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Abstract: It has been recently shown that fast oscillating control fields can be used to speed up
an otherwise slow adiabatic process, making the system always follow an instantaneous eigenvector
closely. In applying this method though, one typically assumes perfect phase relations among the
control fields. In this work, we discuss the effect of potential static phase errors. We show that the
latter can in some cases produce higher fidelities, leading to an unexpected improvement of the
method. This is shown numerically and explained via a perturbative expansion of the error produced
by the control strategy. When high-precision phase control is accessible, the results suggest that the
phases of the control field can be used as free parameters whose optimization can be beneficial for
the control protocol.

Keywords: quantum control theory; shortcuts to adiabaticity; fast oscillations; phase offsets;
nonlinear phenomena; Landau–Zener; Jaynes–Cummings model

1. Introduction

The capability of preparing and manipulating with high precision the state of a quantum system is
essential for the study of quantum phenomena, both for the investigation of fundamental aspects and
for the development of technological applications. One of the most interesting control methodologies
relies on a fundamental result of Quantum Mechanics, namely the adiabatic theorem [1]. This states
that, given a time-dependent Hamiltonian, if the rate of the time evolution is sufficiently slow and
there are no level crossings, then a system initially in an instantaneous eigenstate always remains in
the corresponding instantaneous eigenstate at future times.

Although the adiabatic method is simple and robust by construction, for practical high-precision
applications it often requires too long total evolution timescales, which are ultimately limited by
dissipation and decoherence effects. For this reason, many strategies have been recently proposed for
speeding up the quantum adiabatic dynamics, which are referred to as “shortcuts to adiabaticity” [2].
These methods can produce the desired evolution exactly in arbitrarily short time, provided one is
able to implement sufficiently strong control fields. However, the implementation of the accelerated
protocol is often experimentally challenging. This is so since it typically requires time-dependent
tuning of matrix elements which are not controllable in the original Hamiltonian [2,3], therefore
demanding new resources and modifications of the experimental setup. Indeed, experimental proofs
have been limited to few level systems and typically needed adaptations [4–7]. The problem can
be circumvented by working in carefully selected interaction pictures and relaxing the constraint of
following the adiabatic path at all times, i.e., by asking the evolution to match the adiabatic eigenstates
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only at the beginning and at the end of the protocol, see e.g., [8–10]. This, however, results in a
completely nonadiabatic method, thus arguably dropping the advantage of using adiabatic strategies.

Recently, it was shown that it is possible to achieve both effective instantaneous following of
the adiabatic states and no necessity to control new matrix elements at the same time [3]. This can
be done by introducing fast oscillations in the parameters of the initial Hamiltonian which mimic
the action of a full shortcut-to-adiabaticity Hamiltonian. Therefore, the necessity of new control
knobs is traded for a high degree of controllability of those initially available and for an approximate
rather than exact driving. This methodology has been theoretically exemplified in a precise circuit
quantum electrodynamics (QED) experimental context in Ref. [11], where the experimental realizability
is discussed in detail.

An interesting feature recognized in previous work [3,11] is that this scheme requires precise
phase relations between oscillations in different Hamiltonian matrix elements, which may not be easily
guaranteed experimentally. Nonetheless, it was also noticed that small phase offsets could interestingly
lead to an unpredicted improvement of the method. For this reason, in this work we elaborate in
more detail on this phenomenon, studying how small biases in the relative phases of the control fields
affect the performance of the protocol. We confirm that improvements can be obtained and we explain
their origin in relation to the procedure for constructing the accelerating control fields. This new
understanding allows us to speculate on the potential use of the phases of the control elements as
additional parameters for optimizing the control method, also opening a connection with optimal
control theory.

After reviewing the general method in Section 2, we derive general system-independent
expressions for the corrections to the final fidelity in Section 3, which are then applied to the case
study of a two-level system in Section 4, connecting our results to previous work. In particular,
it is explained that, in some cases, small phase shifts can be exploited to improve the control method
without adding higher harmonics to the oscillating control functions. Our central result is Equation (26)
highlighting the role of the phase biases on the efficiency of the protocol. In Section 5, it is then shown
numerically that these mechanisms are present also in multilevel systems, by considering the case of
a sped-up adiabatic protocol which produces entanglement between two qubits dispersively coupled
to a resonator [11].

2. Effective Counterdiabatic Driving

In this section, the method introduced in Ref. [3] is reviewed. Let us begin by summarizing
the main features. The fundamental idea is that of introducing fast oscillations and use them
to perturbatively counteract nonadiabatic transitions. Technically, this is done by decomposing
the evolution into time steps determined by the small fundamental period of oscillation T of the
control functions. Then, the propagator is written down at the end of each time step as a Magnus
(exponential) [12] perturbation expansion in small T. The time integration over a full period of the
oscillating control functions averages out the oscillations, leaving an effective expression for the
propagator which depends only on the oscillation amplitudes and on the phases. These parameters are
then used as free parameters to enforce equality of the actual dynamics, to first orders in T, with the
desired adiabatic one. In the following, the details are provided by formulating the problem in the
instantaneous adiabatic frame and including potential phase shifts among the control functions.

