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Abstract: The structure of nanoparticles has been difficult to determine accurately because the
traditional structure methods rely on large monocrystals. Here, we discuss the structure of
nanoparticles based on real-space modeling of the pair distribution function obtained by a Fourier
transformation of the high-energy X-ray scattering structure factor. In particular, we consider X-ray
scattering data taken from colloidal manganese oxide nanoparticles used in Lithium-ion batteries,
air-purification, and biomedical systems, which are known to exist in various nanometer-sized
polymorphs. Insight is thus obtained into characterizing the structural relaxation of the MnO6

octahedra, which are the key building blocks of oxide nanoparticles, important in many technologies.

Keywords: nanoparticles; high energy X-ray diffraction (HE-XRD); electrodes; Li-ion batteries; air
purification; contrast agent; pair distribution function (PDF) analysis

1. Introduction

Among the metal oxides, manganese oxide plays a vital role in technological applications.
Manganese oxide microstructures and nanostructures are used, for example, in waste-water treatment,
catalysis, biomedicine, air-purification sensors, super-capacitors, and rechargeable batteries [1–8].
Transition metal oxides, especially MnO and MnO2, are good candidates for anodes in batteries as they
provide high capacity and low cost and are also environmentally friendly [9–11].

X-ray scattering techniques are useful for characterizing the sizes of crystals and particles as
well as their crystallographic phases, which taken together control their physical properties. These
techniques are generally non-destructive and measure properties averaged over an ensemble of many
particles. Most crystal structures have been determined via X-ray diffraction (XRD) experiments.
The scattering pattern from a crystal typically consists of several tens or even hundreds of Bragg
reflections from various atomic planes in the lattice. Crystal structures can be specified in terms of just
a few variables, such as the unit cell parameters and the positions of the symmetry-independent atoms.

Direct imaging techniques such as electron microscopy also provide unique opportunities
for structure analysis at a more local scale and thus complement diffraction techniques [12,13].
A transmission electron microscope (TEM), for example, can provide multidimensional analysis
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capabilities for characterizing nanoparticles and can be used to image nanoscale features with
atomic resolution. Electron microscopy normally measures a two-dimensional (2D) projection
of the three-dimensional (3D) structure, although the 3D structure can be obtained via electron
tomography [14–16]. The increasing complexity of nanomaterials has driven the development of even
more advanced characterization techniques combined with tomography. Energy-dispersive X-ray
(EDS) spectroscopy [17,18] and electron energy loss spectroscopy (EELS) [19] are examples of such
advances, which have enabled the investigation of the morphologies, compositions, and oxidation
states of nanomaterials.

X-ray scattering of nanoparticles is much weaker than that of bulk materials due to their small
volume and limited coherence. In order to increase the signal, samples must be measured either over
long times or with high-flux sources. For nanostructures, diffraction patterns often show only a few
Bragg reflections, which makes conventional crystallography challenging. Moreover, the assumptions
underlying the analysis neglect information on structural disorder due to high frustrated surface
contributions. The key is to recognize that a large amount of information here is stored in diffuse
scattering, which is normally not taken into account in conventional X-ray analysis. It is clear that
other methods are needed for a complete understanding of the structure of nanoparticles.

High-energy XRD (HE-XRD) measurements combined with a Pair Distribution Function (PDF)
analysis can yield valuable information on the short-range atomic ordering of nanocrystalline materials
with some degree of structural coherence and periodicity. A large body of literature [20–37] details
how the PDF analysis can enable a complete structural investigation of a nanostructured material.
Application to nanomaterials, however, has become practical only recently, with the advent of high-flux
and high-energy synchrotron radiation sources. Our study is motivated by the growing interest in
applying high-energy X-ray scattering techniques to investigate nanostructures.

We emphasize that the PDF method analyzes all the scattered intensity and it can therefore
probe deviations from perfect crystallinity. This is important because nanomaterials can be ordered
and possess periodic atomic arrangements like ordinary crystals, but they can also be disordered
and/or have nonperiodic atomic arrangements like glasses. In the former case, as we have already
noted, the crystal structure may be described in terms of a relatively small number of parameters that
can be conveniently computed and predicted. In the latter case, however, the critical information is
stored in the diffuse scattering pattern. The three-dimensional structure now needs to be described
by a sufficiently large (statistically representative) number of atomic configurations and the related
coordinates and chemical types of the various involved atoms. It has become possible to address
this challenging problem in recent years, as greatly increased computational power has become
available [25]. Our study addresses the characterization of nanostructures, which have not been
investigated as extensively as the crystalline structures, despite their crucial role in current, emerging,
and future technologies.

