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Abstract: A simple equation of state model for metals at high temperature and pressure is described.
The model consists of zero-temperature isotherm, thermal ionic components, and thermal electronic
components, and is applicable in compressed as well as expanded volume regions. The three
components of the model, together with appropriate correction terms, are described in detail using
Cu as a prototype example. Shock wave Hugoniot, critical point parameters, liquid–vapor phase
diagram, isobaric expansion, etc., are evaluated and compared with experimental data for Cu.
The semianalytical model is expected to be useful to prepare extended tables for use in hydrodynamics
calculations in high-energy-density physics.

Keywords: metals; equation of state; high pressure physics; shock waves; liquid–vapor phase; critical
point parameters; soft-sphere model

1. Introduction

Equation of State (EOS) of materials is an inevitable ingredient in several fields of solid state
science like geophysics, hydrodynamic applications for the analysis of inertial confinement fusion
systems, stellar structures, nuclear weapons, etc. Other applications include fast reactor accident
analysis and study of weapon effects in various media. Euler equations of hydrodynamics, which
expresses conservation laws of mass, momentum, and energy, are routinely used to describe the
dynamical behavior of materials [1]. However, these equations describe the space-time evolution of
four thermodynamic variables—viz., mass density (or specific volume), material velocity, specific
internal energy, and pressure. The system of these equations is then closed with the addition of
equation of state (EOS), which provides pressure when specific internal energy and density are
given. The Mie–Grüneisen EOS [1] with an empirical specification for Grüneisen parameter is the
most commonly used EOS of this type. There is also Tillotson’s EOS [2] which has a larger range
of validity. However, a more complete EOS is specified by providing pressure and specific internal
energy as functions of density and temperature. This temperature corresponds to thermodynamic
equilibrium in the material, and can be eliminated from the expression for pressure in favor of specific
internal energy to obtain the above mentioned relation between pressure, specific internal, energy,
and density. An EOS of similar class, which treats pressure as independent variable, was proposed by
Rice and Walsh [3] to model water. Here, specific volume is expressed in terms of enthalpy using the
enthalpy–parameter which depends on pressure. This class of EOS, generally called enthalpy-based
EOS, has been developed to model shock compression of porous materials [4], including explicit
accounting of electronic effects [5].
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In the following sections, we describe a semi-analytical EOS model of the general type, where
volume and temperature are independent variables. The different components of the EOS model,
including correction terms, are discussed in detail. Experimental data for Cu on Shock-Hugoniot,
critical point parameters, liquid–vapor phase diagram, and isobaric expansion are used to test the
model. Good agreement obtained shows that the model can be employed to prepare extended EOS
tables for use in hydrodynamics calculations.

2. Three Component EOS Model

In general, EOS models consist of three components [6], which describe (i) the zero-temperature
(or cold) isotherm, (ii) thermal ionic effects, and (iii) thermal electronic effects. Pressure and specific
internal energy are then expressed as functions of volume (V) and temperature (T):

P(V, T) = Pc(V) + Pti(V, T) + Pte(V, T), (1)

E(V, T) = Ec(V) + Eti(V, T) + Ete(V, T), (2)

where the terms denote, respectively, the three components mentioned above. The subscripts c, ti, and
te stand for the terms ‘cold’, ‘thermal-ion’, and ‘thermal-electron’, respectively. There are interaction
effects between ionic and electronic motion, however, these effects contribute only a few percent to
pressure and energy and so may be neglected in high-pressure physics applications [6]. Models for the
different terms in Equations (1) and (2) of varying degrees of sophistication are currently available in
the literature [7].

First, principle methods using Density-functional theory (DFT) for Ec and quasi-harmonic
approximation (QHA), based on density-functional perturbation theory, for lattice vibration
contributions to Eti are now quite common [8]. Such methods have proven to be extremely useful
in thermodynamic studies of compounds of interest in Earth sciences [9]. Further, electronic density
of states determined from DFT calculations yield accurate estimates of Ete for lower ranges of
temperature [10]. Availability of efficient computer implementation [11] of QHA, which uses
DFT-generated data on Ec and volume-dependent vibration frequencies, make QHA the method
of choice for detailed studies of thermodynamic properties of materials in the solid phase. However,
for developing global EOS models, which deal with very high temperatures (∼keV) and pressures
(∼ tens of megabar), it is necessary to take only the relevant information from DFT computations and
supplement it with other models [10] to incorporate effects of melting, extreme pressure and thermal
ionization, expanded volume states, etc. The general approach is to use empirical fits to the cold
isotherm [12], Debye–Grüneisen model for lattice thermal motion [13] and Thomas–Fermi model for
thermal electron excitation [14]. Such extended models are essential for some of the hydrodynamic
applications mentioned in the beginning.

The global EOS model we describe below, which is applicable even at very high temperatures
and pressures in the compressed as well as expanded volume states, indeed uses different parameters
obtained from DFT analyses, particularly when accurate experimental data on these are unavailable.

