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Abstract

:

It is very important to elucidate the mechanism of superconductivity for achieving room temperature superconductivity. In the first half of this paper, we give a brief review on mechanisms of superconductivity in many-electron systems. We believe that high-temperature superconductivity may occur in a system with interaction of large-energy scale. Empirically, this is true for superconductors that have been found so far. In the second half of this paper, we discuss cuprate high-temperature superconductors. We argue that superconductivity of high temperature cuprates is induced by the strong on-site Coulomb interaction, that is, the origin of high-temperature superconductivity is the strong electron correlation. We show the results on the ground state of electronic models for high temperature cuprates on the basis of the optimization variational Monte Carlo method. A high-temperature superconducting phase will exist in the strongly correlated region.
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1. Introduction


It is a challenging research subject to clarify the mechanism of high temperature superconductivity, and indeed it has been studied intensively for more than 30 years [1,2,3]. For this purpose, it is important to clarify the ground state and phase diagram of electronic models with strong correlation because high temperature cuprates are strongly correlated electron systems.



Most superconductors induced by the electron–phonon interaction have s-wave pairing symmetry. We can understand physical properties of s-wave superconductivity based on the Bardeen–Cooper–Schrieffer (BCS) theory [4,5,6]. The critical temperature Tc of most of electron–phonon superconductors is very low except for exceptional compounds. Many unconventional superconductors that cannot be understood by the BCS theory have been discovered. They are, for example, heavy fermion superconductors, organic superconductors and cuprate superconductors for which the pairing mechanism is different from the electron–phonon interaction. In particular, cuprate superconductors exhibit relatively high Tc and have become of great interest. A common feature in both electron–phonon systems and correlated electron systems is that critical temperature may have a strong correlation with the energy scale of the interaction that induces electron pairing.



This paper has two parts. In the first part, we give a review on mechanisms of superconductivity in the electron–phonon system and in the correlated electron system. In the second part, we mainly discuss the mechanism of high-temperature cuprates.



The model for CuO2 plane in cuprate superconductors is called the d-p model or the three-band Hubbard model [7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]. It is certainly a very difficult task to elucidate the phase diagram of the d-p model. Simplified models are also used to investigate the mechanism of superconductivity, for example the two-dimensional (2D) single-band Hubbard model [25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50] and ladder model [51,52,53,54,55,56]. The Hubbard model was introduced to understand the metal–insulator transition [57] and was employed to understand various magnetic phenomena [58,59]. On the basis of the Hubbard model, it is possible to understand the appearance of inhomogeneous states reported for cuprates, such as stripes [60,61,62,63,64,65,66,67] and checkerboard-like density wave states [68,69,70,71]. It was also expected that the Hubbard model can account for high temperature superconductivity [72].



A variational Monte Carlo method is used to examine the ground state properties of strongly correlated electron systems, where we calculate the expectation values exactly using a numerical method [28,29,30,31,36,37,38,39,40,41]. We introduced the wave function of exp(−S)-type in the study of superconductivity in the Hubbard model [73,74,75]. This wave function is very excellent in the sense that the energy expectation value is lower than that of any other wave functions [50].



The paper is organized as follows. In Section 2.1, we discuss the phonon mechanism of superconductivity. In Section 2.2, we discuss the electron mechanism of superconductivity. Section 2.3 is devoted to a discussion on superconductivity in correlated electron systems. In Section 3.1, we show the model for high temperature cuprates. We present the optimization variational Monte Carlo method (OVMC) in Section 3.2. We show the results on superconductivity based on the OVMC in Section 3.3. We discuss the stability of antiferromagnetic state in Section 3.4. We show the phase diagram when the hole doping rate is changed in Section 3.5. We give a summary in Section 4.




2. Part I. Superconductivity in Many-Electron Systems


2.1. Possibility of High-Tc Superconductivity


In the BCS theory, the electron–phonon interaction is assumed to induce attractive interaction between electrons and the pairing symmetry is s-wave [4,5,6]. There are many superconductors with s-wave pairing symmetry and most of them are due to the electron–phonon interaction. The BCS theory was successful to explain physical properties of these superconductors.



In the strong-coupling theory based on the Green function formulation [76,77], the critical temperature Tc was estimated as [78],


Tc=θD1.45exp−1.04(1+λ)λ−μ*(1+0.62λ),



(1)




where λ is the electron–phonon coupling constant, θD=ℏωD/kB is the Debye temperature and μ* is the renormalized Coulomb parameter defined by


μ*=μ1+μln(ϵF/ωD),



(2)




for μ=U/ϵF where U is the strength of the Coulomb interaction and ϵF is the Fermi energy. μ* is the phenomenological parameter being approximately 0.1.