2. Experimental Details

MnO nanoparticles were obtained by adapting the protocol of Gallo et al. [38] as follows. First, a
manganese (II) oleate complex was produced via an exchange chemical reaction between manganese
(II) chloride and sodium oleate. A quantity of 1.24 gm of the resulting manganese (II) oleate and
10 gm of 1-hexadecene were then combined in a 50 mL round-bottom flask attached to a Schlenk line.
The mixture was degassed at 80 ◦C for 90 min, and then the vacuum was switched to Ar atmosphere.
Next, the flask was heated to 280 ◦C and held at this temperature for 30 min, followed by cooling
to room temperature. Nanoparticles were precipitated by adding 10 mL of acetone, collected by
centrifugation at 9000 rpm for 10 min, re-dispersed in hexane, washed again with acetone and collected
by centrifugation. Finally, the nanoparticles were re-dispersed in toluene to obtain a 10 mg·mL−1 stock
of colloidal MnO nanoparticles.

Thin Si wafer substrates measuring 1 cm × 1 cm were first cleaned using ultrasonication in acetone,
ethanol, and isopropanol, and then dried by flashing compressed air. The stock dispersion of the
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nanoparticles in toluene was drop-casted onto a substrate, and, then, the solvent was allowed to
evaporate slowly in ambient conditions.

Morphology of the synthesized nanoparticles was determined by transmission electron microscopy
(TEM) using a JEOL JEM 2100 working at 200 kV TEM. The average diameter of the nanoparticles
was determined by measuring the diameters of 200 particles and fitting the histograms to a Gaussian
distribution function. Figure 1 shows a high resolution (HR)-TEM image of the as-synthesized colloidal
MnO nanoparticles. The TEM picture was taken before deposition on the silica substrate. As discussed
below, the silica substrate seems to alter the crystallinity of the sample. Fast Fourier transform (FFT)
images including plane-spacing calculations are shown in the Supplementary Material.
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Figure 1. HR-TEM image of the colloidal MnO nanoparticles. The HR-TEM image was taken before
deposition on the silica substrate.

HE-XRD measurements with a photon wavelength of 0.21 Å were performed at beamline BL04B2
at the Japanese synchrotron facility SPring-8. An ionization chamber was used for monitoring the
intensity of the incident X-rays. Three CdTe detectors were used to measure the intensity of the scattered
X-rays. The small-angle scattering part of the signal was measured with a two-axis diffractometer
to cover the low-Q region (≈0.1 Å−1). A vacuum chamber at HE-XRD setup was used to suppress
air scattering around the sample. The HE-XRD setup at this beamline is described in more detail
elsewhere [39]. Although radiation damage to individual nanoparticles should be reduced as much
as possible, nanoparticles on a metallic substrate can be healed through a healing mechanism that
involves a neutralization process [40].

Experimental I(Q) data were obtained for MnO nanoparticles of approximately 10 nm size.
Background intensity was determined by carrying out a measurement on a bare substrate. The proper
subtraction of the background is important for capturing the diffuse scattering signal in the data
properly. Figure 2 shows the experimental I(Q) results for the MnO film sample. Only one Bragg-type
peak, centered at 3.3 Å−1, is seen. Other peaks are an order of magnitude weaker and represent diffuse
scattering. It is likely that the diffraction peaks of the MnO film are too weak to be observed due to the
strong and sharp diffraction peaks of the silicon substrate, as has been reported previously for MnOx

on stainless steel [6]. TEM analysis provides grain size information. The particle size obtained via
TEM is usually larger than the crystallite size given by XRD. This is to be expected since a particle
typically consists of several crystallites. Information on crystallite size can be obtained by analyzing
X-ray diffraction peaks where the peak width is inversely proportional to crystallite size, effects of
other factors that contribute to the peak width such as instrumental resolution, temperature and
microstrain notwithstanding.
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Figure 2. I(Q) data for the MnO nanoparticle film sample.