General Setup

Let the Hamiltonian of the finite-dimensional system be H(t) = ∑N
n=0 En(t) |nt〉 〈nt|, where En(t)

are the instantaneous eigenvalues, assumed to be never crossing, while |nt〉 are the instantaneous
eigenvectors. The Hamiltonian H(t) is assisted by a correcting control Hamiltonian Hc(t). The time
dependent Schrödinger equation governing the evolution of the system is then (h̄ = 1)

i∂tU(t) = [H(t) + Hc(t)]U(t). (1)
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Let us assume that both H(t) and Hc(t) can be written as a linear combination of the same M
time-independent Hamiltonians {Hk}k=1,...,M: this assumption guarantees that Hc can be formally
absorbed into H, i.e., that Hc does not include initially unavailable matrix elements. The matrices
{Hk} are assumed to be linearly independent and they determine the matrix structure of H:

H(t) =
M

∑
n=1

hn(t)Hn, Hc(t) =
M

∑
n=1

Fn(t)Hn. (2)

The correcting Hamiltonian Hc is also assumed to include only fast oscillating terms with
fundamental frequency Ω and a limited—small, in principle—number of harmonics ±`Ω with
1 ≤ ` ≤ L and L a natural number. Let us indicate with ZL = {−L, . . . ,−1, 1, . . . , L} the set of
integer numbers from −L to L with zero excluded. One can thus write the control functions Fn(t) in
terms of a truncated Fourier series:

Fn(t) =
√

Ω ∑
l∈ZL

fn,leilΩt+iφn,l . (3)

Most relevant for the present work are the potentially different phases φn,l occurring in different
control functions. The proportionality with Ω is chosen since we have in mind applications to avoided
crossing scenarios; as will become clear in Section 4, for this kind of problems this choice allows to
counteract nonadiabatic effects to order T. In fact, it permits one to enhance second order (in T) terms in
the expansion of the propagator which can then be used to counteract first order undesired transitions.

For studying nonadiabatic effects, it is now convenient to move to a time-dependent frame defined
by the instantaneous adiabatic basis, that is the basis of instantaneous eigenvectors multiplied by the
dynamical and geometric phase factors [13],

A(t) =
N

∑
n=0

e−i
∫ t

0 En(t′)dt′−
∫ t

0 Θn(t′)dt′ |nt〉 〈n0| , (4)

where Θn(t) = 〈nt|∂tnt〉 is the effective vector potential which produces the geometric phase [14].
In this frame, the Hamiltonian can be written like H(A)(t) = H(A)

c (t) + H(A)
na (t) and the Schrödinger

Equation (1) is thus
i∂tUA = H(A)UA, (5)

where UA = A†U and, introducing ωnm ≡ En(t)− Em(t)− i[Θn(t)−Θm(t)] and using Equations (2)
and (3),

H(A)
c = A†Hc A =

1,N

∑
n,m

M

∑
k=1

∑
l∈ZN

fk,leilΩt+iφk,l ei
∫ t

0 ωnm(t′)dt′ 〈nt|Hk |mt〉 |n0〉 〈m0| , (6)

H(A)
na = i∂t A† A = i

1,N

∑
n,m

n 6=m

ei
∫ t

0 ωnm(t′)dt′ 〈∂tnt|mt〉 |n0〉 〈m0| . (7)

Recall that the controllable matrices {Hk}were introduced in Equation (2). Using Equation (2) and
the relation 〈∂tnt|mt〉 = 〈nt |∂t H(t)|mt〉

Enm(t) with Enm(t) = En(t)− Em(t), which can be obtained by taking
the time derivative of the eigenvalue equation H(t) |nt〉 = En(t) |nt〉, Equation (7) can be further
rewritten like

H(A)
na =

1,N

∑
n,m

n 6=m

M

∑
k=1

ei
∫ t

0 ωnm(t′)dt′ ∂thk(t)
Enm(t)

〈nt|Hk |mt〉 |n0〉 〈m0| . (8)
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Let us now consider an evolution time equal to one period T = 2π/Ω. A formal solution of
Equation (5) can be written in exponential form as a Magnus expansion [12] (assuming that T is
sufficiently small for the expansion to converge): UA(T) = exp[∑nM(n)(t)]. The first terms are

M(1)(T) =− i
∫ T

0
H(A)(t1)dt1 (9a)

M(2)(T) =
(−i)2

2

∫ T

0
dt1

∫ t1

0
dt2

[
H(A)(t1), H(A)(t2)

]
(9b)

M(3)(T) =
i

3!

∫ T

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3

([
H(A)(t1),

[
H(A)(t2), H(A)(t3)

]]
(9c)

+
[

H(A)(t3),
[

H(A)(t2), H(A)(t1)
]])

. (9d)

The terms of the Magnus expansion generated by H(A)
c alone will be denoted asM(k)

c with k
relating to the number of nested commutators involved. Similarly, those generated by H(A)

na will be
denoted asM(k)

na , while terms whose integrands are mixed commutators of H(A)
c and H(A)

na will be
denoted byM(k)

mix. As an example,M(0)
mix = 0 and

M(1)
mix = −1

2

∫ T

0
dt1

∫ t1

0
dt2

{[
H(A)

c (t1), H(A)
na (t2)

]
+
[

H(A)
na (t1), H(A)

c (t2)
]}

. (10)

Let us remark that, since our objective is that of achieving an expansion in T for the propagator, if
the solution of the equation i∂tU

(A)
c = H(A)

c U(A)
c is known in closed form then it would be convenient

to further move to the frame defined by U(A)
c ; this would remove from Equation (9) theM(k)

c terms,
being re-summed, leaving an expansion in T as desired. However, this is typically not the case in
general. The recipe of the control method here discussed is to compute the expressions (9) while
keeping terms up to a certain desired order in T. Then, the amplitudes { fn,k} of the oscillations in
Equation (3) are to be used to make vanish as many terms as possible for increasing powers of T.