3. Zero-Temperature Isotherm

The zero-temperature isotherm is a manifestation of the Fermi-pressure developed in degenerate
electron systems, and is a quantum effect just like zero-point vibration energy. This contributes
significantly to the total pressure in compressed solids, and becomes the dominant contribution at
extreme compression. A variety of approximate expressions to describe it quantitatively are available
in the literature [15]. Computations using DFT, mentioned above, are now routinely used to determine
energy versus specific volume (or volume per atom) tables, and thereafter the zero-temperature
pressure–volume relation. Results of such analyses are then used in semi-empirical expressions.
We propose to use a four-parameter model, developed by Li et al. [16], which is expressed as:
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ELi(V) = −Ecoh(1 + a + δa3)e−a, η =
(9B0Vc0

Ecoh

)1/2
, x =

( V
Vc0

)1/3
, (3)

PLi(V) = 3B0
(1− x)

x2 (1− 3δa + δa2)e−a, a = η(x− 1), δ =
B′0 − 1

2η
− 1

3
. (4)

The four parameters in the model are the specific volume Vc0, the bulk modulus B0, its pressure
derivative B′0, and the cohesive energy Ecoh at zero temperature. These parameters occur in terms of
dimensionless quantities η and δ, and a is related to the dimensionless length variable x. Furthermore,
if energy ELi is scaled with Ecoh and pressure PLi with B0, then, these expressions are totally
dimensionless—however, defined in terms of two parameters η and δ. The specific volume Vc0

is slightly lower than the volume at ambient conditions (T0 = 300 K and P0 = 1 bar). In our approach,
we adjust the value of Vc0 such that the zero-temperature pressure together with thermal pressure
of ions and electrons is just one bar at 300 K. The four-parameter model is a refinement over Rose
equation [17] and Vinet equation [18], and is found to provide quite accurate descriptions of the
zero-temperature energy and pressure over compressed volume up to ∼Vc0/2, which corresponds
to about 100–150 GPa pressure, for about forty metals [16]. It also provides accurate representation
for energy and pressure in the expanded volume up to about ∼2Vc0. However, the formulation is
inadequate in the region of extreme compression, as is evident from Equation (3), which shows that ELi
saturates as V → 0. Theoretically, the zero-temperature energy and pressure should approach those of
electron gas.

To rectify this problem, we use a procedure [12] to smoothly go over from the four-parameter
model to the the quantum statistical model (QSM) [19], which is known to provide accurate descriptions
of pressure and energy of electrons above few hundred GPa pressure. The QSM accounts for exchange
and correlation effects in addition to corrections for electron density gradients [20]. Electron pressure
in a compressed atom within the QSM model is expressed as:

PQSM(V) =
e2

5
a0

V5/3 (3π2)2/3Z5/3
n exp[−α− β], (5)

α = 0.3225 Rw Z[ 0.495−0.039 log10 Zn ]
n ,

β =
5
3

R2
w[ 0.068 + 0.078 log10 Zn − 0.086(log10 Zn)

2 ].

Here, e is electron charge, Zn is atomic number, a0 is the Bohr radius, and Rw is the Wigner-Seitz
cell radius in units of a0. Specific internal energy EQSM is obtained from pressure by integrating the
thermodynamic relation P = −dE/dV from a suitable initial volume, say Vc0.

Now, choose a value of V, say Vm, such that the four-parameter model ELi(V) is accurate for
V ≥ Vm. That is, we assume that the zero-temperature isotherm Ecold(V) = ELi(V) and Pcold(V) =

PLi(V) for V ≥ Vm. Then, for lower values of V, these are defined as

Ecold(V) = (EQSM(V)− EQSM(Vm))Bint(V) + ELi(Vm), V ≤ Vm,

Pcold(V) = PQSM(V)Bint(V) + (EQSM(V)− EQSM(Vm))B′int(V), V ≤ Vm, (6)

Bint(V) = (1 + b1V + b2V4/3 + b3V5/3).

Here, Bint(V) is a suitable interpolating function. Note that, by definition, Ecold(V) is continuous
at Vm. Now, the parameters bk (k = 1, 3) in Bint(V) are chosen such that Pcold(V) and its first
two derivatives are also continuous at Vm [12]. This procedure gives a smooth transition from the
four-parameter model to the QSM. Plots of energy versus V for Cu using the two models are shown in
Figure 1A with the choice Vm = Vc0/1.4 = 0.07998 cm3/g.

