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Abstract: In this paper, we study an atomic chain in the presence of modulated charge potential and
modulated Rashba spin-orbit coupling (RSOC) of equal periods. We show that for commensurate
periodicities, λ = 4n with integer n, the three-dimensional synthetic space obtained by sliding the two
phases of the charge potential and RSOC features a topological nodal-line semimetal protected by an
anti-unitary particle-hole symmetry. The location and shape of the nodal lines strongly depend on the
relative amplitude between the charge potential and RSOC.
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1. Introduction

In the past few years, the discovery of time-reversal invariant topological insulators [1–4] has triggered
huge interest in these new quantum states of matter [5–12]. One of the distinguishing features of topological
insulators is the existence of conducting boundary states within a bulk energy gap [9]. The existence
of these topologically protected states can be inferred from the estimation of a topological quantity,
such as the Chern number or the Z2 index [13–15], which is only determined by the topology of the
electronic wavefunctions. On general grounds, one therefore expects that band-structure engineering can
be employed to possibly induce topological phase transition [1,2]. Indeed, several approaches have been
theoretically proposed to drive topological phase transition using strong doping [16], electric fields [17,18],
high pressure [19], etc.

Alternative proposals have demonstrated the possibility to drive a trivial system into a topological
insulator by introducing a superlattice structure. Generally speaking, the concept of superlattice introduced
by Esaki [20] and Tsu [21] has been widely employed as a powerful method to engineer the electronic
band structures of conventional semiconductors for various technological applications [22–24].

In the specific context of topological phase transitions, it has been demonstrated that the application
of a spatial periodic charge potential can drive a metallic system into a Chern insulator, characterized
by gapped regions in the energy spectrum having non-zero Chern numbers [25]. A spatial periodic
charge potential has been also demonstrated to turn a conventional insulator into a quantum spin Hall
system. Considering the prototype case of HgTe/CdTe quantum wells, it has been demonstrated [26]
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that for a critical strength of the charge potential, a conventional band insulator with strong spin-orbit
coupling is driven into a quantum spin Hall system associated with band inversion and, consequently,
spin-momentum locked edge states.

Insulating phases with a non-trivial topology can be also induced in one-dimensional atomic chains
by a periodic canting of the Rashba spin-orbit field [27]. In fact, for certain corrugation periods, the
system possesses topologically non-trivial insulating phases at half-filling, with topologically protected
zero-energy modes. Relevantly, such a system, under the application of a rotating magnetic field, can
realize the Thouless topological pumping protocol in an entirely novel fashion [28].

Furthermore, when the sublattice structure of the charge potential and Rashba spin-orbit coupling is
mirror-point invariant, a class of one-dimensional time-reversal invariant insulators beyond the standard
Altland-Zirnbauer classification can be realized [29].

The next step is to understand how the effects of a spatially periodic charge potential combine with
that of a spatially modulated Rashba spin-orbit coupling in an atomic chain. The interplay between these
two modulated fields is expected to be highly non-trivial, particularly from a symmetry perspective.
Indeed, charge potential and RSOC satisfy different symmetries, and act on distinct electron degrees of
freedom. The periodic charge potential behaves like a local source of chemical potential modulation, while
the RSOC comes from inversion symmetry breaking and leads to electron spin and momentum locking.
Considering the fundamental role played by symmetries in determining the existence and the nature of
topological phases, the simultaneous action of charge potential and RSOC, especially in the presence of
additional space symmetries related to periodicity, can offer new possibilities to manipulate topological
states and eventually induce novel topological phases.

In this paper, we address this problem by focusing in particular on the character of topological
states emerging at half-filling in the case of periodicity λ = 4n, with integer n. We show that in the
three-dimensional synthetic space obtained by sliding the phases of the charge potential and RSOC, such
periodicity leads, at half-filling, to a topological nodal-line phase protected by particle-hole symmetry.
The relative amplitude between the charge potential and RSOC strongly affects the shape of the nodal
lines, also determining the regimes where the system is topologically trivial or topologically non-trivial.
After introducing the model Hamiltonian for the considered one-dimensional system, we investigate the
effects of spatial periodicity in the charge potential and RSOC on the system energy spectrum, showing
the appearance of systematic energy gap closing and reopening at half-filling in the space defined by the
slide phases of the two periodic fields. We also discuss the topological character of the emerging insulating
phases in terms of the Hamiltonian symmetries and topological invariants.

