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Abstract: This work motivates and applies operational methodology to simulation of quantum
statistics of separable qubit X states. Three operational algorithms for evaluating separability
probability distributions are put forward. Building on previous findings, the volume function
characterizing the separability distribution is determined via quantum measurements of multi-qubit
observables. Three measuring states, one for each algorithm are generated via (i) a multi-qubit
channel map, (ii) a unitary operator generated by a Hamiltonian describing a non-uniform hypergraph
configuration of interactions among 12 qubits, and (iii) a quantum walk CP map in a extended state
space. Higher order CZ gates are the only tools of the algorithms hence the work associates itself
computationally with the Instantaneous Quantum Polynomial-time Circuits (IQP), while wrt possible
implementation the work relates to the Lechner-Hauke-Zoller (LHZ) architecture of higher order
coupling. Finally some uncertainty aspects of the quantum measurement observables are discussed
together with possible extensions to non-qubit separable bipartite systems.

Keywords: separability; X states 2; quantum walk; quantum algorithm; quantum simulation

1. Introduction

The framework and previous work: An extensive literature exist of mainly numerical studies of
the quantum entanglement found in the density matrices of bipartite quantum systems, via certain
matrix distance measures. The starting kick of this research project is a seminal paper of 1998 by
Życzkowski et al. [1], where the “separability probability” is introduced as a measure of how often
a randomly chosen quantum bipartite system splits into two classically correlated parts. Promoting the
manifold of parameters determining the density matrices of the total and the reduced quantum systems
into a statistical event space endowed with a distance measure, the “separability probability” can be
cast into a geometric probability given e.g., by the ratio of the corresponding volume of separable
marginal systems to the total volume of bipartite system in the manifold of parameters.

In this work employing the Hilbert–Schmidt (HS) measure, bipartite systems of 2 × 2
dimensionality are investigated analytically. The manifold of parameters characterizing a special
class of bipartite systems, the so-called two-qubits X mixed states, is a real 7D manifold. Specifically,
the density matrices of the marginal systems A and B, described by their corresponding Bloch
vector lengths (ball radii) rA, rB and the respective volumes have been investigated analytically
and numerically. The a priori marginal separability probability function has been determined to be

p(α)sep(r) =
V(α)

HS,sep(r)

V(α)
(HS)(r)

,

for cases of general coupled qubits (α = 2× 2) and of the special type of X density matrix (α = X).
Remarkably constant values for the a priori probabilities have been conjectured and have been
corroborated or proved by numerical work or analytic derivations. Analytic calculations in e.g., [2],
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show that in terms of the radial volume function f (r) = (1− r2)3, the scaled volume functions V(α)
HS,sep ∝

f (r) and V(α)
HS ∝ f (r), in the case of X states are explicitly

V(X)
HS,sep(r) =

4π2

45
(1− r2)3, (1)

V(X)
(HS)(r) =

2π2

9
(1− r2)3, (2)

so the probability distribution p(X)
sep (r) reads

p(X)
sep (r) =

2
5

, p(X)
nosep(r) =

3
5

, r ∈ [0, 1) and p(X)
sep (1) = 1.

This remarkable constant probability within the interval r ∈ [0, 1) has verified previous numerical
and analytic conjectures—see, e.g., [3]. Similarly for the general bipartite systems of 2× 2 systems,
it is known that p(2×2)

sep (r) = 2
5 , r ∈ [0, 1). Despite numerous numerical and, to a lesser extent, analytic

works in this field over the last years, hardly anything has been done with respect to its operational
and quantum simulation aspects of those probability distributions.

Outline of paper’s contribution: This work starts providing a motivation for applying operational
methodology to simulation quantum statistics of separable states. It proceeds to puts forward three
operational algorithms for evaluating separability probability distributions for X states of qubits.
Specifically, it is shown that the volume function which determines the separability distribution can be
obtained via quantum measurements of certain respective multi-qubit observables.

There are three measuring states, one for each operational algorithm. These states are generated
from the original X states under investigation respectively via (i) a multi-qubit channel map,
(ii) a unitary operator generated by a Hamiltonian describing a non-uniform hypergraph [4–7],
configuration of interactions among 12 qubits, and (iii) a quantum walk completely positive (CP) map
in an extended state space. All three proposed algorithms are based on an 12-qubit lattice system with
an underlying interaction scheme described by a hypergraph.

Two important connections of the paper with some related research fields as emphasized. First:
The building blocks of the algorithms are higher order controlled-not CZ diagonal gates [8–13]. This fact
suggests that the formalism and the computational tasks carried out by the algorithms associate them
with the field of the so-called Instantaneous Quantum Polynomial-time Circuits (IQP) [14–21]; Second:
wrt possible implementation, the work relates itself to the LHZ quantum computation architecture of
higher order coupling [22,23].

Structure of the paper: The present introductory chapter concludes offering a motivation of the
attempted operational approach to the separability statistics. Section 2 provides all the needed elements
for X states and their quantum mechanical aspects that will allow for building up in the sequel the
operational framework. The next three Sections 3–5 provide respectively the necessary background and
formulation of the three simulation algorithms for the distribution of separability. Section 6 is a brief
one that presents some important aspects regarding the computation methodology and implementation
possibilities of the algorithms. Section 7 is a closing discussion on the overall operational methodology
and on the prospects of applying paper’s ideas to general Bloch vector components functions. Finally,
in three appendices, material is included concerning, (Appendix A), the matrix analysis aspects and
the proof of the main proposition; (Appendix B) aspects of uncertainties of the quantum measurements
presented in previous chapters, while Appendix C shows the underlying hypergraph structure of
volume operator and the associated Hamiltonian. In the opening of each chapter, a brief outline of its
content is provided.

Motivation of this work: Let a physical phenomenon conjectured to be described statistically by e.g.,
a Poisson distribution over natural numbers with a fixed mean value. If a realistic statistical experiment
is difficult to be set up, sampled and investigated, one could come up with the idea of building an
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hitherto unknown simulator e.g., a laser coherent light beam generator. This concept-device could in
some way serve the purpose of a quantum simulator i.e., it could be considered as an experimental and
theoretical device for simulating the above phenomenon and corroborate or falsify its initial statistical
conjecture. This is so, since it is a standard knowledge that a laser beam is generated from an initial
state of thermal light photons with Maxwell–Boltzmann energy distribution and that, beyond the lasing
threshold, theory and experiment prove the occurrence of a phase transition form thermal photons to
photons with energy following Poissonian statistics [24]. The theoretical requirements of such laser
light simulator would include developing a set of landmark operations in open quantum systems such
as coupling and de-coupling between quantum system and quantum environment, quantum master
equation solutions, in terms of CP maps, of the light density matrix, statistical correlations of the laser
light beam, distinct thermodynamic features developed during the lasing transition, etc. The laser
quantum simulation could additionally provide checks and simulations of statistical questions of
interest, questions concerning required resources for the feasibility of the initial statistical conjecture
i.e., questions pertaining to the energy, entropy and work resources of the phenomenon, as well as
their transformations. Note that here we should distinguish between resources of the initial physical
system and those of the simulating quantum system. It is in fact the latter ones i.e., the resources of
quantum simulation that would constitute a novel important aspect to be addressed in the field of
quantum simulations.