3. System-Independent Expressions

3.1. Magnus Terms

Using the expressions of Equations (6) and (7) into Equation (9), one can compute the general
expressions for the first order terms of the expansion in T of the propagator at the end of a time step.
Since it is assumed that the oscillations in Hc are much faster than the timescales of the system, we
will assume that all the quantities except the exponentials in Equation (6) are constant within the time
interval T. This formally amounts to consider an expansion at T/2 for all of them, where only the
value evaluated at T/2 is kept. This approximation allows us to compute the integrals. Recalling that
Hc ∝

√
Ω (see Equation (3)) the results up to order Ω−3/2 are of the form

M(0)
c (T) =m(0)

c Ω−3/2 + o(Ω−5/2); M(1)
c = m(1)

c Ω−1 + o(Ω−2);

M(2)
c (T) =m(2)

c Ω−3/2 + o(Ω(−5/2); M(0)
na = m(0)

na Ω−1 + o(Ω−2),

where
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m(0)
c =− 2πi

1,N

∑
n,m

M

∑
k=1

∑
l∈ZL

fk,l

l
eiφk,l ωnm 〈nt|Hk |mt〉 |n0〉 〈m0| (11a)

m(1)
c =− 2πi

1,N

∑
n,m

1,M

∑
k,k′

L

∑
l=1

fk,l fk′ ,−l

l
ei(φk,l+φk′ ,−l) 〈nt| [Hk, Hk′ ] |mt〉 |n0〉 〈m0| (11b)

m(2)
c =− 2πi

3

1,N

∑
n,m

1,M

∑
k,k′ ,k′′

{
∑

l∈ZL

L

∑
l′=1

3
ll′

fk,l fk′ ,l′ fk′′ ,−l′ e
i(φk′′ ,−l′+φk′ ,l′+φk,l)

+∑
l,l′

fk,l fk′ ,l′ fk′′ ,−l−l′ e
i(φk,l+φk′ ,l′+φk′′ ,−l−l′ ) 1

l(l + l′)

}
〈nt| [Hk, [Hk′ , Hk′′ ]] |mt〉 |n0〉 〈m0| (11c)

m(0)
na =2π

1,N

∑
n,m

n 6=m

M

∑
k=1

h′k(T/2)
Enm

〈nt|Hk |mt〉 |n0〉 〈m0| . (11d)

Notice that UA of Equation (5) can thus be written as

UA = exp

[
m(1)

c + m(0)
na

Ω
+

m(0)
c + m(2)

c

Ω3/2 + o(Ω−2)

]
. (12)

Let us remark that the first order inM(1)
mix is o(Ω−5/2).

3.2. Infidelity

Since our objective is that of studying the effect of the phases {φk,j} on the efficiency of the method,
we want to derive an expression which quantifies the deviations from adiabaticity as a function of
such phases. In order to do so, it is convenient to study the probability that the system has deviated
from the instantaneous eigenstate at the end of the time step T. This is defined by

IT = 1− | 〈ψtg|ψ(T)〉 |2,

and we call it the infidelity between the system state |ψ(t)〉 and target state |ψtg(t)〉 at the end of one
time step T. In order to express IT in our adiabatic frame, let us note that, given the initial system state
|ψ0〉, it holds that |ψtg(t)〉 = A(t) |ψ0〉, with A(t) defined in Equation (4), while for the evolving state
|ψ(t)〉 it holds |ψ(t)〉 = U(t) |ψ0〉, with U(t) defined by Equation (1). Therefore IT can be written like

IT = 1− | 〈ψ0|UA(T) |ψ0〉 |2, (13)

which is consistent with the fact that the adiabatic evolution in the adiabatic frame is by definition
time independent.

In order to compute an expansion of Equation (13) for small T, let us consider the propagator UA

written in exponential form, and let us write the exponent as a power series in T with half-integer
powers, k = 1, 3/2, 2, . . . . The half-integer powers are necessary due to the proportionality of Hc with√

Ω, see Equations (2) and (3). Thus,

UA(T) = exp

(
∑
k

ukTk

)
.

From Equation (12), one can immediately identify

u1 = m(1)
c + m(0)

na ; u 3
2
= m(0)

c + m(2)
c . (14)
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For easing up the notation, let 〈·〉 denote the average value 〈ψ0| · |ψ0〉. An expansion of
|〈UA(T)〉 |2 can be obtained by expanding the matrix exponential for small T, taking the average
value termwise and then compute the modulus squared. Let us remark that, since all the Magnus
terms are skew-hermitian, the expectation value

〈
Mk

〉
is imaginary and thus <

〈
M(k)

〉
= 0 for all k.