2. The Model

We considered a one-dimensional system of spin one-half fermions in the presence of a spatially
modulated periodic charge potential V(x) = V0Cos(2πqV x + φV) and a RSOC described by a field
which has periodic amplitude αz(x) = α0Cos(2πqαx + φα) and a fixed ẑ direction. We assumed that the
modulating periods of the two fields take rational values and are equal, λ = 1/qV = 1/qα. Moreover, φα

and φV are slide phases for the two periodic fields considered.
The Hamiltonian of this system in a lattice formalism is a generalization of the famous

Aubry-André-Harper (AAH) model [30–32], with the inclusion of a spatially periodic RSOC:

H = H0 +HV +HRSOC (1)

where:
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H0 = −t
N−1

∑
j=1

(c†
j,σcj+1,σ + h.c.)− t̃

(
c†

N,σc1,σ + c†
1,σcN,σ

)
(2)

HV =
N

∑
j=1

V(j)c†
j,σcj,σ (3)

HRSOC = i

[
N−1

∑
j=1

αz(l)c†
j,σsσσ′

z cj+1,σ′ −
N

∑
j=2

αz(j− 1)c†
j,σsσσ′

z cj−1,σ′

]
+iα̃

(
c†

N,σsσσ′
z cj,σ′ − c†

j,σsσσ′
z cN,σ′

)
. (4)

The operators c†
j,σ(cj,σ) created (annihilated) an electron with spin σ (σ =↑, ↓) at the lattice site j, sz is

the Pauli matrix describing the spin operator along the ẑ direction, N is the number of total sites of the
considered atomic chain, and t is the hopping amplitude between the nearest neighbour sites. t̃ and α̃

are the hopping amplitude and antisymmetric Rashba spin-orbit, respectively, between the last and the
first site of the atomic chain, such that they both assume zero-value for an open chain and are t̃ = t and
α̃ = αz(N) for closed-boundary conditions.

The periodic variations of the charge potential and RSOC introduce a superlattice structure which
allows for representation of the position of each lattice site in terms of two indices: one (RI) indicating
the position of the supercell, and the other (j) representing the atomic position of the lattice site inside the
specified supercell. As a consequence, the contributions in the Hamiltonian of Equation (1) can be written
down as:

H0 = ∑
σ

[
Ns

∑
RI=1

λ−1

∑
j=1

(−t)c†
j,RI ,σcj+1,RI ,σ +

Ns−1

∑
RI=1

(−t)c†
λ,RI ,σc1,RI+1,σ

]
+∑

σ

(−t̃)
(

c†
Ñ,Ns ,σc1,1,σ + c†

1,1,σcÑ,Ns ,σ

)
+ h.c. (5)

HV =
Ns

∑
j=1

λ

∑
RI=1

V(j)c†
j,RI ,σcj,RI ,σ (6)

HRSOC = i ∑
σ,σ′

{[
Ns

∑
RI=1

(
λ−1

∑
j=1

αz(j)c†
j,RI ,σsσσ′

z cj+1,RI ,σ′ −
λ

∑
j=2

αz(j− 1)c†
j,RI ,σsσσ′

z cj−1,RI ,σ′

)]

+

[(
αz(λ)

Ns−1

∑
RI=1

c†
λ,RI ,σσσσ′

z c1,RI+1,σ′ + α̃ c†
Ñ,Ns ,σσσσ′

z c1,1,σ′

)
+ h.c.

]}
. (7)

where Ns = N/λ is the total number of supercells in the chain and Ñ is the last site of the last supercell
in the chain. We will assume that the chain has a number of sites which is an integer multiple of the
periodicity λ, such that Ñ = λ.

Then, in the case of closed-boundary conditions (t̃ = t and α̃ = αz(λ)), we can Fourier transform the
creation and annihilation operators c†

j,RI ,σ, cj,RI ,σ with respect to the supercell index RI :
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c†
j,RI ,σ =

1√
Ns

∑
k

ei k RI c†
j,k,σ (8)

cj,RI ,σ =
1√
Ns

∑
k

e−i k RI cj,k,σ (9)

with −π
ã ≤ k ≤ π

ã , being ã = λa the lattice spacing between the nearest neighbour supercells and a is the
lattice constant of the original atomic lattice.