As an application of the zero-temperature energy Ecold(x), we use the lattice inversion method [21]
and obtain an effective inter-particle potential between Cu atoms in the solid. We may imagine that the
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lattice is formed by assembling shells successively around a central atom. Then, the zero-temperature
energy Ecold(x) per atom, where x = (V/Vc0)

1/3 is the scaled nearest-neighbor distance, can be readily
written as a lattice sum involving the inter-particle potential U(x). The inversion method provides a
similar formula [22] for U(x) in terms of Ecold(x). For an FCC lattice, the direct formula for Ecold(x)
and the inverse formula for potential U(x) are given by

Ecold(x) =
1
2

Ns

∑
n=1

rn U(bnx), (7)

U(x) = 2
Ns

∑
n=1

wnEcold(bnx).

Here, n is the shell index, rn is the number of atoms in the shell, bn is the normalized radius of
the shell, and wn is the weight factor for the shell. This is a truncated formula, and the total number
(Ns) of shells considered should be sufficiently large for convergence. The total potential (curve-1)
and its repulsive (curve-2) and attractive (curve-3) components, as per the Weeks–Chandler–Andersen
prescription [23], are shown in Figure 1B. For the sake of completeness, we have listed the constants
rn, bn and wn (1 ≤ n ≤ Ns) for FCC lattice in Table 1. The factors 1/2 and 2 in Equation (7) arise
because U(x) is the energy for two atoms; while Ecold(x) is the energy per atom.
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Figure 1. (A) Uncorrected energy ELi(V) for Cu (curve-1) according to the four-parameter model [16]
and the zero-temperature energy Ecold(x) corrected with QSM model (curve-2) as given in Equation (6).
The insert figure shows pressure. (B) Effective inter-particle potential U(x) for Cu (curve-1), obtained
by inverting Ecold(x), where x = (V/Vc0)

1/3, using lattice inversion method. Curves 2 and 3 show,
respectively, the repulsive and attractive components as per the WCA separation.

Table 1. Constants of inversion formula for FCC lattice.

n rn bn
1 wn n rn bn

1 wn n rn bn
1 wn

1 12
√

1 1/12 6 8
√

6 1/9 11 24
√

11 −1/6
2 6

√
2 −1/24 7 48

√
7 −1/3 12 24

√
12 7/12

3 24
√

3 −1/6 8 6
√

8 1/32 13 72
√

13 −1/2
4 12

√
4 −1/16 9 36

√
9 1/12 14 0

√
14 −1/3

5 24
√

5 −1/6 10 24
√

10 0 15 48
√

15 1/3

1 For FCC lattice bn =
√

n. These are different for other lattices [21].
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4. Ionic Thermal Component

The treatment of the ionic contribution to the EOS is best described by considering the compressed
region and the expanded volume regions separately. In the former, we start with the low-temperature
solid phase and go over to the melted fluid phase on increasing temperature. However, in the latter
region, the material is always in the fluid phase, which also encompasses what is called the warm
dense matter region. We consider different models for describing the EOS in these regions.

4.1. Compressed Region—Johnson’s Model

The model for ionic thermal energy should describe the low-temperature properties of solids,
fluid phase for temperatures above melting, and ideal gas behavior at higher temperatures. Thus,
for a specified volume, the constant-volume molar specific heat of ions—denoted by CVi—must vary
from the low temperature T3 law to 3R above Debye’s temperature and finally to 3R/2. This feature is
essential since shock compression of materials produce high temperatures and the solid melts and
becomes a fluid after shock traversal. The mean field model used by Wang does not possess this
crucial feature [24]. The parameters in the model used by Kormer et al. [25] need adjustments for
every material.

So, we propose to use Johnson’s ionic model [26] in the compressed region. In addition to the
general constraints on CVi mentioned above, the model adds an extra contribution (3RT/Tm), linearly
varying with T in the interval Tm to 1.2Tm to account for the heat of fusion. This corresponds to
an increment of 0.6R in entropy, which has been determined from studies of several materials.
Furthermore, the typical decrease of CVi from its value 3R at Tm to 9R/4 at 5Tm—and thereafter
a linear variation in ln(T) to the ideal gas value 3R/2—are built in to the model. Specific internal
energy and pressure within the model (version-I) are thus given by [26]:

Eti(V, T) = ED + NkBT(E0 + εψ). (8)

Pti(V, T) =
Γi
V

ED +
1
V
(2Γi − 2/3)NkBT(E0 + εψ), (9)

ED(V, T) = NkBT
[9

8
θD
T

+ 9
( T

θD

)3
θD/T∫
0

z3

ez − 1
dz
]
.

Here, ED is Debye’s specific internal energy, TM(V) is melting temperature, θD(V) is Debye’s
temperature, kB is Boltzmann’s constant, N is number of atoms per gram, and ψ = T/TM is scaled
temperature. Further, Γi(V) is Grüneisen parameter for ions, to be defined below. The energy
parameters E0 and εψ are fitted functions of ψ in order to account for the constraints on CVi mentioned
above, and are given by

E0 = −3
2
+

3
2

a4(ψ
−3/2 − ψ−2/2) + a2

(a3y + ψ1−y)

(ψy(a3 + ψ1−y)2)
, 1 ≤ ψ < ∞,

εψ =
3
2
(ψ− 1/ψ), 1 ≤ ψ ≤ 1.2, (10)

εψ = 0.66/ψ, 1.2 ≤ ψ < ∞.