The electron–phonon coupling constant λ is expressed as


λ=2∫0∞dωα(ω)2F(ω)ω,



(3)




where α(ω) is the averaged electron–phonon coupling over the Fermi surface and F(ω) indicates the product of the spectral function of phonon and the density of states. This is approximately written as


λ≃ρ(ϵF)⟨I⟩2MωD2,



(4)




where ρ(ϵF) is the density of states at the Fermi surface and M is the mass of an atom. McMillan predicted that Tc would have a limit being of the order of 30 K from the analysis for this formula [78].



The McMillan formula was modified by replacing θD/1.45 by logarithmic Debye frequency ωln where [79]


ωln=exp2λ∫0∞dωα(ω)2F(ω)lnωω.



(5)




It was predicted that high critical temperature would be possible for large λ since Tc∝λ for λ≫1. If ωln is large, λ is also large, and the crystal is stable, high Tc would be realized. It was predicted that high Tc would be realized in hydrogen solid with high Debye temperature [80]. In fact, high temperature superconductors with Tc above 200 K were discovered under extremely high pressure (160∼200 GPa) in hydrogen compounds such as H3S and LaH10 [81,82,83].



It is important to consider multi-band superconductors in the search for high temperature superconductors. In fact, MgB2 and iron based superconductors are multi-band superconductors. An important role of Lifshitz transition in iron based superconductors and MgB2 multi-band superconductors has been predicted [84]. An interesting point is that the possibility of high-Tc superconductivity in materials where tuning the chemical potential shows a quasi-1D Fermi surface topology as in organics and hydrides [85]. A layered superconductor such as cuprate superconductor can be regarded as a multiband superconductor due to interlayer couplings. A multi-band superconductivity has been investigated as a generalization of the BCS theory since early works on the two-band superconductivity [86,87,88,89]. There will appear many interesting properties in superconductors with multiple gaps such as time-reversal symmetry breaking [90,91,92,93,94,95,96,97,98,99,100,101,102,103], the existence of massless modes [104,105,106,107,108,109], unusual isotope effect [110,111,112,113,114] and fractional-flux quantum vortices [115,116,117,118,119]. When we have multiple order parameters, there appear multiple Nambu–Goldstone bosons and Higgs bosons [104,120,121,122,123,124,125,126,127,128,129]. This will result in significant excitation modes that are unique in multi-band superconductors.



It is important to include in a theoretical picture the presence of multiple electronic components with anomalous normal state properties in the charge and spin sector, e.g., the well known Fermi arcs and charge pseudogap phenomenology. The “shape resonance” scenario of multigap BCS-BEC crossover has been proposed [130,131]. The study of the electronic structure of the cuprates superconductors Bi2Sr2CaCuO8+y and La2CuO4+y doped by mobile oxygen interstitials using local probes has shown a scenario made of two electronic components: a strongly correlated Fermi liquid which coexists with stripes made of anisotropic polarons condensed into a generalized Wigner charge density wave [132,133,134].




2.2. Electron Correlation and Superconductivity


We discuss the electron correlation due to the Coulomb interaction between electrons. The on-site Coulomb interaction is important in the study of the metal insulator transition and magnetic properties of materials. The Hubbard model is written as [25]


H=∑ijσtijciσ†cjσ+U∑ini↑ni↓,



(6)




where tij indicates the transfer integral and the second term denotes the Coulomb interaction with the strength U. tij are chosen as follows. tij=−t when i and j are nearest-neighbor pairs ⟨ij⟩ and tij=−t′ when i and j are next-nearest neighbor pairs. In the following, N is the number of lattices, and Ne denotes the number of electrons.



When two electrons spin up and down at the same site, the energy becomes higher by U where U denotes the on-site Coulomb energy. In the case of half-filling, the Mott transition occurs when U(>0) is as large as the bandwidth and the ground state is an insulator. The effective Hamiltonian is derived in the limit of large U/t [135,136,137], based on the canonical transformation Heff=eiSHe−iS. In the limit U/t→∞, the double occupancy is not allowed. The effective Hamiltonian is written as


Heff=H+i[S,H]+i22[S,[S,H]]+⋯.