This implies in turn that < 〈uk〉 = 0 for all k. Up to order T3, the infidelity can then be written like

IT =−
[
<
〈

u2
1

〉
+ |〈u1〉|2

]
T2

−
[
2<
(
〈u1〉∗

〈
u 3

2

〉)
+<

〈
{u1, u 3

2
}
〉]

T5/2

−
[
< 〈{u1, u2}〉+<

〈
u2

3
2

〉
+
∣∣∣u 3

2

∣∣∣2 + 2< 〈u1〉∗ 〈u2〉
]

T3. (15)

Let us now assume that the system is initially in an instantaneous eigenstate, say |ψ0〉 = |j0〉.
Then, using Equations (11), one can note that

〈
m(1)

c

〉
= 0 and

〈
m(1)

na

〉
= 0, so from Equation (14) it

holds that 〈u1〉 =
〈

m(1)
c

〉
,
〈

u 3
2

〉
=
〈

m(2)
c

〉
.

3.3. Real Hamiltonians

For real Hamiltonians, the expression (15) for the infidelity can be further simplified.
Let us indicate with ad(k)(X) the nested commutator [X(ti1), [. . . , [X(tik ), X(tik+1

)]] . . . ] involving

k commutators, which appear in the Magnus expansion. Denoting withM(n)
mix(even) the commutators

inM(n)
mix which contain an even number of H(A)

c , we can then state

Observation 1. For real H(t) and for an initial state |ψ0〉 = |j0〉, it holds that

(i)
〈
M(2n−1)

c

〉
= 0 for n ∈ N;

(ii)
〈
M(n)

mix(even)
〉
= 0.

Proof. (i) Due to the properties of the commutator under unitary transformations

〈j0| ad(2n−1)
[

H(A)
c

]
|j0〉 = 〈j0| A†ad(2n−1) [Hc] A |j0〉 = 〈jt| ad(2n−1) [Hc] |jt〉 . (16)

Since H(t) is real, the matrices {Hk} are real symmetric and so is Hc. Then, the commutators
ad(2k−1)[Hc] are real skew-symmetric and are thus orthogonal, with respect to the Hilbert–Schmidt
inner product, to the whole subspace spanned by the {Hk}. From this it follows, since |jt〉 is an
eigenstate of a combination of {Hk}, that 〈jt| ad(2n−1) |jt〉 = 0 and thus that

〈
M(2n−1)

c

〉
= 0.

(ii) For (real) symmetric H(t), A(t) of Equation (4) is a real orthogonal matrix. Therefore
−i∂t AA† = A(i∂t A† A)A† is imaginary skew-symmetric and is thus orthogonal to the subspace
spanned by the real symmetric matrices {Hk}. Then, it also holds that H(A)

na = i∂t A† A is orthogonal to
the subspace spanned by the matrices {A† Hk A}. Since the commutator of two matrices is symmetric
only if one of the two matrices is symmetric and the other is skew-symmetric, the commutators in
M(n)

mix(even) are of the form A†XA with X skew-symmetric, and they are thus orthogonal to the
subspace spanned by the matrices {A† Hk A}. Their average value is then zero.

Furthermore, we also have <
〈
{u1, u 3

2
}
〉
= 0 since u1 is purely real skew-symmetric while u3/2

is purely imaginary skew-symmetric. In conclusion, the infidelity of Equation (15) reduces to
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IT =−
[
<
〈

u2
1

〉]
T2 −

[
<
〈

u2
3
2

〉
+=2

〈
u 3

2

〉]
T3 (17)

=−
[
<
〈(

m(1)
c + m(0)

na

)2
〉]

T2 −
[
<
〈(

m(0)
c + m(2)

c

)2
〉
+=2

〈
m(2)

c

〉]
T3. (18)

4. Effect of Phase Shifts: Two-Level System

Using the general expressions reported in Section 3, we study in this section the effects of phase
shifts φk,l in the control functions in a simple yet important scenario, namely that of a two-level
system. In particular, the case of a two-level avoided crossing problem is considered in detail,
being this a fundamental phenomenon where non-adiabaticity mechanisms become of paramount
importance [15]. An avoided crossing occurs when two levels whose energy difference is varied would
cross if uncoupled, but, if they are coupled instead, they repel each other after reaching a minimal gap.
This phenomenon was first described theoretically by Landau [16], Zener [17] and Majorana [18], and
has been studied thoroughly in a variety of experiments, see e.g., [19–23]. Many complex nonadiabatic
phenomena can also be reformulated by means of multiple single-avoided-crossing scenarios [15,24–27].
Our aim is to show that slight phase offsets {φk,l} can lead to an improvement of the fast adiabatic
method based on fast oscillations discussed in the previous sections, and to explain this effect.

