

∂I[ξ~k]
∂ξ~k

=
βξ~k

(2π)2

+∞

∑
n=−∞

1

n2 +
( βξ~k

2π

)2
(A7)

and, using the identity
+∞

∑
n=0

1
n2 + a2 =

1 + πa coth(πa)
2a2 , (A8)

we obtain
∂I[ξ~k]

∂ξ~k
=

1
2

coth
(

βξ~k
2

)
=

1
2
+

1

eβξ~k − 1
. (A9)

We integrate this equation on ξ~k, and setting the arbitrary constant resulting from the indefinite
integral to zero (it is not dependent on physical parameters), we finally obtain the result of the
summation over the Matsubara frequencies

I[ξ~k] =
ξ~k
2
+

1
β

ln(1− e−βξ~k ), (A10)

which is used in this article to obtain Equation (21).
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