Based on the analogous situation of the laser quantum simulation, similar general ideas can be
specified in the present case of simulating the statistics of separable X states. To this end, this work puts
forward some hitherto unknown simulator that employs a lattice of 12 qubits and provides versions of
some operational algorithms that derive the conjectured probability distribution of pairs of separable
qubits in an X form density matrix.

As detailed below, the algorithms describe both closed Hamiltonian systems and also open
system operations. More generally, the operational algorithmic methodology put forward here is in
fact grounded in a well developed operational methodology of constructing quantum observables and
quantum measurements with desired properties—see, e.g., [25] for a general theory, [26] for related
quantum optical problems, and [27,28] for problems formulated in quantum mechanical phase space.

2. X States Operational Framework

Chapter’s outline: The X state density matrix is introduced and its Bloch vector components
and relevant polynomials thereof are expressed by expectation values of generalized multi-qubit
observables. The volume operator and its components are introduced.

The two-qubit density matrix of the so-called “X state” is a special case of bipartite state and
reads [29–31],

ρX =


ρ11 ρ14

ρ22 ρ23

ρ32 ρ33

ρ41 ρ44

 .

More specifically, on the basis of 16 elements formed by all possible tensor products of Pauli and
unit matrix between themselves,

{I⊗ I, X⊗ I, Y⊗ I, Z⊗ I, I⊗ X, I⊗Y, I⊗ Z, X⊗ X, Y⊗Y, Z⊗ Z, X⊗Y, ..., Y⊗ Z}.

The X-density reads

ρX =
1
4
(I⊗ I+ azZ⊗ I+ bzI⊗ Z + cxxX⊗ X + cxyX⊗Y

+cyxY⊗ X + cyyY⊗Y + czzZ⊗ Z).
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The expansion coefficients are linearly related to the original ρij matrix elements and, in order
to determine them forming the density matrix, we introduce the inner product for 2× 2 matrices
as 〈A, B〉 ≡ Tr(AB†). Verify that 〈I⊗ I, ρX〉 = Tr(I⊗IρX) = 1 and compute the az coefficient as
〈Z⊗I, ρX〉 = Tr(Z⊗IρX) = az = ρ11 + ρ22 − ρ33 − ρ44 ≡ r, and similarly for the rest of the coefficients.

With the polynomial volume function f (r) of a previous chapter in mind and in order to be able to
express powers of variable r as inner products of density matrix with various products of Pauli matrices,
we proceed to embed those matrices into an n-fold tensor product of Pauli algebra as follows. Using the
generic notation Sa, a = 1, 2, 3 for all Pauli matrices, respectively X ≡ σx, Y ≡ σy, Z ≡ σz, we introduce
their embedding as a map from C2×2 3 Sa into the n-fold matrix product space (C2×2)⊗n 3 Si

a, by
means of the correspondence Sa → Si

a, where

Si
a ≡ S⊗(i−1)

a ⊗ Sa ⊗ S⊗(n−i)
a ,

for i = 1, 2, ..., n.
Next, recall the identity TrATrB = Tr (A⊗ B) , which further implies that

〈A, ρ〉 〈B, ρ〉 = 〈A⊗ B, ρ⊗ ρ〉 ,

and more generally
〈A1, ρ〉 · · · 〈An, ρ〉 =

〈
A1 ⊗ · · · ⊗ An, ρ⊗n〉 .

Then, referring to Equations (1) and (2), and applying the previous identities, we compute that,
for the density matrix ρX, the following identities are valid (for notational simplicity, the X index is
omitted hereafter),

1− r2 =
〈
I⊗4−Z⊗I⊗Z⊗I, ρ⊗ ρ

〉
,

and

(1− r2)3 =
〈
I⊗12 − 3I⊗8 ⊗ Z⊗I⊗Z⊗I+3I⊗4 ⊗ Z⊗I⊗Z⊗I⊗Z⊗I⊗Z⊗I

−Z⊗I⊗Z⊗I⊗Z⊗I⊗Z⊗I⊗Z⊗I⊗Z⊗I, ρ⊗6
〉

.

Next, define the unitary volume operator V̂ : (C4×4)⊗6 → (C4×4)⊗6 acting on the Hilbert space of
six bipartite X states (C4×4)⊗6 and reads explicitly,

V̂ ≡ I⊗12 − 3I⊗8 ⊗ Z⊗I⊗Z⊗I+3I⊗4 ⊗ Z⊗I⊗Z⊗I⊗Z⊗I⊗Z⊗I
−Z⊗ I⊗ Z⊗ I⊗ Z⊗ I⊗ Z⊗ I⊗ Z⊗ I⊗ Z⊗I.

Recall the volume functions issued in Equations (1) and (2) to compute that

V(X)
HS (r) =

π2

2304

〈
V̂, ρ⊗6(r)

〉
. (3)

Furthermore, by simplifying A⊗ B to AB, the volume operator reads

V̂ = I⊗12−3Z9Z11 + 3Z5Z7Z9Z11 − Z1Z3Z5Z7Z9Z11. (4)

Proceeding next by defining variables a = I⊗4 and b=Z⊗I⊗Z⊗I≡Z1Z3, and applying the
identity (a− b)⊗3 = a⊗3 − 3a⊗2 ⊗ b + 3a⊗ b⊗2 − b⊗3, and various rules of tensor products, we verify
that the radial function is obtained as f (r) =

〈
V̂, ρ⊗6

〉
or explicitly as

〈
V̂, ρ⊗6

〉
=
〈
I⊗12−3Z9Z11 + 3Z5Z7Z9Z11 − Z1Z3Z5Z7Z9Z11, ρ⊗6

〉
.
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The following decomposing of volume operator will be useful: V̂ = ∑4
a=1 λaV̂a, with

λ = (λa)4
a=1 = (1,−3, 3,−1), and the obvious identifications

V̂1 = I⊗12,

V̂2 = Z9Z11,

V̂3 = Z5Z7Z9Z11,

V̂4 = Z1Z3Z5Z7Z9Z11, (5)

where each operator satisfies the properties of being an involution, unitary and Hermitian i.e.,
V̂2

a = I⊗12, V̂†
a = V̂a.