Thus, Johnson starts with Debye’s model in the region T ≤ Tm. The contribution to specific
internal energy due to heat of fusion is given by εψ; and E0 describes the variation of CVi after melting.
Note that E0 varies from zero at Tm to −3/2 in the high temperature limit. An equally important
feature is that the factor (2Γi − 2/3) facilitates correct approach of the effective Γi to its ideal gas limit
(2/3). The constants a2, a3, a4, which take care of the constraints, are given by
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a1 = −5.7−∑
i

ni ln[(Ai/Ā)3/2/ni], a3 = 200,

y =
(

201[1600a2
1 + 2398(4a1 + 5)]1/2 − 40(5− 197a1)

)
/[3980(4a1 + 5)], (11)

a2 =
3
2
(1 + a3)

3/[a3(1− y)(a3y + 2− y)],

a4 = −8
5

(
a1 + a2/(1 + a3)

)
,

where, ni, Ai, and Ā denote the number fraction, mass number, and its average, respectively.
The summation in a1, which contributes only for mixtures, accounts for ideal entropy mixing. Thus,
the model is applicable to the case of compounds as well.

In a more elaborate method (version-II), region 1 ≤ ψ < ∞ is divided into three segments, viz.,
1 ≤ ψ ≤ 5, 5 ≤ ψ ≤ ζ, and ζ ≤ ψ < ∞. In the first region, CVi varies linearly in T; while in the the
second, the variation is linear in ln(T). The value of ζ is determined so that entropy approaches ideal
gas limit. Heat of fusion is added, as in the first version. Finally, specific energy and pressure are
expressed as

Eti(V, T) = ED + NkBT(Eψ + εψ), (12)

Pti(V, T) =
Γi
V

ED +
1
V
(2Γi − 2/3)NkBT(Eψ + εψ), (13)

where εψ is the same as that given in Equation (11), while Eψ is given by

Eψ = 3/16− 3ψ/32− 3/(32ψ), 1 ≤ ψ ≤ 5,

Eψ = −(3/4) + b ln(ψ/5)− b + 5(b + 9/20)/ψ, 5 ≤ ψ ≤ ζ, (14)

Eψ = −(3/2) + 5(b + 9/20)/ψ− ζb/ψ, ζ ≤ ψ < ∞.

The new constants b and ζ are given by

b = 9/
(

32(a1 + 3/4 + 27 ln(5)/16)
)

,

ζ = 5 exp[−3/(4b)].

For illustration, we show in Figure 2 the variation of specific heat of Cu with temperature at
normal volume V0, using first version in graph-A and second version in graph-B. Both versions, thus,
produce almost identical results. From the discussion summarized above, it is clear that Johnson’s
model is to be used in the compressed volume region. So, we next discuss a suitable model in the
expanded volume region.

4.2. Expanded Region—Modified Soft-Sphere

The expanded volume region of the material, which covers the warm dense region and
liquid–vapor transition, is important in several hydrodynamic applications. For instance, the material
undergoing expansion induced via rarefaction wave is in this region. Similarly, highly porous materials
(e.g., copper with porosity more than fifty percent) reach this state after shock-compression. It is
necessary to have a separate model for this region as the physics here is mainly determined with
excluded volume effect and a weak van der Waals type attractive interaction [27]. Young developed a
soft-sphere model for liquid metals [28] using Monte Carlo simulations data for the thermal properties
of particles interacting via soft-sphere potential, ε(σ/r)n. Here, ε, σ, and n define the parameters
of the inverse power law potential. Together with the van der Waals attractive interaction, five
parameters in the model were fitted to liquid–vapor co-existence data. This procedure is an extension
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of van der Waals theory of fluids, which treats attractive part as a zero temperature component of
the EOS. We developed a modified soft-sphere model [29], wherein the use of simulation data was
retained, however a generalized Lennard–Jones model was used as the attractive component. Instead
of numerical fitting, all the parameters of the modified model were determined in terms of Vc0, Ecoh,
B0, and B′0 at normal conditions.
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Figure 2. (A) Variation of ionic specific heat of Cu versus temperature at normal volume V0 using
Johnson’s model, version-I. (B) Similar results using Johnson’s model, version-II. Melting contribution
is shown with dashed lines in both panels.