(7)







We write the Hamiltonian as H=H˜0+H1 where


H˜0=∑ijσtij(aiσ†ajσ+diσ†djσ)+U∑ini↑ni↓,



(8)






H1=∑ijσtij(aiσ†djσ+djσ†aiσ).



(9)







Here, we defined aiσ=ciσ(1−ni,−σ) and diσ=ciσni,−σ. aiσ=ciσ(1−ni.−σ) is the electron operator without double occupancy. We choose S to satisfy i[S,H˜0]+H1=0, so that Heff reads in the subspace of no double occupancy,


Heff=∑ijσtijaiσ†ajσ+i2[S,H1]+i23[S,[S,H1]]+⋯.



(10)







When we consider only the nearest-neighbor transfer tij=−t, the effective Hamiltonian reads


Heff=−t∑⟨ij⟩σaiσ†ajσ−t2U∑jμμ′[aj+μ↑†aj↓†aj↓aj+μ′↑+aj↑†aj+μ↓†aj+μ′↓aj↑+aj+μ↑†aj↓†aj+μ′↓aj↑+aj↑†aj+μ↓†aj↓aj+μ↑],



(11)




where j+μ and j+μ′ denote the nearest-neighbor sites in the μ and μ′ directions, respectively. The second term being proportional to t2/U contains the nearest-neighbor exchange interaction and also three-site terms when μ≠μ′. The three-site terms are of the same order as the exchange interaction. When we neglect the three-site terms, the effective Hamiltonian reduces to the t-J model given by


Heff=−∑⟨ij⟩σ(aiσ†ajσ+h.c.)+J∑⟨ij⟩Si·Sj−14n˜in˜j,



(12)




where J=4t2/U and n˜i=n˜i↑+n˜i↓ with n˜iσ=aiσ†aiσ.



High-temperature cuprates and heavy fermion systems are typical correlated electron systems and many superconductors have been reported. Most of superconductors in these systems have nodes in the superconducting gap, namely, the Cooper pair is anisotropic. This indicates that superconductivity is unconventional and does not conform to the conventional BCS theory. The mechanism of superconductivity is certainly non-phonon mechanism. We show several characteristic properties of cuprate high-temperature superconductors:




	
The Cooper pair has d-wave symmetry.



	
The superconducting phase exists near the antiferromagnetic phase and parent materials are a Mott insulator.



	
The CuO2 plane is commonly contained and the on-site Coulomb repulsive interaction works between d electrons.



	
The size of Cooper pair is very small being of order of 2 Å.



	
The CuO2 plane is high anisotropic and there is a weak Josephson coupling between two layers.








The small size of Cooper pair also supports the non-phonon mechanism of cuprate superconductivity [138,139,140,141]. A plausible non-phonon mechanism is due to the Coulomb interaction on the same atom. Because the energy scale of the Coulomb interaction is very large, which is of the order of eV, we can expect superconductivity with high critical temperature Tc. The critical temperature of heavy fermion materials is, however, very low, although superconductivity occurs due to strong Coulomb interaction between f electrons. This is because the effective mass of f electrons is very large in heavy fermion systems owing to the large self-energy correction. The effective mass enhancement of heavy fermion materials becomes as large as 100–1000, which means that the effective cutoff becomes very small. As a result, the characteristic energy scale is reduced considerably and the critical temperature Tc becomes very low begin of the order of 1 K. In heavy fermion systems, the characteristic energy scale is given by the Kondo temperature TK. The ratio of the effective mass m* to the band mass m0 is approximately given as m*/m0≃D/TK for the bandwidth D and TK. Thus, the effective bandwidth for heavy fermions is given by the Kondo temperature TK≃D/(m*/m0). Empirically, Tc is lowered as the effective mass increases. This is expressed as follows:


kBTc≃0.1t/(m*/m0),



(13)




where t denotes the transfer integral proportional to the bandwidth. The estimated values of the transfer t, the ratio m*/m0 and Tc for several compounds are shown in Table 1. For cuprates, the transfer t is estimated as t∼0.51 eV. The bandwidth for iron pnictides is about five times smaller than that for cuprates. A list of typical superconductors in correlated electron systems is shown in Table 2.