Then, finally function f (r) is expressed as

f (r) =
〈

V̂, ρ⊗6
〉
=
〈

V̂1, ρ⊗6
〉
− 3

〈
V̂2, ρ⊗6

〉
+ 3

〈
V̂3, ρ⊗6

〉
−
〈

V̂4, ρ⊗6
〉

.

Further properties concerning the graph structure of the volume operator have been placed at the
end of paper in Appendix C entitled: Hypergraphs and volume operator.

3. CZ Gates, Volume Observables and Function

Chapter’s outline: The aim of this central chapter is to provide the first operational algorithm of
the separability probability distribution. To this end, all background material (cf. shifted CZ gates
Hankel, Toeplitz, Fourier, Hadamard matrices and their interrelations), as well as relevant concepts
and definitions, are introduced in order to establish the relation f (r) = 〈V̂, ρ⊗6〉 = 〈R(Ucz), ρ⊗6〉 =
〈Ucz,R∗(ρ⊗6)〉. This relation describes the fact that the volume function is obtained as an expectation
value of the volume observable, which in turn is shown to be derived from a unitary mapR or its dual
mapR∗.

Preliminaries: Let the projectors Pk = |k〉 〈k| , k ∈ [N], where [N] = {1, 2, ..., N = 2n}, in CN

space. Denote by k = (k1, ..., kn), and l = (l1, ..., ln) the decimal and binary decomposition of indices
k, l ∈ Λ, where Λ ≡ {0, 1}n, and by k · l = k1l1 + · · ·+ knln and k + l = (k1 + l1, · · · , kn + ln), their
mod2 element-wise inner product and sum, respectively.

Let |k〉 =
⊗n

l=1 |kl〉 and consider the projectors Pkl
= |kl〉 〈kl | = 1

2 (I+(−1)kl Z). The reference
controlled-phase gate CZ gate Ucz = eiπP, uses the projector Pk=N−1 ≡ P, acts on the space of n qubits
and is labelled by n-plet of binary indices (k1 = 1, ..., kn = 1). For general index k ∈ [N], the CZ gate
operator Ucz

k = eiπPk can be considered to act in multi-qubit states as follows:

Ucz
k |k1, ..., kn−1, kn〉 = (−1)k1...kn |k1, ..., kn−1, kn〉 .

States |k1, ..., kn−1〉may be regarded as control qubit states and |kn〉 as the target qubit state, so
the gate’s action is determined by the choice of values ki = 1, i = 1, ..., n.

To allow for free choice of the values of the n-plet index on which the conditional eiπ = −1 phase
will be acted in a CZ gate, we need to introduce first the set of so-called X-shifted CZ gates. This is
done in the proposition below where the family F cz

k of N commuting X-shifted CZ gates Ucz
k+l are

defined. Shifted CZ are related linearly to words Zm and vice versa, so volume operators V̂a and V̂ via
their linear relation to Zm words, Equation (5), are in turn related to shifted CZ gates.

The proposition proceeds by showing that all shifted CZ gates Ucz
k+l are generated via a unitary

channel map R, from the reference gate Ucz. This allows for expressing volume operators V̂a, V̂
via map R acting on Ucz, which is then trace contracted with a state density matrix i.e., f (r) =

〈R(Ucz), ρ⊗6〉, to provide the targeted volume function. By duality (defined precisely below), the
volume function is obtained by operating with dual mapR∗ on ρ instead with ofR acting on Ucz i.e.,
f (r) = 〈M1,R∗(ρ⊗6)〉, where now the CZ gate has been identified with an operator observable i.e.,
M1 ≡ Ucz. Hence, the volume function is obtained as the mean value of the quantum measurement
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of the generalized observable M1, in state ρ⊗6. This alternative way of evaluating volume functions
strengthens the operational character of the process of dealing with volumes of separable states as
a form of generalized quantum measurement.

We next proceed with the

Proposition 1. The projection operators Pk and the words Zm ≡ Zm1 ⊗ · · · ⊗Zmn of letter Z are related by the
Hadamard transform in the direct and the inverse way as Pm = 1

N ∑r∈Λ(−1)m·rZr and Zm = ∑k∈Λ(−1)m·rPr

for r, m ∈ Λ, respectively. From the CZk gates expressed as Ucz
k = eiπPk , the family of X-shifted CZ gates

F cz
k ≡ {U

cz
k+l = XlUcz

k

(
XT
)l

, l ∈ Λ}

is generated by its members, which, in terms of projectors, read explicitly

Ucz
k+l = ∑

m∈Λ
(−1)(k1+l1+m1+1)···(kn+ln+mn+1)Pm1···mn .

The effect of index shifting (k→ k + l) on gates is to allow a conditional placing of a minus sign at position
k + l ∈ Λ; as a consequence, shifted gates have the spectral decomposition

Ucz
k+l = − |k + l〉 〈k + l|+ ∑

m∈Λ\(k+l)
|m〉 〈m| .

For zero shift l = 0 and k = N − 1, the gate Ucz
N−1+0 ≡ Ucz is identified with the usual CZ gate in the

computational basis. Shifted CZ gates are linearly related to words Zr as

Ucz
k+l = ∑

r∈Λ
Ck+l,rZr,

via the orthogonal matrix C = AH, where the product is between Hankel A and Hadamard H matrices and the
C matrix elements explicitly read

Ck+l,r = (AH)k+l,r =
1
2n ∑

m∈Λ
(−1)(k1+l1+m1+1)···(kn+ln+mn+1)+m1r1+···+mnrn .

Conversely the Zr, r ∈ Λ, words relate to the CZ shifted gates as

Zr = ∑
k+l∈Λ

C†
k+l,rU

cz
k+l .

This in turn, by virtue of Equation (5), allows the volume operators {V̂a = Zla ; a ∈ {1, 2, 3, 4}, la =

{lam}n
m=1}, to be expressed in terms of CZ gates

V̂a = ∑
k+l∈Λ

C†
k+l,la Ucz

k+l . (6)

A further reduction results by first generating each and all of the components V̂a, a = 1, 2, 3, 4, of volume
operator from the single reference gate Ucz via the action Ucz → V̂a = Ra(Ucz), of unitary maps Ra which
are defined as

T → Ra(T) := ∑
k+l∈Λ

C†
k+l,la Xk+l+1TXk+l+1.