To discuss the formulation briefly, we start with a generalized Lennard–Jones pair potential
between the atoms:

ULJ(R) = εrep

( σ

R

)n
− εatt

( σ

R

)m
. (15)

Here, respectively, εrep and εatt denote repulsive and attractive energy parameters, and σ is a
spatial scale factor. This particular form is chosen because, as already mentioned above, extensive
simulation data is available [27] for the repulsive component in Equation (15). Further, a proper
choice of the exponent m will lead to an attractive part similar to that in van der Waals theory.
The zero-temperature ionic energy per gram, ELJ = NELJ , where ELJ is the energy per atom, can be
expressed as

ELJ(V) = N
εrep

2
Cn

(Vc0

V

)n/3
− N

εatt

2
Cm

(Vc0

V

)m/3
, (16)

where Vc0 = Nσ3/
√

2 is the specific volume at zero-temperature, and Cn and Cm are lattice sums [30].
Now, on imposing the conditions that the zero-temperature pressure PLJ = −dELJ/dV vanishes at Vc0

and the corresponding energy ELJ(Vc0) = Ecoh, we readily find that

εrep =
Ecoh
N

2
Cn

m
n−m

, εatt =
Ecoh
N

2
Cm

n
n−m

. (17)

The expressions for ELJ and PLJ can be re-written as

ELJ(V) =
Ecoh

n−m

[
m
(Vc0

V

)n/3
− n

(Vc0

V

)m/3 ]
, (18)

PLJ(V) =
Ecoh

n−m
n m

3 Vc0

[(Vc0

V

)1+n/3
−
(Vc0

V

)1+m/3 ]
. (19)
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The exponents n and m are yet to be determined, however, bulk modulus B0 and its pressure
derivative B′0 can be computed from Equation (19) as

B0 = Ecoh
n m

9 Vc0
, B′0 = 2 +

n
3
+

m
3

. (20)

Even though these relations imply that n and m are the roots of the quadratic equation x2− 3(B′0−
2) x + 9B0Vc0/Ecoh = 0, experimental parameters generally lead to complex roots [31]. Therefore, in
such situations, we can use only three parameters. Jiuxun has shown [32] that the spinodal condition
|B| ∼

√
(P− P∗), where P∗ is the pressure corresponding to B(P∗) = 0, follows if we use the relation

m = (n− 3)/2. Then, the first relation in Equation (20) shows that n is determined from the quadratic
equation n2 − 3n − 18B0Vc0/Ecoh = 0. The positive root gives n = 8.803 and m = 2.901 for Cu.
The accuracy of the generalized Lennard–Jones model can be assessed by comparing it with the
four-parameter model [16] discussed earlier. In Figure 3A, we compare the repulsive component
of the interparticle potential for Cu. The energy parameter εrep and the exponent n in the repulsive
component are to be used in the model for ionic thermal energy. Figure 3B shows the generalized
Lennard–Jones energy and pressure, which compare quite well.
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Figure 3. (A) Comparison of repulsive part of inter-particle potential for Cu versus scaled inter-particle
distance (V/V0)

1/3, using four-parameter model (curve-1) [16] and generalized Lennard–Jones model
(curve-2). (B) Scaled cohesive energy and pressure using four-parameter model (solid lines) [16] and
generalized Lennard–Jones model (symbols).

As explained in the beginning of this section, the ionic thermal energy of the modified soft-sphere
model is precisely contributed by the repulsive part of the inter-particle potential. Monte Carlo
simulation data of thermal pressure of soft particles, interacting via the potential εrep(σ/r)n, are
accurately expressed in the parametric form [27]:

P =
NkBT

V

[
1 +

n
3

Cn

2
(

ρsc√
2
)n/3 +

1
18

n(n + 4)(
ρsc√

2
)n/9

]
, ρsc =

N
V

σ3
[ εrep

kBT

]3/n
. (21)

We show the accuracy of this fit in Figure 4, where the scaled pressure Z = PV/(NkBT) is
plotted versus the scaled density, denoted as ρsc, for values of exponent n = 4, 5, 6. Similar results for
the exponent n = 7, 8, 9, 12 are shown in Figure 5. Impressive agreement between the data and the
parametric fit is evident in these figures. On adding this contribution to ELJ and PLJ , the ionic energy
and pressure within the modified soft-sphere model are given by
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Eso f t(V, T) = NkBT
[3

2
+

1
6
(n + 4)

(Vc0

V

)n/9( εrep

NkBT

)1/3]
+ ELJ(V), (22)

Pso f t(V, T) =
NkBT

V

[
1 +

1
18

n(n + 4)
(Vc0

V

)n/9( εrep

NkBT

)1/3]
+ PLJ(V), (23)

where we have used the expression for zero-temperature reference volume, Vc0 = Nσ3/
√

2, and the
subscript so f t to denote the term ‘soft-sphere’.