Let σ = {σ̂1, σ̂2, σ̂3} be the Pauli matrices. Let us consider a two-state problem (N = 2) with
initial Hamiltonian H(t) = H(t) · σ with H(t) = {h1(t), 0, h3(t)} (M = 2). That is, we assume that H
is controllable only along the σ̂1 and σ̂3 directions, while the σ̂2 direction is not directly available due
to experimental constraints. For instance, this can happen in planar superconducting circuits such
as the transmon [28] where it is not easy to control both real and imaginary parts of the couplings
between bare levels [7]. Note that the Hamiltonian H(t) is real-valued, and we are thus in the case of
Section 3.3. The correcting Hamiltonian Hc, being a linear combination of the same control matrices
σ̂1 and σ̂3, can be written in the form Hc(t) = F(t) · σ with F(t) = {F1(t), 0, F3(t)}. As it has been
suggested in Ref. [3] a first-order cancellation method can be achieved by choosing control functions of
the form F1(t) = A

√
Ω cos(Ωt) and F3(t) = B

√
Ω sin(Ωt) and this will be explained in more detail in

the following. Here, since we want to study “dephasing” effects between the control fields, we allow
for the presence of phase offsets φ1 and φ3 by taking

F1(t) = A
√

Ω cos(Ωt + φ1); F3(t) = B
√

Ω sin(Ωt + φ3). (19)

This choice, relative to Equation (3), implies that only the fundamental frequency is present, L = 1,
and it moreover holds that φk,l = −φk,−l ≡ φk, f1,1 = f1,−1 = A/2 while f3,1 = − f3,−1 = B/(2i).

In order to compute an expression for the infidelity of Equation (18) to the first two orders (T2

and T3), one can use Equation (11). Moreover, one can use the exact expressions for the eigenvectors of
H(t), which, since H(t) is real-valued, can be written in the parametrized form

|1t〉 = {− sin χ, cos χ} , |2t〉 = {cos χ, sin χ} , (20)

with 2χ = arctan(h1(t)/h3(t)) the azimuthal angle between H(t) and the z axis. In this way, one
determines, using Equation (11),
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m(0)
c =

4πi
Ω3/2 [Ah3 sin φ1 + Bh1 cos φ3] Σ̂2, (21)

m(1)
c =

2πi
Ω

AB cos ΦΣ̂2,

m(2)
c =

4πi
Ω3/2

AB√
h2

1 + h2
3

[
(A sin φ1h3 + B cos φ3h1)Σ̂3 + (A sin φ1h1 − B cos φ3h3)Σ̂1)

]
cos Φ, (22)

m(0)
na (T) =

2πi
Ω

ηΣ̂2, (23)

where we have introduced the relative phase Φ = φ1 − φ3, the matrices

Σ̂1 = |10〉 〈20|+ |20〉 〈10| , Σ̂2 = −i(|10〉 〈20| − |20〉 〈10|), Σ̂3 = |10〉 〈10| − |20〉 〈20|

and the nonadiabatic coupling η = 〈1t|∂t2t〉 = 〈1t |∂t H(T/2)|2t〉
E1−E2

. The latter can be computed

from the expressions in Equation (20) to be η = h1∂th3−h3∂th1
2(h2

3+h2
1)

. Thus, the first constraint equation,

u1(T) = m(2)
c + m(1)

na = 0, is

(iAB cos Φ + iη)σ2 = 0 =⇒ AB cos Φ = −η. (24)

If one was not aware of the presence of the phase offset Φ, a solution for Φ = 0 could be taken to be

A =
√
|η|; B = −sign(η)

√
|η|, (25)

as was done in Ref. [3]. This would be a good choice unless
√
|η(t)| was not a smooth function, in

which case different solutions may be more convenient. Insertion of Equation (22) into Equation (18)
gives the infidelity at the end of one time step T. Assuming that the system is initially in the ground
state, |ψ0〉 = |10〉, the result is

IT = η2(1− cos Φ)2T2 + 2
π

{
(Ah3 sin φ1 + Bh1 cos φ3)

2 + η2 cos2 Φ
h2

1+h2
3
(Ah1 sin φ1 − Bh3 cos φ3)

2
}

T3. (26)

With this expression at hand, the effect of phase shifts in the initial control functions can now be
discussed. For very small T, one can focus on the first order, T2, in Equation (26). This determines the
general behaviour; the infidelity oscillates for varying Φ with a period of 2π, reaching the maximum
value for Φ = π + 2kπ, k ∈ Z—that is, when the oscillating part of the control functions of Equation (19)
are in perfect phase match. On the other hand, the first order term is minimum for Φ = 0, i.e., for
control function with totally off-phase oscillating part as chosen in Equation (19). Interestingly, the
first order term turns out to be perfectly symmetric with respect to sign of Φ, so, if higher-order terms
are neglected, no benefit can come for the presence of phase offsets, since in such a case it always holds
that IT(Φ) ≥ IT(0).

Although the first term of the expansion of Equation (26) determines the global behaviour of IT,
more details can be obtained by inspecting the second term, of order T3. First of all, one can see that
this is no more symmetric with respect to the sign of Φ, in general. In fact, a term ∝ sin Φ appears,
breaking the symmetry unless φ1 = 0. This asymmetry has important consequences on the efficiency
of the method; indeed, for certain values of Φ 6= 0 the infidelity can be become smaller than IT(0) due
to a compensation of the terms in Equation (26), leading eventually to an improvement of the fidelity.

Secondly, the o(T3) term depends explicitly on φ1 and φ3, so when this term becomes relevant
the infidelity does not depend any more on the relative phase Φ only. This means that, even once the
relative phase is fixed, one may be able to tune φ1 and φ3 so to further minimize IT.
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Thirdly, the o(T3) term depends also on the choice of A and B as solutions of the constraint
Equation (24). This induces a dependence on the choice of the adiabatic sweep function, via the
nonadiabatic coupling η.