2.3. Superconductivity in Strongly Correlated Electron Systems


The possibility of superconductivity in strongly correlated electron systems has been discussed intensively. The perturbative calculations such as the fluctuation-exchange approximation (FLEX) have been performed to investigate the superconducting ground state [176,177,178]. There were, however, the results by quantum Monte Carlo methods, which did not support the existence of high-temperature superconductivity in the two-dimensional Hubbard model [32,33,45]. In quantum Monte Carlo calculations, the strength of the Coulomb interaction U is not large enough because the range of accessible U is very restricted. It is now certain that there is a superconducting phase in the strongly correlated region [50]. The simplest wave function of superconducting state with strong electron correlation is the Gutzwiller-projected BCS wave function:


ψBCS−G=PG∏k(uk+vkck↑†c−k↓†)|0⟩,



(14)




where uk and vk are BCS parameters and PG is the Gutzwiller operator to control the on-site electron correlation. PG is written as


PG=∏j(1−(1−g)nj↑nj↓),



(15)




where g is a variational parameter in the range of 0≤g≤1. The ratio of uk and vk is given as


vkuk=Δkξk+(ξk2+Δk2)1/2,



(16)




where ξk denotes the electron dispersion relation measured from the Fermi energy and Δk is the gap function. We use the following form for the gap function in the two-dimensional case:


Δk=Δ(coskx−cosky)d−wave,



(17)






Δk=Δ(coskx+cosky)anisotropic−s−wave,



(18)






Δk=Δisotropics−wave.



(19)







Δ is a constant and is treated as a variational parameter. The wave function ψBCS−G is just the wave function that Anderson proposed as a wave function of the resonate-valence-bond (RVB) state [72].



It has been shown that the ground-state energy has a minimum at finite Δ for the BCS-Gutzwiller wave function with d-wave symmetry in the two-dimensional Hubbard model by using the variational Monte Carlo method [37]. The superconducting condensation energy Econd per site in the limit of large system size was estimated as [37,38]


Econd/N≃0.2meV,



(20)




where the transfer integral t is set at 0.5 eV. The similar result was obtained for the three-band d-p model [18]. Thus, the condensation energy per atom is of the order of 10−4 eV.



The superconducting condensation energy Econd for cuprate high-temperature superconductors was evaluated by using the result of specific heat measurement for YBCO as 0.17–0.26 meV per Cu atom [37,179]. The estimation of Econd from the data of critical magnetic field gives the similar result [180]. The obtained results by theoretical calculations and experimental measurements are very close each other. This agreement is very remarkable. Thus, this value indicates the characteristic energy for cuprate high-temperature superconductors. This result may support that the superconductivity in cuprate high temperature superconductors is caused by the strong electron correlation and the 2D Hubbard model includes essential ingredients.





3. Part II. Mechanism of Superconductivity in Cuprates


We discuss the mechanism of superconductivity in this part. We show numerical results obtained by using the optimized wave functions.



3.1. Model for High-Tc Cuprates


The Hamiltonian of the d-p model for high-Tc cuprates is


Hdp=ϵd∑iσdiσ†diσ+ϵp∑iσ(pi+x^/2σ†pi+x^/2σ+pi+y^/2σ†pi+y^/2σ)+tdp∑iσ[diσ†(pi+x^/2σ+pi+y^/2σ−pi−x^/2σ−pi−y^/2σ)+h.c.]+tpp∑iσ[pi+y^/2σ†pi+x^/2σ−pi+y^/2σ†pi−x^/2σ−pi−y^/2σ†pi+x^/2σ+pi−y^/2σ†pi−x^/2σ+h.c.]+td′∑⟨⟨ij⟩⟩σϵij(diσ†djσ+h.c.)+Ud∑idi↑†di↑di↓†di↓+Up∑i(ni+x^/2↑pni+x^/2↓p+ni+y^/2↑pni+y^/2↓p).



(21)




Since we use the hole picture in this paper, diσ and diσ† represent the operators for the d hole. pi±x^/2σ and pi±x^/2σ† denote the operators for the p holes at the site Ri±x^/2, and in a similar way pi±y^/2σ and pi±y^/2σ† are defined. ni+x^/2σp and ni+y^/2σp are the number operators of p holes at Ri+x^/2 and Ri+y^/2, respectively. tdp is the transfer integral between adjacent Cu and O orbitals and tpp is that between nearest p orbitals. td′ indicates that between d orbitals where ⟨⟨ij⟩⟩ denotes a next nearest-neighbor pair of copper sites. ϵij takes the values ±1 (See Figure 1). This value is determined from the sign of the transfer integral between next nearest-neighbor d orbitals. Ud indicates the strength of the on-site Coulomb repulsion between d holes and Up is that between p holes.