Explicitly, the volume operators V̂a = Zla ≡ Zla1 ⊗ · · · ⊗ Zlan are described by using the labelling map
a→ la = (la1 , la2 , ..., lan), which leads to the following four index correspondences for each one of them (only the
non zero lai ’s are provided): For V̂1 = I, {l1m = 0}n

m=1 ; for V̂2, the non zero components are l21=9 = l22=11 = 1;
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for V̂3, the non zero indices are l31=5 = l32=7 = l33=9 = l34=11 = 1, and finally, for V̂4, the non zero indices
are l41=1 = l42=3 = l43=5 = l44=7 = l45=9 = l46=11 = 1.

The total volume operator V̂ is eventually obtained via the action of map R : CN×N → CN×N on the
reference gate, i.e., V̂ =: R(Ucz), where map R is a weighted sum of Ra maps, which explicitly reads
T → R(T) : =∑4

a=1 λaRa(T), with weights λ = (λa)4
a=1 = (1,−3, 3,−1).

By means of the later result and the previous identification M1 ≡ Ucz, the evaluation of volume function
f (r) is cast in the suggestive form

f (r) = 〈R(Ucz), ρ⊗6〉 = 〈Ucz,R∗(ρ⊗6)〉 = 〈M1, ρ1〉 ≡ 〈M1〉ρ1
, (7)

where ρ1 ≡ R∗(ρ⊗6) and mapR∗ the dual ofR has been utilized.
Finally, via the expression Ucz = I−2PN−1 = Pᵀ

N−1 − PN−1 of CZ gate, the volume function evaluates to

f (r) =
4

∑
a=1

λa{Tr[R∗a(ρ⊗6)]− 2 〈N − 1| R∗a(ρ⊗6) |N − 1〉}. (8)

The proof is deferred to Appendix A.

4. Hypergraph Hamiltonian Coupling

Chapter’s outline: The aim of this chapter is to provide the second operational algorithm of the
separability probability distribution. This volumetric radial distribution is shown to be expressed by
means of the expectation value of a quantum observable M2 on an appropriate state. This state is a U
evolved density matrix describing a multiple of copies of X states. The Hamiltonian HV generating
unitary U and its hypergraph coupling structure are determined.

The preceding analysis will be utilized to provide an operational implementation of the volume
function

〈
V̂la , ρ⊗6

〉
via a unitary operator U ≡ eiHV and its generating Hamiltonian HV , both acting

in an extended Hilbert space to that of the density matrix of the 12 qubits, as follows: Let us first
introduce the conditional unitary operator

U =
4

∑
a=1

Pa ⊗ V̂a, (9)

and an auxiliary density matrix ρaux acting on an auxiliary 2-qubit Hilbert space Haux ≈ C4. The initial
composite system density matrix ρaux ⊗ ρ⊗6 evolves as

ρaux ⊗ ρ⊗6 → Uρaux ⊗ ρ⊗6U† ≡ ρ2.

Next, introduce the correlating observable

M2 =
4

∑
b=1

µbPb ⊗ V̂b, (10)

where the real coefficient µ = (µa)4
a=1 should be determined.

Performing the volumetric quantum measurement via M2 on the evolved state ρ2, we demand that
the mean value of the measurement equals the volume function i.e.,

〈M2〉ρ2
≡ 〈M2, ρ2〉 = Tr(M2ρ2) = f (r). (11)

This is achieved by choosing values for the diagonal elements of the auxiliary density matrix ρ1 to
be the probabilities p = (pa = 〈a|ρaux|a〉)4

a=1, which together with the terms of the sequence µ should
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satisfy the constraint (paµa)4
a=1 = (1,−3, 3,−1). A possible choice for p is the uniform distribution i.e.,

pa =
1
4 and for the coefficients µ = (µa)4

a=1 = (4,−12, 12,−4) = 4λ.

Furthermore, modifying numerically observable M2 into M(X)
HS ≡

2π2

9 M2 and M(X)
HS,sep ≡

4π2

45 M2,
yields the exact results of the volumetric quantum measurements of these operators respectively as〈

M(X)
HS

〉
≡ Tr(M(X)

HS · ρ2) = V(X)
HS (r),〈

M(X)
HS,sep

〉
≡ Tr(M(X)

HS,sep · ρ2) = V(X)
HS,sep(r),

from which the probability distribution of the radial parameter is finally obtained i.e., p(X)
sep (r) =〈

M(X)
HS

〉
〈

M(X)
HS,sep

〉 = 2
5 , r ∈ [0, 1).

Next, we determine the Hamiltonian HV that generates the unitary U as U = eiHV by invoking
the identity,

exp(− iπ
2
(2r + 1)(Zj1 ⊗ Zj2 ⊗ · · · ⊗ Zjn − I2n)) = Zj1 ⊗ Zj2 ⊗ · · · ⊗ Zjn ,

valid for r ∈ Z, ji = 0, x, y, z, (where Z0 ≡ I) [32], from which equivalent expressions for Va’s are
obtained i.e., V̂la = Zla = e−

iπ
2 (2r+1)Zla , from which we choose V̂la = e

iπ
2 V̂la . Then, the multi-spin

Hamiltonian generator HV = ∑4
a=1 Pa ⊗ V̂a of U, i.e., U ≡ eiHV , reads explicitly

HV =
π

2
(P1 ⊗ I⊗12 + P2 ⊗ Z9Z11 + P3 ⊗ Z5Z7Z9Z11 + P4 ⊗ Z1Z3Z5Z7Z9Z11). (12)

Referring to Appendix C: Hypergraphs and volume operator, we see that, similarly to the hypergraph
structure of the volume operator, the resulting effective Hamiltonian operator of this chapter shares
a similar hypergraph structure.

5. Quantum Walk Simulation of Separability

Chapter’s outline: The aim of this chapter is to provide the third and final operational algorithm
of the separability probability distribution. To this end, a QW set up with quantum coin and walker
systems is employed. Volume function is again obtained via a quantum measurement of a multi-qubit
observable on a state that results after evolving an initial X density matrix with a conditional completely
positive trace preserving (CPTP) map of the QW type. Decomposition of QW map into a CP map
with volume operators as Kraus generators’ time local unitaries is provided. An overall comment
comparing the three schemes generating separability statistics is provided.