As a final remark, it must be noted that, for very small Φ, no information can in general be
obtained from Equation (26) if Φ enters a regime in which its magnitude is comparable with that of T.
In this case, in fact, Equation (26) would no longer be a valid expansion, and more terms would need
to be considered.

In order to corroborate the previous observations, we treat a specific example in the
following section.

4.1. Application: Avoided Level Crossing

The standard scenario where nonadiabatic effects become of great importance is when an avoided
crossing of energy levels occurs. A simple model to describe this phenomenon is to consider a two-level
Hamiltonian of the form

H(t) = h3(t)σ̂3 + h1σ̂1 (27)

with h1 constant in time while h3(t) is a sweep function such that h3(tc) = 0—that is, such that in
absence of the coupling h1 the levels would cross at t = tc. Depending on the rate of the sweep, which
determines the speed of the evolution, adiabaticity may be satisfied or violated. The simplest choice
for h3(t) is a linear sweep h3(t) = αt, as proposed by Landau, Zener and Majorana [15–18]. For this
case, an exact solution of the Schrödinger equation for t going from −∞ to +∞ can be computed,
for the system starting in the ground state, giving an asymptotic probability at time +∞ that the
system has jumped to the excited state. This is exponentially small in a certain adiabatic parameter
which quantifies the speed of the evolution—namely exp(−τ) with τ = πh2

1/α. In practical finite-time
problems though, more refined choices for h3(t) are much preferable if one wants to achieve the best
fidelity at the end of the sweep in a certain total time (while always remaining as close as possible to
true adiabaticity, i.e., to being in an instantaneous eigenstate). For this reason, here we will work with
the specific choice

h3(t) = h1 tan

[
c1

(
1− 2

t
t f

)]
, (28)

with c1 = arctan(∆/h1) where 2∆ is the initial energy gap, t f is the total duration time of the sweep,
and t ∈ [0, t f ]. This kind of sweep function was introduced in Ref. [11], following general recipes from
Refs. [29,30], and guarantees that the instantaneous rate of the evolution satisfies an instantaneous
adiabatic condition for all times.

Using the expressions (19) and (25), a correcting Hamiltonian for this problem is

Hc(t) =
√

Ω|ηt|[−sign(ηt) cos(Ωt)σ̂1 + sin(Ωt)σ̂3], (29)

with ηt = −h1∂th3/2(h2
1 + h2

3).
Introducing the dimensionless quantities τ = t f h1, ω = Ω/h1, ξ = t f η and rescaling the physical

time like s = t/t f , s ∈ [0, 1], the Schrödinger equation can be written in the dimensionless form:

i∂sU(s) = τ[H(s) + Hc(s)]U(s), (30a)

H(s) = tan[c1(1− 2s)]σ̂3 + σ̂1, (30b)

Hc(s) =

√
ω|ξ|

τ
[−sign(ξ) cos(ωsτ)σ̂1 + sin(ωsτ)σ̂3]. (30c)

The numerical results discussed in detail in the following are obtained with the values of the
dimensionless parameters ∆/h1 = 10, τ = 0.1. The instantaneous energy levels and the shape of the
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sweep function of Equation (28) for these parameters are plotted in Figure 1a, while the evolution
given by the control method, for ω/2π = 15 is compared with the adiabatic dynamics in Figure 1b.
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t/
t f

I(t/tf)

(b)
Figure 1. (a) The blue solid lines represent the time evolution of the two energy levels, measured in
units of the coupling h1, of the two-level Hamiltonian of Equation (27) with a sweep function of the
form in Equation (28). The latter is represented, again in units of the coupling h1, by the black dashed
line. (b) Infidelity as a function of time and representation on the Bloch sphere of the evolution given by
the effective counterdiabatic driving for a two-level avoided crossing problem. The dashed black line
shows the instantaneous ground state, which is initially close to the σ̂3 eigenstate |↓〉 while at the end is
close to |↑〉. The solid blue line shows the evolution given by the control method with Hamiltonian of
Equation (30) and parameters ∆/h1 = 10, τ = 0.1, ω = 2π × 15. The controlled dynamics oscillates
around the target evolution.