After Fourier-transforming, the Hamiltonian in momentum space reads as:

H = ∑
k,σ

λ−1

∑
j=1

(−t)
[(

c†
j,k,σcj+1,k,σ + c†

j+1,k,σcj,k,σ

)
+
(

c†
λ,k,σc1,k,σe−i k ã + c†

1,k,σcλ,k,σei k ã
)]

+ i ∑
k

∑
σ,σ′

[(
λ−1

∑
j=1

αz(j)c†
j,k,σσσσ′

z cj+1,k,σ′

)
−
(

λ

∑
j=2

αz(j− 1)c†
j,k,σσσσ′

z cj−1,k,σ′

)
+

+ αz(λ) ∑
k,σ,σ′

(
c†

λ,k,σσσσ′
z c1,k,σ′ e

−i k ã − c†
1,k,σσσσ′

z cλ,k,σ′ e
i k ã
)]

+ ∑
k,σ

λ

∑
j=1

V(j)c†
j,k,σcj,k,σ. (10)

which can be put in the following compact form:

H = ∑
k

ψ†
kHkψk (11)

where ψk = (c1,k,↑, ..., cλ,k,↑, c1,k,↓, ..., cλ,k,↓) andHk is a 2λ × 2λ matrix.

3. Metal-Insulator Transition Induced by Periodicity

Due to the Abelian character of the RSOC, the Hamiltonian commutes with the spin operator sz and,
consequently the matrixHk can be brought in the block diagonal form for every periodicity λ:

Hk =

(
H↑ k 0

0 H↓ k

)
, (12)

where each sub-block Hσ k corresponds to one of the two electron spin projections σ =↑, ↓ along the
ẑ direction. Thus, the full energy spectrum can be derived by diagonalizing the two sub–blocks Hσ k
separately. These sub–blocks are related each other, at fixed φV , φα, by time-reversal symmetry T = i syK,
where sy is the Pauli matrix describing the spin operator along the ŷ direction, and K is the complex
conjugation operator. The Kramers theorem then guarantees the symmetry of the energy spectrum of the
full Hamiltonian matrixHk about k = 0 for all λ values. In addition, for every periodicity λ, the energy
spectrum is always twofold degenerate in the k-space. For even periodicities, the energy spectrum is also
symmetric about zero energy.

A very interesting case occurs when peridicity is λ = 4n, with integer n, since for such periodicities
the full Hamiltonian matrix Hk has a chiral symmetry described by a momentum-dependent operator,
which gives an energy spectrum symmetric about zero-energy for all k values. For instance, in the case of
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λ = 4, the chiral symmetry of the full Hamiltonian is described by the following momentum dependent
operator:

Sλ=4 =

(
0 ρz

ρzei k ã 0

)
⊗ sx (13)

where

ρz =

(
1 0
0 −1

)
and sx is the Pauli matrix describing the spin operator along the x̂ direction.

As already demonstrated, starting from a fully metallic system, the presence of a periodic charge
potential, and analogously, of a periodic Rashba spin-orbit field, induces a metal-insulator transition.
However, charge potential and RSOC act in different ways, gapping out different regions of the energy
spectrum, as shown in Figure 1a,b, referring to the case of λ = 4. When only the periodic charge potential
is considered (Figure 1a), and φV = 0, a gap opens at zone boundaries at fillings ν = 1/4, 3/4, while in the
presence of the periodic Abelian RSOC only (with φα = 0), the energy crossing at k = 0 and half-filling is
removed (Figure 1b). The simultaneous presence of both periodic charge potential and periodic RSOC
opens gapped regions at fillings ν = 1/4, 1/2, 3/4 (Figure 1c).

Figure 1. Energy spectrum of the Hamiltonian matrixHk, for the case λ = 4, as a function of the momentum
k (measured in units of π/ã) at (a) V0 = 0.6t, φV = 0, and α0 = 0 ; (b) α0 = 0.6t, φα = 0 and V0 = 0 and (c)
V0 = α0 = 0.6t, φV = 0, φα = 0. All energies are measured in the unit of the hopping parameter t.