Measurement theory: The quantum measurement content of the QW-based operational algorithm
of separability statistics to be presented follows the generalized theory of quantum measurement.
A brief outline of this theory follows: on a quantum system S in state ρ, a measurement is described by
a (POVM) positive operator valued measure {Qk}k. Each outcome indexed by k occurs with probability
pk = Tr(Qkρ).The completely positive trace preserving map associated with the measurement reads

ρ→ D(ρ) = ∑
k
|k〉 〈k|C ⊗D

(k)(ρ),

where C is a classical register (measuring device) that contains the outcomes of the measurement and

D(k)(ρ) = ∑
i

S(k)
i (ρ)S(k)†

i

is the post-measurement state of the initial ρ corresponding to outcome k. This post-measurement
state is induced by a CPTP (completely positive trace preserving) map D(k), generated by its Kraus
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generators {S(k)
i }i, which in turn generate the POVM elements as Qk = ∑i S(k)†

i S(k)
i . The trace

preservation of map D leads to the completeness of the POVM set i.e. ∑k Qk = I. Note that this
scheme does not assume projectivity of each or orthogonality of different Q’s, so it is a generalization
of the von Neumann projection measurement theory, in which special case the additional relations
Q2

k = Qk for all k’s are valid; see, e.g., [25].
The algorithm: An alternative QW based simulation of the volume function can be given by

constructing a new state ρ2 in place of ρ1 of the preceding analysis, and also by replacing the unitary
U acting in C4 ⊗C212

, by the extended unitary operator W acting in C4 ⊗C2 ⊗C212
. The three state

spaces correspond respectively to the states for the auxiliary system, the coin system and the ’walker’
target system to which an intentional action is aimed.

Consider first the unitary operator

W =
4

∑
a=1

Pa ⊗Wa,

where Wa are unitary step operators for a quantum walk, as will be detailed below, written as

Wa = (P′0 ⊗ I+P′1 ⊗ V̂a)(H ⊗ I) = 1√
2

(
I I

V̂a −V̂a

)
.

Then, we compute Ea, the evolution unitary CP map for the a-th QW, where we choose the initial
coin state to be ρc = |1〉 〈1| , as follows:

Trc[Wa(ρc ⊗ ρ⊗6)W†
a ] =

1
2

Trc

(
I I

V̂a −V̂a

)(
0 0
0 ρ⊗6

)(
I V̂†

a
I −V̂†

a

)

=
1
2
(ρ⊗6 + V̂aρ⊗6V̂†

a ) ≡ Ea(ρ
⊗6).

Explicit computation of the total action of the unitary W generates, after partial tracing of the
coin system, the QW CP map Eqw that eventually yields the target density matrix ρ2, as follows
(ρaux = 1

4I) :

Eqw(ρ
⊗6) ≡ TrcW(ρaux ⊗ ρc ⊗ ρ⊗6)W† = Trc

4

∑
a=1

4

∑
b=1

(Pa ⊗Wa)(ρaux ⊗ ρc ⊗ ρ⊗6)(Pb ⊗W†
b )

= Trc

4

∑
a=1

4

∑
b=1

(
1
4

PaIPb ⊗Wa(ρc ⊗ ρ⊗6)W†
b )

=
4

∑
a=1

1
4

Pa ⊗
1
2
(ρ⊗6 + Vaρ⊗6V†

a ) ≡
1
4

4

∑
a=1

Pa ⊗ Ea(ρ
⊗6) ≡ ρ3. (13)

In the next and final step, we reach the volume function via quantum measurement with the
observable M3 = 2 ∑4

b=1 λbPb ⊗ V̂b, in the state ρ3 as Tr(M3ρ3) = 〈M3, ρ3〉 = f (r) ≡ 〈M3〉ρ3
. Indeed,
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Tr(M3ρ3) =
1
4

2Tr
4

∑
a=1

4

∑
b=1

λbPaPb ⊗ V̂bEa(ρ
⊗6) =

1
2

4

∑
a=1

λaTr(V̂bEa(ρ
⊗6))

=
1
2

4

∑
a=1

λaTr(V̂b(
1
2
(ρ⊗6 + V̂aρ⊗6V̂†

a ))

=
1
4

4

∑
a=1

λaTr(V̂bρ⊗6) +
1
4

4

∑
a=1

λaTr(V̂bV̂aρ⊗6V̂†
a )

=
1
2

〈
ρ⊗6, V̂

〉
+

1
2

〈
ρ⊗6, V̂

〉
= 〈M3, ρ3〉 ≡ 〈M3〉ρ3

= f (r). (14)

Elaborating further on this QW-based alternative, we note that the observable M3 is a form of
controlled-phase operator and can be expressed equivalently as

M3 =


2I⊗12

−6I⊗8⊗(Z⊗ I)⊗2

6I⊗4⊗(Z⊗ I)⊗4

−2(Z⊗ I)⊗6

 .

Referring to density matrix ρ3, we re-express the QW CP maps E2, E3, E4 in terms of only one of
them i.e., of E2 ≡ E , which we recall here

E(ρ⊗6) =
1
2
(ρ⊗6 + (Z9Z11)ρ⊗6(Z9Z11)†) ≡ ρ̃3. (15)

Note that ρ̃3 is an intermediate form of the initial multi X-state density matrix that will be
transformed further until its final target form. However, first let us establish the property of expressing
maps E3, E4 from E2. To this end, observe that

V̂2
Z5Z7
→ V̂3

Z1Z3
→ V̂4,

i.e., the unitary V̂2 can generate the two other unitary operators by appropriate multiplications. Since
the generators of the maps E2, E3, E4 are given in terms of the V̂i’s, it follows from the last equation
above that only the CP map E2 ≡ E with its Kraus generators {I, Z9Z11} needs be considered. This is
so since the rest maps can be generated via local unitary transformation using local Z’s as the following
scheme indicates

E1 =

E2 =

E3 =

E4 =

ρ⊗6,
E(ρ⊗6),(

Z5Z7) ◦ E(ρ⊗6) ◦
(
Z5Z7)† ,

(Z1Z3Z5Z7) ◦ E(ρ⊗6) ◦ (Z1Z3Z5Z7)†.
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This result eventually allows for re-expressing the target density matrix Eqw(ρ⊗6) ≡ ρ3 in the
following suggestive way:

ρ3 =
1
4


ρ⊗6

E2(ρ
⊗6)

E3(ρ
⊗6)

E4(ρ
⊗6)



=
1
4


I46

I46

Z5Z7

Z1Z3Z5Z7

 I4⊗ρ̃3


I46

I46

Z5Z7

Z1Z3Z5Z7


†

.

Factorizing the construction of density matrix ρ3, into a single two body CP map, cf. Equation (15),
times local actions of Z matrices, reduces considerably the required resources for this operational
approach to separability statistics.