Figures 2 and 3 show the dependence of the infidelity on the phase offset Φ for a sweep function
of the form of Equation (28) and for fixed φ3 = 0 (so Φ = φ1). Numerical data are indicated with
symbols. In Figure 2, the general behaviour for an ample range of phase errors −π ≤ Φ ≤ π is shown.
It is appreciable how this is very well described by the oscillating term ∝ (1− cos Φ)2 of Equation (26).
Nonetheless, such a description becomes ineffective for values of Φ closer to zero. This can be seen
from Figure 3a, where the same general behavior for −π ≤ Φ ≤ π is shown for different values of
T, in semilogarithmic scale; the blue dashed line represents the o(T2) term in Equation (26), which
is a good description only when Φ is not small. The behavior near zero is captured by taking into
account also the o(T3) term (red solid line). The latter introduces an asymmetry around zero with
respect to the sign of Φ which becomes evident for small Φ: this is shown in Figure 3c for different
values of T, with the blue line produced by considering both terms in Equation (26). As T increases, so
does the asymmetry, due to the increasing importance of higher-order terms. From Figure 3c, it is also
interesting to note that the asymmetry can produce a minimum which can be smaller than the value
for Φ = 0, witnessing again the fact that small phase offsets can be beneficial for the control method.
Once the relative phase Φ is fixed, one has still freedom to choose the phase φ1 = φ3; although the first
term is invariant with respect to this choice, the second one is not. This leaves room for optimization of
φ1 for further minimizing the infidelity in each time step. As an example, in Figure 3b, the infidelity is
shown for Φ = 0 and varying φ1. It is evident that some choices of φ1 can strongly reduce the infidelity
with respect to a null φ1. Numerical simulations show that performing such an optimization in each
time step can decrease the infidelity at the end of the whole protocol almost by one order of magnitude.
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Figure 2. General behaviour of the infidelity IT(Φ) at the end of one time step T ∼ 7 × 10−4 as
a function of the phase error Φ, in units of π, for the accelerated adiabatic protocol described by
Equation (30). The blue circles indicate the result of numerical simulations, while the solid black line
indicates the prediction given by the first term of Equation (26).
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Figure 3. Behavior of the infidelity at the end of a time step T, for an avoided crossing problem with
sweep function of the form in Equation (28), as a function of phase shifts. (a) Dependence on the
relative phase Φ between the control functions of Equation (19) for different values of T (and so of Ω):
T = 10−4, 7× 10−4, 5× 10−3, 4× 10−2. Symbols represent the result of numerical simulations, while
the dashed blue curve represents the description given by the first term of Equation (26) and the solid
red line is obtained by including both terms of Equation (26). Far from zero the first term is a sufficiently
good description, and this is also true in the vicinity of zero when T decreases. The behavior near zero
requires to take into account also the second term. The latter introduces asymmetries with respect to
the sign of Φ, which are more pronounced for smaller T, as can be seen from panel (c). The second
term also introduces an explicit dependence on the specific phases φ1, φ3: this is evident from panel (b),
where the infidelity for null relative phase Φ = 0 is shown as a function of φ1 = φ3. This interestingly
shows that, once the first term is made to vanish by choosing Φ = 0, the second term can be minimized
by a suitable choice of phases φ1 = φ3 in each time step. Again, the symbols represent numerical data
while the solid green-blue line is the prediction of Equation (26).
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5. Beyond Two Levels: Two Atoms in a Cavity

In Ref. [11] an effective counterdiabatic scheme was proposed for speeding up an adiabatic
entangling protocol between two superconducting qubits coupled to a transmission line resonator.
Due to the complexity of the full multi-level problem, exact analytical expressions in the general case
are hardly accessible. Therefore, we discuss the data produced by numerical simulation in the light of
the results of the previous section, showing that an insight into the dependence on the phase shift can
be obtained also in this scenario. The Hamiltonian of the problem in the rotating wave approximation
is of Jaynes–Cummings form:

H = ωr â† â +
2

∑
k=1

ωk
2

σ̂
(k)
3 +

2

∑
k=1

gk[σ̂
(k)
+ â + σ̂

(k)
− â†], (31)

where ωr and ωk—k = 1, 2—are the transition frequencies of the resonator and of the two qubits,
respectively, while gk denotes the coupling between qubit k and the resonator. The idea of the
entangling protocol is that of exploiting an avoided crossing which emerges between states |n ↑↓〉 and
|n ↓↑〉, where n is the number of photons while the |↑〉 denote the states of the qubits, when the two
qubits get in resonance with each other far in frequency from ωr. This avoided crossing results in the
dispersive regime ωk − ωr � gk from the emergence of an effective exchange interaction mediated
by the exchange of virtual photons through the resonator. If the system starts in the state |n ↑↓〉,
for instance, driving the system adiabatically into qubit resonance produces the entangled singlet
state (|n ↑↓〉 − |n ↓↑〉 /

√
2. In order to bring the two qubits into resonance, one drives their transition

frequencies, so that the sweep function is f (t) = (ω1(t)−ω2(t))/2. For the system starting in |1 ↑↓〉
and for g1 = g2 ≡ g, the correcting Hamiltonian Hc, derived in Ref. [11], requires a time-dependent
driving of the couplings g. It reads

Hc =
√

2Ωη2,3

{
sin(Ωt)[σ̂(1)

+ â + σ̂
(1)
− â†] + cos(Ωt)[σ̂(2)

+ â + σ̂
(2)
− â†]

}
, (32)

where η2,3 = | 〈2t|∂t3t〉 | and |2t〉 and |3t〉 are the second and third excited instantaneous eigenvectors
of the whole system. As opposed to the two-level case, the nonadiabatic coupling η2,3(t) requires
numerical evaluation. This correcting Hamiltonian counteracts unwanted transitions between the two
levels involved in the crossing, neglecting effects in the rest of the spectrum, since these are the major
obstacle to the desired state transfer.