The energy gap at half-filling is very sensitive to the value of the slide parameters φV and φα, whose
variations can be used to drive a gap closing and reopening in the energy spectrum at zero momentum
(Figure 2). In particular, in the presence of a periodic charge potential without RSOC, the energy crossings at
half-fillings occur when the corresponding slide phase assumes the values φ∗V = mπ/2 being an m integer,
as shown in Figure 2a. On the other hand, a periodic Abelian RSOC induces an energy closing/reopening
at k = 0 when its slide value is moved across φ∗α = (m + 1)π/4, with integer m (see Figure 2b). Such
specific values do not depend on the amplitude of V0 or α0.

Conversely, when the spatially modulated charge potential and RSOC both act in the system, we
found that it is still possible to induce a gap-closing at half-filling and k = 0, but the values of the slide
phases which give rise to gap-closing at half-filling strongly depend on the relative amplitude of the charge
potential with respect to the RSOC. For instance, in Figure 2c we show the behavior of the energy spectrum
of the system as a function of φα at λ = 4 for V0 = α0 = 0.6t and φV = 0.2π. As can be seen, the energy at
half-filling closes at values of φα which does not correspond to the slide phase values for the limit case of
RSOC only, nor to those of the case with periodic charge potential only.

Thus, if we analyze the energy gap at half-filling in the synthetic plane (φV , φα), we find that energy
assumes a nematic nodal structure in this plane, such that the topology of the energy nodal lines strongly



Condens. Matter 2019, 4, 25 6 of 10

depends on the ratio V0/α0, as can be seen in Figure 3, where we have presented a density plot of the
energy gap at half-filling for the case λ = 4 as a function of the two slide phases φV , φα for three different
values of the ratio V0/α0: V0/α0 = 0.5 in (a), V0/α0 =

√
2 in (b), and V0/α0 = 2 in (c). For values of the

ratio V0/α0 lower that
√

2, there are almost horizontal stripes in the plane (φV , φα). They have insulating
character and are separated by each other by nodal lines which are, in turn, mainly constant as a function
of φα.

Moving towards V0/α0 =
√

2, the insulating stripes, as well as the nodal lines, gradually deform
until they merge, forming a checkerboard-like structure of confined squared insulating plaquettes. By
further increasing the ratio V0/α0, the stripe structure starts to reappear, but is rotated by 90◦.

Figure 2. Energy spectrum of Hamiltonian matrix Hk for the case λ = 4 (a) at V0 = 0.6t and α0 = 0 as a
function of the charge potential phase φV , (b) at α0 = 0.6t and V0 = 0 as a function of the RSOC phase φα,
and (c) V0 = α0 = 0.6t, φV = 0.2π as a function of the RSOC phase φα.

Figure 3. Density plot of the energy gap between the fourth and fifth energy bands (counted starting from
the lowest one in energy) for periodicity λ = 4 at k = 0 in the synthetic space (φV , φα) at α0 = t and
V0 = α0/2 in (a), V0 =

√
2α0 in (b) and V0 = 2α0 in (c).

Such “nematic” character only depends on the relative value V0/α0, and can be observed at all
periodicity values λ = 4n, for integer values of n. The number of nodal lines, and, correspondingly, the
number of separated insulating stripes in the synthetic plane (φV , φα) scale with the periodicity λ and is
actually given by the value of the integer n, as can be seen in Figure 4, which shows the density plot of the
energy gap at half-filling and k = 0 for periodicity λ = 8.

We have verified that for other periodicities λ = 4n, this nodal structure still holds.
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Figure 4. Density plot of the energy gap between the eighth and ninth bands (counted starting from the
lowest one in energy) for periodicty λ = 8 at k = 0 in the synthetic space (φV , φα) at α0 = t and V0 = α0/2
in (a), V0 =

√
2α0 in (b) and V0 = 2α0 in (c).

4. Symmetry Protection of the Nodal Lines

The symmetry analysis of the full Hamiltonian matrixHk shows that each spin sub-matrixHσk breaks
time-reversal symmetry while preserving particle-hole symmetry. In the case of λ = 4, the particle-hole
operator is:

Ck =

(
0 e−i k ã/2ρz

ei k ã/2ρz 0

)
K, (14)

and it is such that C2
k = 1 for all k values and

C−1
k Hσk(φV , φα)C +H∗−σk(φV , φα) = 0

being A∗ the complex conjugate of a generic operator, A.
Thus, in the plane (φV , φα) at k = 0, the system behaves like a two-dimensional nodal superconductor.