The values of band parameters were evaluated by several works [181,182,183,184,185]. We show an example: Ud=10.5, Up=4.0 and Udp=1.2 eV [182]. Here, Udp is the nearest-neighbor Coulomb interaction between holes on adjacent Cu and O orbitals and is small compared to Ud. Udp is neglected in this paper. We write Δdp=ϵp−ϵd. The number of sites is denoted as N, and the energy is measured in units of tdp.




3.2. Optimization Variational Monte Carlo Method


3.2.1. Off-Diagonal Wave Function


The Gutzwiller wave function is


ψG=PGψ0,



(22)




where ψ0 is a one-particle state. Our purpose is to improve the Gutzwiller function. We multiply the Gutzwiller function by an exponential-type operator. The wave function is given as as [50,73,186,187,188,189,190]


ψλ=exp(−λK)ψG,



(23)




where K denotes the kinetic part of the Hamiltonian. λ is a newly introduced real variational parameter [41,73,187,191]. There are other methods to improve the Gutzwiller function [43,192]. The following Jastrow operator is used [43],


PJdh=∏j1−(1−η)∏τdj(1−ej+τ)+ej(1−dj+τ),



(24)




where dj is the operator for the doubly-occupied site given as dj=nj↑nj↓ and ej is that for the empty site given by ej=(1−nj↑)(1−nj↓). η is the variational parameter in the range of 0≤η≤1. The wave function is


ψη=PJdhψG.



(25)







In this paper, we use the wave function of exponential type in Equation (23) because the energy is further lowered when we use this wave function [50]. The wave function for the d-p model is formulated similarly. An initial state ψ0 contains many variational parameters (t˜dp, t˜pp, t˜d′, and ϵ˜p−ϵ˜d):


ψ0=ψ0(t˜dp,t˜pp,t˜d′,ϵ˜p−ϵ˜d).



(26)







We use t˜dp=tdp as the energy unit. We consider the following wave function that is improved from the Gutzwiller wave function [50,73,186,187,188,189,190]:


ψλ=exp(−λK)ψG.



(27)







The expectation values are evaluated by using the auxiliary field method [73,191]. The kinetic part K also contains the band parameters tpp, td′ and ϵp−ϵd as variational parameters:


K=K(t^pp,t^d′,ϵ^p−ϵ^d).



(28)







We take t^pp=t˜pp, t^d′=t˜d′ and ϵ^p−ϵ^d=ϵ˜p−ϵ˜d, for simplicity. Thus, we have g, t˜pp, t˜d′, ϵ^p−ϵ^d=ϵ˜p−ϵ˜d, and λ as variational parameters. The expectation values for this type of wave function are calculated on the basis of the variational Monte Carlo method. One can evaluate the expectation value correctly within statistical errors.




3.2.2. Antiferromagnetic Wave Function


The AF one-particle state ψAF is formulated by the eigenfunction of the AF trial Hamiltonian:


HAF=∑ijσtijciσ†cjσ−ΔAF∑iσ(−1)xi+yiσniσ,



(29)




where ΔAF is the AF order parameter and (xi,yi) represents the coordinates of the site i. With ψAF, the wave function is given as


ψλ,AF=exp(−λK)PGψAF.



(30)








3.2.3. Superconducting Wave Function


We start from the BCS wave function


ψBCS=∏k(uk+vkck↑†c−k↓†)|0⟩,



(31)




with coefficients uk and vk satisfying uk2+|vk|2=1. We choose uk/vk=Δk/(ξk+ξk2+Δk2) for the gap function Δk and ξk=ϵk−μ. We assume Δk=ΔSC(coskx−cosky). The Gutzwiller-projected BCS wave function is


ψG−BCS=PNePGψBCS,



(32)




where PNe indicates the operator to extract the state with Ne electrons. The exponential-BCS wave function is given by


ψλ=e−λKPGψBCS.



(33)







In this wave function, we perform the electron–hole transformation for down-spin electrons:


dk=c−k↓†,dk†=c−k↓;



(34)




and not for up-spin electrons: ck=ck↑. The electron pair operator ck↑†c−k↓† denotes the hybridization operator ck†dk in this formulation.