As mentioned earlier, the zero-temperature isotherms of the solid and the correction to ideal gas
thermal energy (second term in brackets), determined from Monte Carlo simulation data, define the
modified soft-sphere model. All the parameters in this model are determineda priori, so there is no
need to fit its parameters.
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Figure 4. Scaled pressure (Z) versus scaled density (ρsc) for power law potentials with exponent
n = 4, 5, 6. Lines correspond to Equation (21), while symbols denote Monte Carlo simulation data [27].
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n = 7, 8, 9, 12. Lines correspond to Equation (21) while symbols denote Monte Carlo simulation
data [27].
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4.3. Grüneisen Parameter

Ionic Grüneisen parameter Γi(V), Debye temperature θD(V), and melting temperature TM(V)

are needed in modeling ionic energy and pressure in the compressed volume region. While there are
several empirical fits [13] for Γi(V), the one due to Preston et al. [33], which has the correct asymptotic
behavior for strong compression, is expressed as

Γi(V) =
1
2
+ c1V1/3 + c2Vq. (24)

The parameters c1, c2, and q are determined using experimental data on Γi at T = 300 K,
at zero-pressure melting point and asymptotic (V → 0) approximation for free electron states. These
constraints define three nonlinear equations to determine the parameters. Expressions for θD(V) and
TM(V), which follow from Debye–Grüneisen law and Lindemann’s law, respectively, are given by

θD(V) = θ0

(V0

V

)1/2
exp[3c1(V1/3

0 −V1/3) +
c2

q
(Vq

0 −Vq)]. (25)

TM(V) = TM0

(Vr

V

)1/3
exp[6c1(V1/3

r −V1/3) +
2c2

q
(Vq

r −Vq)]. (26)

Values of θ0, TM0, and Vr, which reference Debye temperature, melting temperature, and melting
volume at P = 0, respectively, are tabulated for a variety of materials [33]. Further, the expression for
TM(V) is found to compare well with experimental data, as shown below.

As an application of the models discussed in this section, we show the Grüneisen parameter for
Cu in the compressed (V ≤ V0) as well as the expanded (V ≥ V0) volume regions for 300 K (curve-1)
and 5000 K (curve-2) in Figure 6A. The region to the left of the (vertical) dashed line in the figure is
the compressed phase while the expanded region is on its right side. The thermodynamic definition
for ionic Grüneisen parameter, Γi = (1/V)(∂P/∂E)V = (1/V)(∂P/∂T)V(1/CVi), can be readily used
with analytical expressions for P and E, which are described in both volume regions (Johnson’s model
for V ≤ V0; and the modified soft-sphere model for V ≥ V0). Experimental value 2.19 at 300 K is also
shown (filled circle) in the figure. For a specified temperature, say 5000 K, the material goes over to
the melted fluid region as volume is increased, and hence Γi(V0) is reduced to 1.96 from its value at
300 K. For the expanded volume region, the modified soft-sphere model shows explicit temperature
dependent of Γi(V).

In Figure 6B, we have also sketched θD(V) and TM(V), given in Equations (25) and (26).
Experimental data on TM taken from Preston et al. [33], and the value of θD(V0) are also shown. Good
comparison of TM data, which are not used in fixing the parameters in Γi (c1, c2, and q in Equation (24)),
shows the internal consistency of the procedure. In addition, we have shown θD (dashed line) derived
from Slater’s formula, Γi = (1/6) − (1/2)(dBS/dP) [11], where BS is the zero-temperature bulk
modulus obtained from Equation (4). Again, the agreement between θD obtained from two totally
independent sources (Preston’s and Slater’s Γi) demonstrates its accuracy.
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Figure 6. (A) Ionic Grüneisen parameter Γi versus volume V for Cu in the compressed (left side of
dashed line) and expanded (right side of dashed line) regions for 300 K (curve-1) and 5000 K (curve-2).
Experimental value 2.19 at 300 K is also shown. (B) Melting temperature TM (curve-1) and Debye’s
temperature θD (curve-2) versus V for Cu in the compressed volume region, as given in Equations (26)
and (25). Filled circles are experimental data on TM [33]. Room temperature value 343 K of θD is also
shown. The dashed line is Debye’s temperature based on Slater model [11] for Γi.

5. Electronic Thermal Component

Electronic thermal component of energy and pressure is significant at temperatures reached
in shock compression of porous materials. The EOS codes mentioned earlier uses the well-known
Thomas–Fermi (TF) model [14] to describe electronic properties. However, the pressure and energy
resulting from the approximations involved in this model need to be corrected in the low-temperature
range. For example, the low-temperature specific heat constant predicted by the model differs from
experimental values. Further, it is necessary to employ pressure and energy tables since in-line
solutions of the TF equation are time consuming. Therefore, analytical fits [34] to results of Latter’s
calculations are sometimes employed [25] in high-pressure studies. However, it is important to note
that this fit is valid in the compressed volume region, even though TF model as such may be applied
even to an isolated atom.