Final comment: Summarizing the results of this and the previous two chapters, we see
that the volume function has been obtained via quantum measurements respectively of the
multi-qubit observables M1, M2 and M3 in the respected states given by the density matrices
ρ1, ρ2 and ρ3 according to the following scheme f (r) = Tr(M1ρ1) = Tr(M2ρ2) = Tr(M3ρ3), cf.
Equations (7), (11) and (14). These states have been generated from the given separable X-states via
either a multi-qubit X map, or by a Hamiltonian generated unitary action or alternatively by a unitary
CP map of the QW type combined with additional local unitary actions. The three algorithms are
based on the underlying hypergraph coupling structure of the 12-qubit lattice system that generates
the measuring states ρ1,2,3. Though explicit mention of hypergraph state generation has not been made
in this work, a more detailed analysis (not to be presented here) would reveal the role of hypergraph
state quantum entanglement for the operational algorithms. Finally, the operational scheme put
forward here is general enough to enable simulation of other distributions of radial functions beyond
those employed in the question of separability statistics. Such other applications would be referred to
Appendix B dealing with generalizations of the present approach.

6. Aspects of Computation and Implementation

Chapter’s outline: Relations regarding the presented operational approach to separability and the
computation via IQP circuits are discussed in addition to possible connections to LHZ implementation
architecture are provided.

Computation: Instantaneous Quantum Polynomial-time Computing (IQP) is a type of universal
computation that utilizes quantum circuits made of gates that are diagonal in the Z-basis while
the input–output states are usually X-basis states and results are obtained by measurements in this
basis [14–21]. CZ gates embedded in multi-qubit spaces are the main building blocks of these circuits,
the commutativity of which allows their implementation to be performed simultaneously or in any
other time order, hence the name of IQP. The Hamiltonian dynamics generating such states would
require little control over the time ordering of multiple-qubit interactions needed, hence rendering the
physical implementation to more robust to errors. Further IQP circuits being diagonal are more robust
to quantum noise than the off diagonal circuits are to decoherence, hence they hold an additional merit.
Finally, diagonal gates are fault-tolerantly realizable by current technology e.g., in superconducting
and semiconducting systems. Despite these advantages, IQP circuits have been applied to a limited
number of applications e.g., to the random states generation and to hypergraph state entanglement.
The present work is a novel application of diagonal circuits that combine hypergraph structures and
operational methods for crafting states that their appropriate sampling would generate the elusive
statistics of separable bipartite qubit systems in the X state. Some important questions regarding the
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potential advantage of quantum sampling over classical sampling would be addressed in the present
operational framework concerning separable states, however, they fall outside the scope of this paper.

Implementation: Recent developments in physical implementation of higher order interactions
of systems that encode quantum qubits have resulted into a well-developed quantum simulation
toolbox involving Rydberg atoms, known as the Lechner–Hauke–Zoller (LHZ) architecture [22,23].
The set up allows one to build a prototype for a coherent adiabatic model with all-to-all Ising type
interactions and therefore to provide a platform for realization of two, three, four-body and higher
order interactions. The architecture can be physically realized on various physical platforms with local
controllability, including cases such as superconducting qubits, NV-centers, quantum dots, and atomic
systems. The 12-qubit lattice model of this work, implementing states and measurements that would
simulate separable states would be an interesting problem to address within the LHZ architecture.

7. Conclusions

Quantum separability of multi-qubit states has been investigated in this work by devising
operational ways to verify the statistics of the phenomenon. The algorithms suggested use generalized
measurement theory and unitary in addition to non-unitary CP transformation in order to prepare
the X states, the special type of separable states under study, for quantum measurement that would
yield outcomes simulating separability statistics. Possible connections of the present formalism to the
computational methodology with diagonal quantum circuits as well as to some main implementation
architecture have been outlined. One out of the possible generalizations and ramifications of this
work is worth being selected for a closing discussion topic. It has been clear from the methodology
developed so far that polynomial functions of Bloch vector components could be the resulting functions
of designed generalized quantum measurements of some new observables that would in turn require
some designed transformation applied on initial X state density matrices. This line of investigation
seems rather useful and would be developed to a tool that trades tensoring of multi-qubit states to
polynomial and maybe analytic functions of Bloch vector components treated as independent variables.
We aim to return to this point elsewhere.
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Appendix A. Hankel, Toeplitz, Fourier, Hadamard, CZ and Volume Matrices

Projectors P and Z operators: Let the projector Pk = |k〉 〈k| , k = 1, 2, 3, 4, in C4 space, then let
k = 1 + k120 + k221, ki = 0, 1, and decompose Pk into product of projectors in two qubit spaces C2,

Pk = Qk2 ⊗Qk1 =
I+(−1)k2 Z

2
⊗ I+(−1)k1 Z

2

=
1
4

(
I⊗I+(−1)k1I⊗Z + (−1)k2 Z⊗I+(−1)k1+k2 Z⊗Z

)
.
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Generalizing this decomposition to projectors Pk = |k〉 〈k| , k = 1, ..., N, in CN , the state space
of an N-dimensional system i.e., the state space of n qubits, we consider the binary decomposition
k = 1 + k120 + k221 · · ·+ knN, ki = 0, 1, and decompose the general projection as

Pk =
n⊗

l=1

Qkl
=

1
N

n⊗
l=1

(I+(−1)kl Z) (A1)

= |k1〉 〈k1| ⊗ · · · ⊗ |kn〉 〈kn| .

A compact relation in terms of the Fourier transform exists between the projectors Pk and products
of qubit Pauli matrices which can be obtained by first writing the case n = 2 for motivation as follows:

Pk =
1
22 ∑

l1,l2=0,1
(−1)k1l1+k2l2 Zl2⊗Zl1 ,

then the general case reads

Pk =
1
N ∑

l∈{0,1}n
(−1)k1l1+···+kn ln Zl1 ⊗ Zl2 ⊗ · · · ⊗ Zln . (A2)

Further denoting by k = (k1, ..., kn), and l = (l1, ..., ln), the decimal and binary decomposition of
indices k, l, and Λ ≡ {0, 1}n so k, l ∈ Λ, and by k · l = k1l1 + · · ·+ knln mod2, their inner product, as
well as using the symbol/word Zl ≡ Zl1 ⊗ Zl2 ⊗ · · · ⊗ Zln , we find for projectors the relation

Pk =
1
N ∑

l∈Λ
(−1)k·lZl . (A3)

This is identified with the finite Fourier transform i.e., Pk = ∑l HklZl , where Hkl = 1
N (−1)k·l =

1
N (eiπ)k·l stands for the elements of the Hadamard transform unitary matrix (this is also identified
with finite Fourier transform matrix Fk,l(φ) =

1
N eiφk·l ∈ CN×N , for the choice φ = π).

Hence, the inverse relation follows from the expressions

∑
k∈Λ

(−1)k·l Pk =
1
N ∑

k∈Λ
∑

l′∈Λ
(−1)k·l(−1)k·l′Zl′ = Zl ,

where the relation ∑k∈Λ(−1)k·(l+l′) = 1
N δll′ , have been use. Then,

Zl = ∑
k∈Λ

(−1)k·l Pk

= ∑
k∈Λ

(−1)k·l |k1〉 〈k1| ⊗ · · · ⊗ |kn〉 〈kn| . (A4)

Control Z gates: The generalized controlled-Z phase gates can be obtained by exponentiation
of projector Pk=N−1 ≡ P, in the n qubits space i.e., Ucz = eiπP, where by means of decimal-binary
decomposition k = (k1, ..., kn) the choice k = N − 1 leads to (k1 = 1, ..., kn = 1).