3.3. Correlated Superconductivity


We first discuss the superconducting (SC) state in the two-dimensional Hubbard model. In the optimization Monte Carlo method, the SC state becomes indeed stable when the Coulomb interaction U is large to be of the order of the bandwidth. We show the ground-state energy as a function of the superconducting order parameter Δ in Figure 2 (left). The simple Gutzwiller-projected BCS wave function predicted the possibility of superconductivity in the Hubbard model, and the improved wave function also shows a stability of the SC state.



We show the SC and antiferromagnetic (AF) order parameters as a function of U in Figure 3. The AF order parameter has a peak when U/t∼10, which is of the order of the bandwidth, and the SC one also has a peak at Uc that is greater than the bandwidth. This indicates that there is the possibility of high-temperature superconductivity in the strongly correlated region.



The AF correlation is maximized at U∼Uc and decreases when U is larger than Uc. We show schematic pictures in Figure 4, where the SC condensation energy as a function of U is shown in the left panel, and the AF and SC gap functions are shown in the right panel. There is a crossover from weakly correlated region to the strongly correlated region. The superconducting state is most favorable when the AF correlation is gradually suppressed in the strongly correlated region. Thus, high temperature superconductivity is highly promising in the strongly correlated region where U is as large as the bandwidth D or larger than D.




3.4. Stability of Antiferromagnetic State


3.4.1. Hubbard Model


Let us examine the stability of AF state. There are two parameters U and t′, and there is the AF region in the parameter space. High temperature superconductivity is expected near the boundary between the AF phase and the paramagnetic phase. We show the AF condensation energy ΔEAF as a function of 1−ne in Figure 5a for t′=0 and Figure 5b for t′=−0.2t. The AF region becomes larger as |t′| increases. When t′=−0.2t, the AF region extends up to about 20% doping. From the competition between superconductivity and AF order, t′=0 is most favorable for superconductivity.




3.4.2. Three-Band d-p Model


In general, in the three-band d-p model, the AF correlation is very strong and the AF state is more stable than in the single-band Hubbard model. This is because d electrons are localized and easily form magnetic order [13]. To investigate the possibility of high temperature superconductivity in the d-p model, it is necessary to reveal regions with weak AF order. There are many parameters in the d-p model to control the strength of the AF correlation. Among them, the Coulomb repulsion between d electrons Ud, the level difference Δdp=ϵp−ϵd, and the hole density x are important. The AF region is shown in Figure 6 where Ud and ϵp−ϵd are varied, and the hole density is fixed at 0.1875. The AF region increases when the hole density decreases. We expect that high temperature superconductivity will occur near the boundary between AFM and PM regions. This boundary exists in the region when Δdp is small. High temperature superconductivity is likely occur when Δdp is small. There is a “on-site attractive region” when Δdp is large where two d electrons prefer to occupy the same site. In this region, a charge-density wave or an s-wave superconducting state will be realized.



We proposed to introduce the transfer integral td′ to control the strength of AF correlation [74]. We show the AF region at half-filling in the tpp−td′ plane in Figure 7. As −td′ increases, there is a phase transition from the AF insulator to the paramagnetic insulator (PMI). We expect that td′ and tpp will play an important role to suppress AF correlation when holes are doped in the d-p model.





3.5. Phase Diagram for the Hubbard Model


We discuss the phase diagram when carrier holes are doped in the CuO2 plane. We evaluate the energy lowering when we include the order parameter Δ. We define


ΔE=E(Δ=0)−E(Δmin),



(35)




where E(Δ) takes a minimum at Δ=Δmin. We show ΔE as a function of the hole doping rate x in Figure 8 where we put U/t=18 and t′=0. This phase diagram contains several interesting features. There are three phases: antiferromagnetic insulator (AFI), coexistent state (AFSC) and superconducting phase (SC). When the hole doping rate x is large, e.g., x>0.09, the pure d-wave stat is stable. There is the possibility of high (and room) temperature superconductivity in this phase. In the underdoped region, approximately 0.06<x<xdSC with 0.08<xdSC<0.09, there is the coexistent state of antiferromagnetism and superconductivity. This is the mixed phase of AF and SC. xdSC could not be determined precisely. There is the possibility that both the AFSC and SC states are found for xdSC<x<0.09, but the SC solution will have lower energy. There is the AFSC-SC transition at x=xdSC. The AFI state exists near half-filling for about x<0.06, where doped holes form clusters and localize.