3. Results and Discussion

3.1. Computational Details

Note that the intensity of diffuse scattering, which is related to short and medium range order, is
orders of magnitude smaller than that of the Bragg peaks. Fourier transformation of experimental total
scattering data gives the pair distribution function, which is a direct probe of interatomic distances in
real space. The window in Q-space, which depends on the radiation source, defines the accuracy of the
data in the real space. For elastic scattering, the diffraction vector, Q, has a magnitude

|Q| =
4πsin(θ)
λ

where λ is the wavelength of incident photons and 2θ is the scattering angle. Since sinθ ≤ 1, the
experimentally accessible range of Q is limited to less than 4π/λ. For example, the CuKα radiation,
which is a common radiation source, has a wavelength of 1.54 Å with a Q-range of about 8 Å−1, but for
investigating nanoparticles, a Qmax larger than 20 Å−1 is needed. For our MnO data here, we have
Qmax = 25 Å−1, which enables us to achieve relatively good real-space accuracy.

We will use the PDF approach as a ‘small-box modelling’, where one considers relatively small
unit cells with periodic boundary conditions. For periodic model structures, the PDF, G(r), can be
computed in real space as:

G(r) =
1

Nr〈b〉2
∑

bib jδ(r− ri j) − 4πrρ0

where bi,j are related to thermal movements of the scattering atoms, rij are the relative positions of the
scattering atoms, N is the number of particles and ρ0 is the particle density.

The PDF provides atomic-scale structural insights from the distribution of atom–atom distances
ranging from the local coordination scale to several nanometers. In addition to atom–pair separations
(peak positions), the PDF also provides direct information about coordination number (integrated
peak intensity), static and dynamic disorder (peak shape), and the coherent scattering-domain size
(peak attenuation). Modelling the PDF for known periodic structures allows us to assess the effects of
modifying the lattice constant, thermal vibration parameters, atomic positions and site occupancies.
In addition, PDF-dependent shape parameters can also be used for extracting the radius of a spherically
shaped nanoparticle.

3.2. An Illustrative Analysis of the MnO Data

Manganese can exist in the form of a variety of stable oxides (MnO, Mn3O4, Mn2O3, MnO2) [41,42],
which crystallize in different types of structures. Associated with this wide diversity of crystal
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forms, defect chemistry, morphology, porosity and textures, manganese oxides exhibit a variety
of distinct electrochemical properties. For example, MnO2 exists in six different polymorphs
(pyrolusite, ramsdellite, hollandite, intergrowth, spinel, and layered), all of which share basic structural
features—small Mn4+ ions in a spin-polarized 3d3 configuration and large, highly polarizable O2−

ions in a spin-unpolarized 2p6 configuration, which are arranged in corner- and edge-sharing MnO6

octahedra. These octahedral units are characteristic for each oxidation state of manganese oxide and
play a crucial role in determining the electrochemical properties of various oxides.

MnO crystallizes in the so-called rock-salt structure, which is a face-centered cubic (fcc) lattice with
a 6:6 octahedral coordination. The experimental lattice constant at room temperature is a = 4.444 Å [43].
The first three coordination shells for Mn–O distances are (1/2)a = 2.22 Å, (

√
3/2)a = 3.84 Å, and (

√
5/2)a

= 4.97 Å, and the corresponding Mn–Mn (or O–O) distances are (
√

2/2)a = 3.14 Å, a = 4.44 Å and
(
√

(3/2))a = 5.44 Å.
We obtained the PDF by using PDFgetX3 [44], which is a command-line utility for extracting

atomic pair distribution functions from X-ray diffraction data. Data up to Q = 25.00 Å−1 were used
using the Fourier transform, giving a real-space resolution of ∆r ≈ 0.25 Å. The PDF data were further
analyzed using the DiffPy-CMI package [45], which is a library of Python modules for robust modelling
of nanostructures in crystals, nanomaterials, and amorphous materials.