According to the classification of gapless topological phases [33], this is a class D system with codimension
1, which thus allows a topological phase characterized by a Z2 topological index.

Therefore, we can characterize the insulating regions found in the plane (φV , φα) at k = 0 in terms
of the fermion parity P of the ground state [34]—that is, as the sign of the Pfaffian of the Hamiltonian in
Majorana representation. The fermion parity labels the topological inequivalent ground states: the trivial
state has P = 1 (even parity) while the non-trivial state has P = −1 (odd parity).

The fermion parity of the topological quantum system described by the Hamiltonian Hσ0 can be
evaluated analytically, as P = Sign

[√
(Det(C0Hσ0)

]
. The points where the fermion parity changes from

+1 to −1 and vice versa correspond to the gapless lines where zero-energy states occur. By performing the
analysis of the fermion parity for the case λ = 4, we established the topological character of the insulating
regions of the energy spectrum at k = 0 and half-filling, as shown in Figure 5, for three different values of
the ratio V0/α0.

We would like to point out that the zero-energy states driven by the slide phase of a single periodic
field in the two limit cases (periodic charge field only or periodic RSOC only), have a topological origin
totally different from that of the zero-energy states in the case of periodic charge potential and RSOC
together. Indeed, although the occurrence of the energy crossings for the periodic charge potential only
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and for the periodic Abelian RSOC only happens at different slide values, in both cases, their origin
can be understood in terms of the symmetries characterizing the corresponding Hamiltonian matrix
sub-blocksHσ k.

Figure 5. Density plot of the topological invariant and corresponding classification of the different regions
as topological (T) and non-topological (NT) at α0 = t and V0 = α0/2 in (a), V0 =

√
2α0 in (b), and V0 = 2α0

in (c).

Indeed, in both cases, at the phases’ values which give the energy gap closing at k = 0 and half-filling,
we found that Hσ k=0 is characterized by chiral S and mirrorM symmetry, which are represented by
operators commuting each other. In such a case, it is possible to determine the possible presence of
zero-energy states in the energy spectrum through the definition of a topological invariant, given by the
sum of the trace of the chirality sub-blocks labeled by the different mirror eigenvalues [35]. In both cases
of periodic charge field only and periodic RSOC only, we found that this topological number is finite only
at the slide phase values where energy crossings at half-fillings happen, thus demonstrating that they are
topologically protected by chirality and mirror symmetries.

5. Conclusions

In this paper, we analyzed the combined effect of the application of modulated charge potential and
modulated Rashba spin-orbit coupling on a metallic atomic chain. We have demonstrated a feasible way
to drive the system into a topological nodal-line semimetal by sliding the phases of charge potential and
RSOC, for periodicity values λ = 4n with integer n, in the half-filling regime. The topological insulating
regime we found is characterized by topological insulating stripes, separated by non-topological ones
through nodal lines within the synthetic space (φV , φα). The resulting pattern has a “nematic” structure,
which strongly depends on the relative amplitude of the charge potential and RSOC field. Indeed, by
tuning this parameter, it is possible to modify the structure of the nodal lines, as well as the topological
phase transitions in the space (φV , φα), and thus change on demand the shape and the extension of the
area in the synthetic space where the topological phase exists. The emerging topological nodal-line
semi-metallic phase is protected by particle-hole symmetry. Our results show an interesting and simple
way to dynamically switch on and off the topological insulating phases by exploiting spatially modulated
charge potential and RSOC.

Physical platforms where such possibilities can be realized and tested are represented by Fermi gases
loaded in a periodic optical lattice, as well as in semiconductor nanowires with perpendicular modulated
voltage gates, or with complex geometrical shapes, obtainable via nanostructuring methods such as, for
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instance, electron beam lithography or adhesion of ribbons on pre-strained substrates. Within this context,
low-dimensional systems with non-trivial geometry have been already demonstrated to offer a potential
playground for triggering new functionalities through the exploitation of curvature effects, such as, for
instance, in tuning the electron spin interference [36] and the superconducting state [37] in closed-loop
configurations, as well as the supercurrent in weak links between Rashba coupled superconducting
nanowires with geometric misalignment [38]. Our findings, therefore, add a new important piece to the
rich puzzle of unique curvature-induced quantum effects in low-dimensional semiconducting systems.
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