Let us now suppose that a phase shift is introduced such that, in the above Equation (32),
cos(Ωt) −→ cos(Ωt + Φ). Figure 4 shows the dependence of the infidelity at the end of one time step
T, in units of the unperturbed infidelity IT(0), as a function of the phase error Φ. The blue symbols
are the results of numerical simulations with parameters ω1(0)/2π = 6.01 GHz, f (0)/2π = 10 MHz,
Ω/2π = 7 GHz, g1/2π = g2/2π ≡ g/2π = 10 MHz and a sweep function of the form

f (t) = g0 tan[α(1− t/t f )],

with α = arctan[ f (0)/g0] and 2g0 the minimal width of the anticrossing extrapolated from numerical
diagonalization. This is similar to the one in Equation (28), but it stops ( f (t f ) = 0) at the crossing. One
can recognize from Figure 4 the same general oscillatory behaviour found in Section 4, which is well
captured, far from its nodes, by the black solid line: this line represents a fit with functional dependence
as in the first term of Equation (26), namely k[1− cos(Φ)]2 with k free parameter. In the vicinity of the
values Φ = ±2nπ though, higher order effects again come into play. Focusing in the neighborhood of
zero, an asymmetry with respect to the sign of Φ is present, so that for small positive Φ the infidelity
becomes lower than the unperturbed value. We thus see once again that small phase offsets can lead
to an accidental improvement of the control protocol. The systematics of this phenomenon further
suggest that it can be exploited for optimizing the method.
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Figure 4. Infidelity at the end of one time step T as a function of the phase error Φ. The blue symbols
indicate the result of a numerical simulation, while the solid black line represents a fit according to the
dependence k[1− cos(Φ)]2, suggested by the first term in Equation (26), with k a free parameter. The fit
well describes the data far from the nodes of the fitting function, well reproducing their oscillatory
pattern. Closer to ±2nπ, higher order effects in T show up, inducing an asymmetry which can lead to
smaller infidelities.

In conclusion of this analysis, the parameter ranges should be discussed in which these effects are
appreciably detectable. This is strictly related to the presence of other secondary phenomena which
compete in slightly affecting the value of the infidelity on the same order of magnitude. For the specific
framework treated in this section, the essential phenomenon which must be particularly taken into
account is that of transitions towards levels other than the two involved in the crossing. We refer to
Ref. [11] for a detailed discussion. The strength of this transition channel depends on the total duration
of the protocol and on how good the dispersive-regime approximation is. The latter in turn depends on
how large is the ratio (ωk −ωr)/g. The effects due to the phase shift are related instead to the strength
of second-highest-order term in the expansion of the infidelity in the time step T, see Equation (26),
which in turn depends on the system parameters and especially on how small T is. Assuming that
T is sufficiently small for the method to converge at the end of each time step, these effects become
visible for larger T, while they are reduced as T diminishes as discussed in Section 4.1. In Figure 5 we
show how the dependence of the infidelity on the phase offset Φ behaves as the parameter g is varied,
thus affecting the dispersive-regime approximation. For facilitating the comparison, all the curves are
renormalized in such a way that the highest value reached in the interval considered lies at ordinate 1.
It is immediately clear the general ∼ (1− cos Φ)2 oscillating behaviour is robust even if g becomes
large (larger values would challenge the validity of the Hamiltonian (31) in the experimental platform
considered here, due to effects beyond the strong-coupling regime between qubits and resonator [31]).
For small g ∼ 3 MHz, transitions to other levels can be neglected and the time step T is sufficiently
small for the ∼ (1− cos Φ)2 behaviour to be completely dominant. For larger values of g, asymmetries
in the vicinity of zero become more visible. For larger values of g the whole pattern start to shift with
respect to Φ = 0, indicating the emergence of further effects.
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Figure 5. The left panel shows the behaviour of the infidelity at the end of one time step as a function
of the phase offset Φ, for different values of the qubits-resonator couplings g. The values are rescaled in
such a way that the highest value in the interval lies at ordinate 1 for all curves (all nonscaled maximal
values lie below 2× 10−2). All curves present a general ∼ (1− cos Φ)2 pattern, as predicted using
Equation (26). For small g = 3 MHz, this pattern is dominant (black solid curve), while for larger values
the contributions in the vicinity of Φ = ±2kπ become relevant, showing substantial asymmetries with
respect to Φ. The right panel shows an inset for Φ close to zero where asymmetries with respect to the
sign of Φ are evident.

6. Discussion

We have discussed the effect of phase errors in the control functions for a control method
which performs effective counterdiabatic driving by using fast oscillations. We have derived general
expressions for the first order terms of the error produced by the protocol. These have been applied to
the case of an avoided crossing problem, well explaining the behaviour found in numerical simulations.
The results show that, on the scale of large values of the phase error Φ (as compared to π), the fidelity
oscillates as a function of Φ and the protocol typically becomes sensibly less efficient. Nonetheless,
it turns out to be rather stable against small values of Φ. Remarkably, small values of Φ can also
produce higher fidelities. This is due to the small phase error leading to an accidental compensation
of the first terms in an expansion of the infidelity. As a result, nonadiabatic transitions are further
suppressed with respect to the basic protocol and the method turns out to be more efficient. This
mechanism, well understood in the case of a two-level system, is confirmed numerically also for a
more complex multilevel system. Also in this scenario, in fact, the infidelity oscillates for large Φ,
while it can diminish for small Φ.

These results are a good evidence that a fine tuning of the phases of the control field can be used
for an optimization of the control protocol, without needing to include more expensive resources, such
as new control fields or higher harmonics.
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