The existence of AFI phase is closely related to the phase separation [140,141] when the hole density is very small. In the phase-separated phase, the doped holes are localized and cannot be conductive. The existence of AFI phase is determined by the quantity


δ2E(Ne)≡[E(Ne+δNe)−2E(Ne)+E(Ne−δNe)]/(δNe)2,



(36)




where E(Ne) is the ground-state energy with Ne electrons. δ2E(Ne) is approximately the second derivative of the energy E(Ne) and is proportional to the charge susceptibility. When δ2E(Ne) is negative, the phase separation occurs. As shown in Figure 8, the phase separation occurs for x<0.06. Concerning the phase separation, the parameter t′ is important because the phase separation region decreases as −t′ increases. Thus, the AFI phase will decrease as −t′ increases. The phase separation disappears for t′=−0.2t.





4. Summary


We have discussed the possibility of high temperature superconductivity in many-electron systems. The critical temperature Tc may increase as the characteristic energy of the interaction increases. Empirically, Tc is proportional to the inverse of the effective mass of electrons. Tc is low when the effective mass is very heavy. A candidate of high (room) temperature superconductivity may be in materials with strong electron correlation and with small effective mass enhancement. From this view point, the repulsive Coulomb interaction can be a candidate of the origin of high temperature superconductivity.



We have shown phase diagrams for the 2D Hubbard model and the three-band d-p model. The diagram in Figure 8 exhibits the characteristic property of cuprate superconductors. This supports that the origin of high temperature superconductivity is the strong correlation between electrons. That is, the mechanism of high-Tc superconductivity is the electron-pair formation due to the strong on-site repulsive Coulomb interaction. The competition between antiferromagnetism and superconductivity is important in realizing high temperature superconductivity. High-Tc superconductivity is expected in the region near the boundary between AF phase and paramagnetic phase. In the phase diagram for the Hubbard model, the SC phase exists near the AF phase, and AF order and superconductivity coexist where the doping rate is approximately 0.05∼0.06 <x<xdSC and 0.08<xdSC<0.09. We expect that this coexistence may be related to anomalous metallic behavior in the underdoped region. The AF phase near half-filling is insulating, which is approximately for x<0.06. There is the pure d-wave phase for x>xdSC.



In the d-p model, the AF region exists in the multi-dimensional parameter space. The AF-PM boundary is a multi-dimensional region in this space. Since we expect that superconductivity occurs near the boundary, high temperature superconductivity is more likely to occur in the d-p model. There is the AF–PM boundary when the level difference Δdp is small. Thus, Tc of high temperature cuprates will be high when Δdp is small. This tendency is consistent with experimental Tc of cuprates.



We give a comment on the crossover between weakly correlated region and strongly correlated region. We expect that this crossover is universal in the sense that similar phenomena occur in nature. There may be a universal class. It will include the Kondo effect [194,195,196], QCD [197], BCS-BEC crossover [198], sine-Gordon model [199,200,201,202], and Gross–Neveu model [203].
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Figure 1. (Left) The transfer integral td′ in the CuO2 plane. tdp and tpp are conventionally defined. (Right) Fermi surface of the d-p model with the hole density 0.13 [74]. We put tpp=0.4tdp and ϵp−ϵd=2tdp for td′=0, −0.2tdp and −0.3tdp. 
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Figure 2. (Left) The ground-state energy as a function of the superconducting gap Δ for the optimized wave function ψλ for the Hubbard model on a 10×10 lattice with U/t=18 and t′=0. The electron density is ne=0.88. (Right) The ground-state energy as a function of the electron number where Δ is fixed for each line [50]. 
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Figure 3. AF and SC order parameters as a function of U/t when Ne=88 for the 2D Hubbard model on a 10×10 lattice. The periodic boundary conditions are periodic in one direction and antiperiodic in the other direction [50]. AF(G) indicates the result obtained for the simple Gutzwiller function. 
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Figure 4. (Left) A schematic picture of the superconducting condensation energy as function of U for the 2D Hubbard model. (Right) A schematic picture of the gap function of AF and AC states as a function of U for the 2D Hubbard model. 






Figure 4. (Left) A schematic picture of the superconducting condensation energy as function of U for the 2D Hubbard model. (Right) A schematic picture of the gap function of AF and AC states as a function of U for the 2D Hubbard model.