So, we propose a somewhat different approach. First of all, following Atzeni et al [35], we assume
that the Fermi gas model can be used to compute the thermal energy and pressure of electrons with a
suitable average ionization degree Z∗ of atoms, which depends on density and temperature. We use
an excellent analytical fit for Z∗ given by More [36] using results of Thomas–Fermi model:

R5 = ρ(g/cm3)/(Zn A), tc = T(ev)/A4/3, t = tc/(1 + tc),

a5 = 3.323× 10−3 × tc0.971832 + 9.26148× 10−5 × tc3.10165,

b5 = − exp[−1.763 + 1.43175× t + 0.315463× t2], (27)

c5 = −0.36667× t + 0.98333, q6 = a5 × Rb5
5 ,

q5 = (factor× Rc5
5 + qc5

6 )1/c5 , x5 = 14.3139× q0.6624
5 ,

Z∗ = Zn × x5/(1 + x5 + [1 + 2x5]
1/2),

where Zn and A are atomic number and mass number, respectively. We have introduced a
multiplicative correction term, termed ‘factor’ in the equation above, which needs to be adjusted
so that Z∗ agrees with the experimental value of average ionization degree at ρ0 and T0. It takes
value 0.079 for Cu, and the corrected and uncorrected variation of Z∗ with temperature is shown in
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Figure 7A. Note that Z∗ is corrected only in the lower ranges of temperature, and it correctly saturates
to Zn at high temperature. The insert in this figure shows specific heat variation for three densities: (1)
ρ0/10, (2) ρ0, and (3) 10ρ0. Similar correction factors for some other metals are given in Table 2.

Table 2. Z∗0 using More’s formula [36].

Element ρ0(g/cc) Z∗
0UC

1 Z∗
0E

1 factor Z∗
0C

1

Cu 8.93 4.38 1.01 0.079 1.02
Al 2.74 2.46 1.0 0.210 1.09
Fe 7.89 5.85 2.01 0.270 2.06
W 19.41 4.15 1.34 0.095 1.36

1 Z∗0UC (uncorrected), Z∗0E (desired), Z∗0C (corrected).
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Figure 7. (A) Variation of effective charge Z∗ versus temperature at density ρ0—without correction
(curve-1) and with correction (curve-2). Insert shows electron-specific heat at three densities: (1) ρ0/10,
(2) ρ0, (3) 10ρ0. (B) Zero-temperature pressure versus density. Numerical results [37] employing TF
theory (filled circles), results of free electron gas model without correction (curve-1) and with correction
(curve-2) are shown.

To test this approach, we have plotted in Figure 7B the zero-temperature electron pressure
P = Cp(NZ∗/V)5/3), where Cp = (3/π)2/3(h2/20me) versus density (ρ) using the uncorrected
(curve-1) and corrected (curve-2) formula for Z∗. Numerical results [37] employing TF theory (filled
circles) are also shown. It is interesting to note the TF results are accurately reproduced with the
uncorrected Z∗, while the correction gives lower pressures. Finally, the thermal component of electron
energy and pressure, within the free electron gas model, are given by

N
V

Z∗ = C0(kBT)3/2 I1/2[EF/kBT)]. (28)

Ee[V, T] = C0(kBT)5/2V I3/2[EF/kBT)]− 3
5
(NZ∗)EF(V, 0). (29)

Pe[V, T] =
2
3

1
V

Ee[V, T], C0 =
4π

h3 (2me)
3/2. (30)

Here, EF(V, T) is the Fermi energy, which is implicitly defined via Equation (28); and In are
Fermi–Dirac integrals. Very accurate rational approximations for these integrals are now available [38].
The next level of improvement to the electron EOS is to add Coulomb interaction, exchange, and
correlation energies, thereby accounting for all the terms in the uniform electron gas model [39].
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6. Applications

In this section, we discuss three more applications of the EOS model. The first is its application
to the calculation of the shock Hugoniot. Extensive data available in the shock wave database [40]
is compared in Figure 8A with predictions of the model (curve-1). We find excellent agreement
throughout the range of pressures obtained in the experiments. In the insert figure, we have shown
the results without correcting the zero-temperature isotherm (curve-2), and without adding electronic
terms (curve-3). Correction to the zero-temperature isotherm is found to be quite important as the
four-parameter isotherm is valid up to 100–150 GPa. Addition of the electron component is found
to improve the prediction even for pressures in the range of 200 GPa. Contrary to the common
feeling, pressure on the Hugoniot is decreased when electron contribution is added. This is because
the electron degrees of freedom reduces temperature, and consequently the pressure, for a specified
volume on the Hugoniot. Temperature along the Hugoniot (curve-1) and the melting temperature
(curve-2) displayed in Figure 8B show that melting occurs around 300 GPa pressure. Therefore, proper
accounting of the melting transition is important even though the transition is not evident in the
pressure–volume Hugoniot.