Figure 3 shows the PDF for MnO obtained by converting the experimental I(Q) data of Figure 2.
The coherent scattering domain size is seen to be only about 5 Å, with the peaks attenuating rapidly at
larger distances. This feature may reflect the glass-like film assembly because the particles are crystalline.
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Figure 3. PDF for MnO nanoparticle film sample obtained from the data given in Figure 2.

Figure 4 compares the PDFs for bulk MnO (cubic rock salt structure) and four different MnO2

polymorphs. MnO and MnO2 can be distinguished easily by examining the positions of the first two
peaks in the PDFs, which are from the Mn–O (first peak) and Mn–Mn/O–O bonds (second peak).
The bonding in different MnO2 structures is similar at short range, but differences can be seen in the
medium-range bonds. Similarities reflect the presence of MnO6 building blocks that are common to
all the MnO2 polymorphs, while differences arise in the details of how these MnO6 octahedra are
arranged in space. MnO6 octahedra have been studied earlier by Belli et al. using EXAFS (Extended
X-ray absorption fine structure) [46].
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Figure 4. PDFs for bulk MnO (cubic rock salt structure) and four different MnO2 polymorphs.

Figure 5 shows the computed partial PDFs for bulk MnO. The calculated total PDF shown
in Figure 6 is the sum of these partial PDFs. Partial PDFs help in assigning the peaks with their
corresponding bonds. Notably, the PDF method can be used to assess the degree of structural coherence
in a sample in terms of the experimental PDF. In particular, positions of peaks in the PDF can be related
to the distribution of characteristic inter-atomic pair distances in the sample (In our case, the data
are seen to be sensitive to only the first few pair distances). A PDF can be easily computed for any
model configuration of atoms and thus allows convenient testing and refining of three-dimensional
structure models of materials with varying degrees of structural coherence. In this way, periodic and
non-periodic models can be evaluated on the same footing and different levels of structural information
can be extracted. For crystalline samples, atomic structure can be determined completely, but for less
ordered samples, the information obtained is more limited. Figure 5 shows that the experimental data
have the highest intensity at the Mn–O distance, indicating that we have MnO6 octahedral building
blocks or at least distorted/strained octahedral units. The arrangement of the neighboring octahedra is
probably quite “random”, resulting in destructive signals. A simple fitting to the PDF data has been
done in order to extract the lattice constant for the MnO data. The result of the analysis is shown in
Figure 6, and the fitted structure is illustrated in Figure 7 with the lattice constant given by a = 4.56 Å.
A fit based on a hypothetical 57-atom cluster is discussed in the Supplementary Material.
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Figure 6. Simple fitting of the data to extract the MnO model with lattice constant a = 4.56 Å.
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Figure 7. Structural cubic model of MnO.

Our results are quite different from those for synthetic crystalline MnO2 birnessite obtained by
Petkov [25], where sharp Bragg peaks are fitted with a model based on a hexagonal lattice rather than
the cubic model invoked in our case. Petkov [25] has also shown that very diffuse XRD patterns for
bacterial and fungal MnOx can be described with monoclinic and triclinic lattices.

4. Conclusions

MnO nanoparticles have attracted much interest due to their potential applications in many fields.
In this work, we used HE-XRD at the SPring-8 synchrotron facility to extract important octahedral
information, despite the challenging small size of the nanoparticles (about 10 nm) and the effect of
deposition on the substrate, which results in a glassy thin film as indicated by our X-ray measurements.
Our analysis reveals that Mn atoms are mostly present in an octahedrally coordinated MnO6 form,
consistent with a cubic phase with a lattice constant of a = 4.56 Å, which is modified by significant
glass-like disorder effects. In this way, atomic PDF analysis of HE-XRD data can be used to characterize
structural and disorder properties of MnO nanocrystalline materials used in battery and air purification
applications. Clearly, a fundamental understanding of the redox reactions and their relationship with
magnetism occurring at the MnO6 sites requires a robust extraction of the octahedron size [47].

Supplementary Materials: The following are available online at http://www.mdpi.com/2410-3896/5/1/19/s1,
Figure S1: FFT images for several individual NPs including plane-spacing calculations; Figure S2: Comparison of
experimental G(r) with the corresponding simulated results for a hypothetical 57 atom (relaxed) MnO cluster.
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