By means of Equation (A3), the gate decomposes for a general index k = (k1, ..., kn) as

Ucz
k = ∏(l1,...,ln)∈Λ e

iπ
2n (−1)k1 l1+···+knln Zl1⊗Zl2⊗···⊗Zln

, (A5)

or concisely

Ucz
k = ∏l∈Λ e

iπ
2n (−1)k·l Zl

. (A6)
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Note that via the decimal-binary decomposition k = (k1, ..., kn), the state vectors |k〉 ∈ {|i〉}2n

i=1
labelled by k, are mapped uniquely to states of n qubits |m1, ..., mn〉 ∈ {|k1, ..., kn〉}(k1,...,kn)∈Λ , so that
the gates CZ read in the multi-qubit representation

Ucz
k = ∑

(k1,...,kn)∈Λ
(−1)k1...kn |k1, ..., kn−1, kn〉 〈k1, ..., kn−1, kn| . (A7)

For example, states |k1, ..., kn−1〉 control qubit state |kn〉 which is denoted the target qubit state, and
the action of the gate is determined by the choice ki = 1, i = 1, ..., n. Explicitly, the action reads
Ucz

k |1, ..., 1, 1〉 = − |1, ..., 1, 1〉 , on state |1, ..., 1, 1〉 , and is identity on all other states.
Other choices for parameter k ∈ Λ in Ucz

k except k = (1, ..., 1, 1) are also possible and in fact are
indispensable, especially in the context of volume operators as will be clear subsequently.

An important generalization of CZ gates is the embedding of them in the matrix space CN×N ,
which means that along some axes the operator acts trivially as the unit matrix. This implies that the
gate Ucz

k is now labelled by the powerset P(Λ) of Λ i.e., k ∈ P(Λ).
We turn now to the proof of the Proposition in the main text.

Proof of Proposition 1. Firstly to address the question of relating volume operators to CZ gates
embedded in CN×N , we turn to some basic properties and relations among Hankel, Toeplitz, Fourier,
Hadamard matrices, and CZ gates.

Recall first the definition of the following matrices in CN×N : the Toeplitz matrix with elements
Tij = ai−j, the Hankel matrix with elements Aij = ai+j, the Fourier matrix with elements Fij =

1√
N

ωij

where ω = e
i2π
N , the Hadamard matrix with elements Hij =

1√
N
(−1)i·j and finally the reflection matrix

with elements J(n)ij = δi+j,n+1, and some of their properties: A = TJ, J2 = I, since JT = J, and the

Toeplitz matrices are unitary/symmetric i.e., TTT = I, then AT = JTTT , so Hankel matrices are also
symmetric i.e., AAT = TJJTT = TTT = I.

Define next the family of X-shifted CZ gates

Fcz ≡ {Ucz
k+l = XlUcz

k

(
XT
)l

, l ∈ Λ},

with XXT = I, where Xl ≡ ⊗n
i=1 Xli and Xli = (1− li)I+ liX, i.e., Xli |ki〉 = (1− li) |ki〉+ li |ki + 1〉 .

In addition, note that |Fcz| = |Λ| = |{0, 1}n| = N. Explicitly for l ≡ (li)n
i=1, k ≡ (ki)

n
i=1 k, l ∈ Λ, so

all CZ gates for n qubits read Ucz
k+l = XleiπPk

(
XT)l

= XlUcz
k
(
XT)l , or explicitly

Ucz
k+l = ∑

m∈Λ
(−1)(k1+l1+m1+1)···(kn+ln+mn+1)Pm1···mn . (A8)

Recall also that Pk1k2 ...kn =
⊗n

j=1
∣∣k j
〉 〈

k j
∣∣ and that Pk = ∑l∈Λ HklZl , where Hkl be the Hadamard

matrix. Define next the Hankel matrix A with elements

Alk = (−1)(l1+k1)(l2+k2)···(ln+kn),

and its transpose

AT
lk =

1
2n (−1)(l1+k1)(l2+k2)···(ln+kn).

Referring to Equation (A8), we have

Ucz
k+l = ∑

m∈Λ
Ak+l,mPm = ∑

r∈Λ

(
∑

m∈Λ
Ak+l,m Hmr

)
Zr = ∑

r∈Λ
(AH)k+l,r Zr,

or explicitly
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Ucz
k+l =

1
2n ∑

m∈Λ
(−1)(k1+l1+m1+1)···(kn+ln+mn+1)+m1r1+···+mnrn Zm. (A9)

Defining the orthogonal matrix C = AH, with property CTC = (AH)T AH = HT AT AH = I,
and elements

Ck+l,r = (AH)k+l,r =
1
2n ∑

m∈Λ
(−1)(k1+l1+m1+1)···(kn+ln+mn+1)+m1r1+···+mnrn ,

we arrive at the direct relation
Ucz

k+l = ∑
r∈Λ

Ck+l,rZr, (A10)

and its inverse

Zr = ∑
k+l∈Λ

C†
k+l,rU

cz
k+l . (A11)

Volume operators: Turn now to the special case of a fixed n and to the binary n-plets and some
subset of labels e.g., la ≡ {la1 , la2 , ..., la2m} with indices 2m < n. e.g., consider n = 12, then the volume
operators are cast in form V̂la = Zla , cf. Equation (5). Explicitly, we have the following labelling
scheme: for V̂2, labels la1=9 = la2=11 = 1, are the only non-zero indices; for V̂3 the non-zero indices are
la1=5 = la2=7 = la3=9 = la4=11 = 1; and finally for V̂4 the non-zero indices are la1=1 = la2=3 = la3=5 =

la4=7 = la5=9 = la6=11 = 1.
Operators V′s (omitting the unit matrix) are then cast in the form

V̂2 = ∑
l∈Λ

(−1)l9+l11 |l9l11〉 〈l9l11| ,

V̂3 = ∑
l∈Λ

(−1)l5+l7+l9+l11 |l5l7l9l11〉 〈l5l7l9l11| ,

V̂4 = ∑
l∈Λ

(−1)l1+l3+l5+l7+l9+l11 |l1l3l5l7l9l11〉 〈l1l3l5l7l9l11| . (A12)

We can compare the matrix form in a computational basis of V’s in Equation (A12) to the respective
ones for CZ’s gates in Equation (A7), and seek to establish a relation between them. This will allow the
operation algorithms formulated in terms of volume operators, to be expressed via CZ gate actions.