[image: Condensedmatter 04 00057 g004]







[image: Condensedmatter 04 00057 g005 550]





Figure 5. AF condensation energy ΔEAF as a function of the hole doping rate x=1−ne on a 10×10 lattice for: t′=0 (a); and t′=−0.2t (b) [75]. We put U/t=12,14 and 18. 
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Figure 6. Antiferromagnetic and paramagnetic regions in the plane of Ud and Δdp=ϵp−ϵd for the d-p model. We put tpp=0.4 and td′=0. There are 76 holes on a 8×8 lattice with 192 atoms in total. The energy unit is given by tdp. AFM and PM denote the antiferromagnetic metal and paramagnetic metal, respectively. There is a “negative-U” region when the level difference is large where two d electrons prefer to occupy the same site. The ground state may be a charge-density wave state or an s-wave superconducting state. This is not clear yet. 
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Figure 7. AF and paramagnetic insulator phases for the d-p model on a 6×6 lattice [193]. Parameters are Ud=8tdp, Up=0, ϵp−ϵd=tdp. 
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Figure 8. The condensation energy per site for the two-dimensional Hubbard model as a function of the hole doping rate x. The calculation was carried out on a 10×10 lattice. AFI indicates the antiferromagnetic insulating state and SC denotes the d-wave SC phase. There is the coexistent state indicated as AF-SC between these states. Parameters are t′=0 and U/t=18. 
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Table 1. The transfer integral t, effective mass m* and critical temperature Tc in correlated electron systems, where m0 denotes the band mass. The orders of these quantities are shown in the table. For heavy fermions, t/(m*/m0) corresponds to the Kondo temperature TK. For Hydrides, the Debye frequency ωln is shown.
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	t or ωln
	m*/m0
	t/(m*/m0)
	Tc
	





	Cuprate superconductors
	5000 K
	5
	1000
	100 K
	t∼0.51 eV [142]



	Iron pnictides
	1000 K
	∼2
	500
	50 K
	t∼0.1 eV [143]



	Heavy fermion materials
	10,000 K
	100∼1000
	10∼100
	1∼10 K
	[144,145,146]



	Organic superconductors
	200∼500 K
	2∼5
	100
	10 K
	[147]



	Hydrides H3S
	1000 K
	∼1
	1000
	100 K
	ωln [148]
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Table 2. Superconducting materials.
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	Materials
	Tc
	Pair Symmetry
	Crystal Structure
	





	CeCu2Si2
	0.6 K
	s or d
	bc tetragonal
	[149,150]



	UPt3
	0.52 K
	p or f
	Hexagonal
	[151]



	UBe13
	0.86 K
	p
	Cubic
	[152]



	URu2Si2
	1.2 K
	
	bc tetragonal
	[153,154,155]



	CeRu2
	6.2 K
	s
	Laves Cubic
	[156]



	UPd2Al3
	2 K
	d
	Hexagonal
	[157,158,159]



	UNi2Al3
	1 K
	p?
	Hexagonal
	[158,160]



	CeCoIn5
	2.3 K
	d
	HoCoGa5 type
	[161,162]



	CeRhIn5
	2.1 K
	d
	HoCoGa5 type
	[163]



	
	(16.3 kbar)
	
	bc tetragonal
	



	CeRh2Si2
	0.35 K
	
	bc tetragonal
	[164]



	
	(9 kbar)
	
	
	



	UGe2
	0.8 K
	p?
	Orthorhombic
	[165]



	
	(13.5 kbar)
	
	
	



	URhGe
	0.25 K
	p?
	Orthorhombic
	[166]



	Sr2RuO4
	1.4 K
	p or f
	Perovskite
	[167]



	PrOs4Sb12
	1.85 K
	line nodes?
	Skutterudite
	[168]



	NaxCoO2−y·H2O
	5 K
	p?
	Triangular lattice
	[169]



	Ba1−xKxBiO3
	30 K
	s
	Perovskite
	[170]



	MgB2
	39 K
	s
	Hexagonal
	[171]



	La2−xSrxCuO4
	36 K
	d
	Perovskite
	



	YBa2Cu3O6+x
	90 K
	d
	Perovskite
	



	Tl2Ba2Can−1CunO2n+4
	125 K
	d
	Perovskite
	



	HgBa2Can−1CunO2n+2+δ
	135 K
	d
	Perovskite
	



	LaO1−xFxFeAs
	26 K
	
	ZrCuSiAs type
	[172]



	NdFeAsO1−y
	54 K
	
	ZrCuSiAs type
	[173]



	H3S
	203 K
	s
	(under pressure)
	[81]



	LaH10
	260 K
	s
	(under pressure)
	[82,83,174,175]
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