Next, we compare the liquid–vapor phase diagram of Cu employing the modified soft-sphere
model, which was briefly considered in our earlier work [29]. It is well known that the attractive and
thermal components of energy finely balance to produce the van der Waals loops in the isotherms in
the vapor–liquid co-existence region. The critical point parameters we have obtained, via Maxwell’s
construction, (ρc = 2.246 g/cm3, Tc = 8345 K, and Pc = 0.8935 GPa) are very well within the range
quoted in the literature [41]. The phase diagram (curve-1) is shown in Figure 9A, and compared with
simulation data (filled circles) [42]. These data were obtained via molecular dynamics simulations using
an effective pair potential deduced from DFT calculations of energy–volume curve in the compressed
and expanded volume regions. We find good comparison except in the liquid region of the phase
diagram. The spinodal curve (curve-2), which is the locus of points where isothermal compressibility
diverges; and the diameter (curve-3), which is the average of liquid and vapor phase densities on the
phase diagram, are also shown in the figure.
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Figure 8. (A) Pressure–volume Hugoniot of Cu. Symbols are experimental data taken from the
shock wave database [40], while curve-1 is based on the EOS model. The insert shows the effect of
using uncorrected zero-temperature isotherm (curve-2) and without electronic contribution (curve-3).
(B) Temperature along the Hugoniot (curve-1) and melting temperature (curve-2) versus pressure.

In Figure 9B, we have compared results of the EOS model for the enthalpy (H) of Cu versus
temperature, along the 1-bar isobar, with experimental data taken from Trainor et al. [43]. Starting
from 50 K, the material expands from 0.1105 to 0.1268 (cm3/g), where it crosses the melting line around
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1310 K. This results in a jump in enthalpy, and thereafter a smooth increase, as seen from the figure.
The model for Γi employed in Johnson’s model is inappropriate in this volume region. Therefore, we
have taken a constant value Γi = 2.19, which is the experimental value at normal conditions, and
corresponding expressions for θD(V) and TM(V) in lieu of Equations (25) and (26). Furthermore, we
find that the heat of fusion to be added at the melting point is about 225 kJ/kg, in good agreement
with the experimental value of 205 kJ/kg.
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Figure 9. (A) Liquid–vapor phase diagram (curve-1) of Cu obtained using the modified soft-sphere
model. Symbols are simulation results [42]. The spinodal line (curve-2) and the diameter (curve-3) are
also shown. (B) Enthalpy of Cu versus temperature along the isobar at 1 bar. Symbols denote data
taken from Trainor [43] while the line is based on the EOS model. The jump in enthalpy is due to the
melting transition.

Finally, we mention that the EOS model described above (except the correction term for the
zero-temperature isotherm and the free electron gas model) has been applied very successfully for
the development and application of enthalpy-based approach to describe shock wave propagation
in porous materials. There, we started with the computation of enthalpy-parameter, defined as
χ = P(∂V/∂H)P, and developed the method treating P as independent variable. First, we showed [5]
(using analytical fits [34] to results of TF theory) the correct approach to incorporate electronic effects
explicitly. Then, we developed the modified soft-sphere model to properly evaluate the Hugoniot
of highly porous materials, as their final shocked states are in the fluid region [29]. In another
development, we used the EOS to show that the enthalpy-based approach can be implemented [44] in
hydrodynamic simulations to describe shock wave propagation in solid as well as porous materials.

Applications of the EOS model to other materials can be easily carried out using the
experimental/theoretical values of the parameters [16,33] employed in the different components
of the model. A list of these parameters for Cu, Al, Fe, and W is given in our earlier publication [44].

7. Summary

The main aim of this paper is to discuss the basic components of an EOS model for metals for
high-pressure physics applications. Thus, we started with the division of the EOS in to three parts:
Zero-temperature isotherm, thermal ionic component, and thermal electronic component. This division
is convenient as there are theories of different levels of sophistication dealing with them. We mentioned
that results of DFT-based electronic structure calculations can be suitably fitted into a functional form,
as is done in the case of the four-parameter model. A method to correct this model—which is only
valid in the lower pressure range, so as to approach the results of the quantum statistical model—was
discussed. Similarly, in lieu of detailed lattice dynamic calculations for density of states of lattice
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vibration modes, we have used the simple Debye model with a suitable form for volume dependence
of Debye temperature. However, we have stressed the need for incorporating the energy of fusion
due to melting in the thermal ionic component. A model for this component, which incorporates
continuous temperature dependence of constant volume-specific heat, was discussed. It is the valence
electrons in the metal which contribute to the thermal electronic component, which we modeled using
the results of the Fermi gas model. However, we have shown that the degree of ionization, and hence
the free electron density, can be determined from the Thomas–Fermi model. A simple correction to get
the experimental electron density at normal conditions was also discussed. Finally, for the purpose of
demonstration, the model was applied to calculate the shock-Hugoniot, liquid-vapor phase diagram,
and isobaric expansion of Cu. We hope that the model described here can be used to generate tables
for hydrodynamic applications of impact experiments, shock wave studies, and above all, design and
analysis of high-energy-density systems.
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