An application of the formulas in Equations (A10) and (A11) is to provide the inter-relation of
volume operators {V̂a = Zla ; a ∈ [4], la = {lam}n

m=1} to CZ gates. Referring to Equation (A12), we have

V̂a = ∑
k+l∈Λ

C†
k+l,aUcz

k+l . (A13)

To finalize the proof, we introduce the dual map: Given a endomorphic map E mapping states
(observables) to themselves, consider the expectation value of an observable e.g., X, on a state E(ρ),
viz. 〈X, E(ρ)〉 = Tr(XE(ρ)), where map E has Kraus generators representation E(ρ) = ∑i AiρA†

i . By
virtue of the cyclic property of trace, we define the dual map E∗(X) = ∑i A†

i XAi, via the equation
〈X, E(ρ)〉 = Tr(ρE∗(X)).

Appendix B. Uncertainties and More

Uncertainties: Since the volume function is identified with the mean value of the quantum
measurement of e.g., in the context of the second algorithm that utilized state ρ2 and the observable
M2, (for notational simplicity ρ2 ≡ ρ, M2 ≡ M, 〈M〉2 ≡ 〈M〉), there will be some intrinsic quantum
uncertainty in its values which can be evaluated as ∆M2 ≡

〈
M2〉− 〈M〉2, by means of the observable

M2 = 4 ∑4
a=1 λ2

aPa ⊗ I⊗12. Elaborating on the expression of the statistical moments involved in the
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uncertainty, we cast ∆M2 into the form of the expectation value of the non-positive definite extended
observable M2 ⊗ I214 −M⊗M, in the state ρ⊗ ρ, i.e.,

∆M2 = Tr((M2 ⊗ I−M⊗M)(ρ⊗ ρ)).

This result suggests that the quantum uncertainty of the volumetric measurement can be simulated
by the mean value of the observable M2 ⊗ I−M⊗M. Computing the ratio of uncertainties of the
volume operators, we find ∆M(X)

HS /∆M(X)
HS,sep = 2

5 , r ∈ [0, 1), which implies a large uncertainty in the
measurement since both the ratios of mean-values and that of the uncertainties are equal to each other,
independently of the measuring state ρ.

More general separable systems: In further recent developments on the statistics of X states, by
employing matrix measures such as the Hilbert–Schmidt (HS) and Bures (B) measures, various bipartite
systems of 2× 2 and 2× K dimensionality have been investigated as to their separability statistics.
Specifically, the kinds of manifold of parameters characterizing such bipartite systems are e.g.,: the
full real 15D qubit-qubit manifold and the 9D real qubit-qubit manifold. The density matrices of the
marginal systems A, B, described by their corresponding Bloch vector lengths (ball radii) rA, rB and
the respective volumes have been investigated analytically and numerically to find values for the

a priori marginal “separability probability” p(α)β (r) =
V(α)

sep (r)

V(α)
(β)

(r)
, for the cases α = 2× K; Re(qubits), and

for β = HS, B, where r = rA or rB. Remarkably, some constant values for the a priori probabilities are
conjectured and in some cases are also numerically corroborated.

In particular, recent works by Slater [3,33] extend the investigations to the case of joint probability
distribution p(α)β (rA, rB), based on the knowledge of marginal distributions p(α)β (rA), p(α)β (rB). The work
is mainly carried out numerically—except in the case of X states where analytic results can be provided.
Among the findings, a new phenomenon has been spotted, named “Bloch radii repulsion”, which
suggests an interesting property of the joint distribution, and it seems to be a necessary step for future
progress towards analytic proofs regarding the entanglement statistics of Bloch radii of marginal
subsystems. Given the more complicated polynomial character of the volume functions V(α)

sep (r) in
those more general cases, our preliminary investigation has shown that the simulating algorithm
should be more complicated, involving more qubits with multi-particle interactions. It is worth
searching for operational algorithms for the statistics of these more generalized bipartite systems as
well, given the fact that any numerical generation and investigation of such statistical ensembles are
rather difficult to achieve and it is prone to generating large numerical errors.

Appendix C. Hypergraphs and Volume Operator

This final appendix proceeds by showing that, by invoking the theory of hypergraphs, the volume
operator V̂ can be expressed as an observable determined by the adjacency tensors of a non-uniform
12 vertex hypergraph with qubits placed at each vertex—see Figure A1 below.

Let the non-uniform hypergaph G(V, E) where V = {1, . . . , n} is the vertex set and E = E1 ∪
E2 · · · ∪ ED the hyperedge set, which is the union of subsets of fixed degree hyperedges denoted
Es ⊂ V1 ∪ V2 ∪ · · · ∪ Vs , for s = 1, . . . , D, where D = |e| , e ∈ ED, is the maximal cardinality of
a hyperedge [4–7]. Special cases of G(V, E) are the k-graphs uniform hypergraphs whose hyperedge
set E ⊂ Vk contains only edges e ∈ E with fixed cardinality |e| = k > 2. The case k = 2 corresponds to
ordinary graphs.
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Figure A1. Non-uniform hypergraph interaction configulation of the 12-qubit lattice. Hyperedges:
exagon {1,3,5,7,9,11}; trapezoind {5,7,9,11}; orthogonal {9,11}.

For our case, the hypergraph of coupled qubits is parametrized by the vertex set
V = [12] = {1, . . . , 11, 12}, with D = 6 and hyperedges E2 = {(9, 11)}, E4 = {(5, 7, 9, 11)}
and E6 = {(1, 3, 5, 7, 9, 11)}. For each uniform s-graph component hypergraph with edge set Es,
an adjacency tensor As = (ai1 ...is) ∈ Rs×s is introduced with elements

ai1 ...is =

{
1

(s−1)! if (i1 . . . is) ∈ Es

0 if (i1 . . . is) /∈ Es.

Employing this definition to the hyperedges E2, E4 and E6, we express compactly the volume
operator V̂ of the lattice qubit model issued in Equation (4) as

V̂ = I⊗12−3 ∑
(i1,i2)∈E2

ai1i2 Zi1 Zi2 + 3 ∑
(i1,i2,i3,i4)∈E4

ai1i2i3i4 Zi1 Zi2 Zi3 Zi4

− ∑
(i1,i2,i3,i4,i5,i6)∈E6

ai1i2i3i4i5i6 Zi1 Zi2 Zi3 Zi4 Zi5 Zi6 . (A14)
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