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Abstract: The observation of wormholes has proven to be difficult in the field of astrophysics. How-
ever, with the discovery of novel topological quantum materials, it is possible to observe astrophysical
and particle physics effects in condensed matter physics. It is proposed in this work that wormholes
can exist in a type-III Weyl phase. In addition, these wormholes are topologically protected, making
them feasible to create and measure in condensed matter systems. Finally, Co3In2X2 (X = S, Se) are
identified as ideal type-III Weyl semimetals and experiments are put forward to confirm the existence
of a type-III Weyl phase.
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1. Introduction

The discovery of topological quantum materials has opened a large path in experimen-
tal condensed matter physics. Initially, the first material discovered was the topological
insulator which has an insulating bulk and a topologically non trivial surface state which
derived from the Dirac cone. Interestingly, these Dirac Fermions do not obey expected
physics and behave relativistically [1–8]. Dirac fermions have later been seen to violate
Lorentz symmetry and form tilted type-II and critically tilted type-III Dirac cones [9–11].
Tilted Dirac cones have been predicted to have the same physics as black holes in certain
cases [12–15].

In the presence of additional perturbations, the formation of Weyl Fermions [16] and
their surface Fermi arcs can be formed. These condensed matter excitations were first
observed in condensed matter physics and have yet to be observed in high energy particle
physics. Similarly to the Dirac cone, the edge states of the Weyl cone can be tilted to form
type-II and type-III Weyl cones [17–20]. A plethora of type-I and type-II Weyl cones [21]
have been discovered yet the discovery of a type-III Weyl Fermion phase has yet to be
discovered conclusively [22,23].

Wormholes are a yet undiscovered but physically plausible object that can exist
within the framework of general relativity [24,25]. Much work has been done in order to
define wormhole topology, energy of formation, and experimental signatures. However,
wormholes are largely considered improbable due to a need for a large amount of energy
to form and maintain one within current models. The generation of a quasi-wormholes
will prove valuable in understanding wormhole physics [26–28].

The type-III Dirac cone is predicted to host a direct analogue to a black hole where
similar physics can be observed and measured with respect to the Dirac quasiparticles
that experience the effects of the critically tilted Dirac cone. Limited experiments have
been conducted in order to confirm the effects of the type-III Dirac phase and little to no
materials have been discovered [29–34]. The counterpart to the Dirac black hole is the
Weyl type wormhole phase [35–38]. In this work, it is predicted that wormholes can be
formed and are topologically robust in the type-III Weyl phase. In addition, Co3In2S2 and
Co3In2Se2 are predicted to host an ideal type-III Weyl fermion.
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2. Materials and Methods

The band structure calculations were carried out using the density functional theory
(DFT) program Quantum Espresso (QE) [39], with the generalized gradient approximation
(GGA) [40] as the exchange correlation functional. Projector augmented wave (PAW)
pseudo-potentials were generated utilizing PSlibrary [41]. The relaxed crystal structure
was obtained from materials project [42,43] (for Co3In2S2). The relaxed crystal for Co3In2Se2
was calculated with QE. Crystal parameters that are calculated with DFT (Table 1) are
compared to Co3In2S2 (Table 2). The energy cutoff was set to 60 Ry (816 eV) and the
charge density cutoff was set to 270 Ry (3673 eV) for the plane wave basis, with a k-
mesh of 25 × 25 × 25. High symmetry point K-path was generated with SSSP-SEEK path
generator [44,45]. The bulk band structure was calculated from the “SCF” calculation by
utilizing the “BANDS” flag in Quantum Espresso. As opposed to utilizing plotband.x
included in the QE package, a custom python code is used to plot the band structure with
the matplotlib package.

Single crystals of Co3In2S2 and Co3In2Se2 (SG: R3M [166]) are grown via the Indium
flux method [46,47]. Stoichiometric quantities of Co (99.9%, Alfa Aesar) and Se (∼200 mesh,
99.9%, Alfa Aesar)/S (∼325 mesh, 99.5%, Alfa Aesar) were mixed and ground together
with a mortar and pestle. Indium (99.99% RotoMetals) was added in excess (50%) in order
to allow for a flux growth. All precursor materials were sealed in a quartz tube under
vacuum and placed inside a high temperature furnace. The sample was heated up to
1000 ◦C over 1440 min, kept at 1000 ◦C for 1440 min, cooled down to 950 ◦C over 180 min,
kept at 950 ◦C for 2880 min, then slowly cooled down to 180 ◦C where the sample was
taken out of the furnace then centrifuged. The grown crystals characterized via LEED
(OCI LEED 600) (Figure 1B) and powder X-ray diffraction (XRD) (Bruker D8 DISCOVER,
Cobalt Source) (Figure 2) to confirm their crystal structure (Figure 1A). The XRD results
and calculations have been normalized; this results in some features in the calculated XRD
being more prominent.

Figure 1. Co3In2Se2 LEED: (A) Crystal Structure of Co3In2X2 (X = S, Se) pink: In, blue: Co, yellow:
Se, S (B) LEED image of cleaved Co3In2Se2 showing hexagonal symmetry.

Figure 2. Co3In2Se2 XRD: Calculated and experimental results of Co3In2Se2. Both experiment and
theory are normalized.
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Table 1. Optimized cell parameters of Co3In2Se2.

Co3In2Se2
Element a (Crystal) b (Crystal) c (Crystal)

Se 0.720007166 0.720007166 0.720007166
Se 0.279992834 0.279992834 0.279992834
Co 0.000000000 0.000000000 0.500000000
Co 0.500000000 0.000000000 0.000000000
Co 0.000000000 0.500000000 0.000000000
In 0.500000000 0.500000000 0.500000000
In 0.000000000 0.000000000 0.000000000

a (Å) b (Å) c (Å)
4.652649960 0.000029301 2.919783491
1.614799853 4.363436112 2.919783491
0.000042087 0.000029302 5.492930386

Table 2. Optimized cell parameters of Co3In2S2.

Co3In2S2
Element a (Crystal) b (Crystal) c (Crystal)

Se 0.721000000 0.721000000 0.721000000
Se 0.279000000 0.279000000 0.279000000
Co 0.000000000 0.000000000 0.500000000
Co 0.500000000 0.000000000 0.000000000
Co 0.000000000 0.500000000 0.000000000
In 0.500000000 0.500000000 0.500000000
In 0.000000000 0.000000000 0.000000000

a (Å) b (Å) c (Å)
4.652816000 0.000000000 2.919838000
1.614830000 4.363602000 2.91983732200
0.000000000 0.000000000 5.493100000

3. Results
3.1. Realization of a Type-III Weyl Phase

The electronic nature of the Weyl cone can be visualized by the Landau level dispersion.
By constructing a simple Hamiltonian (see Supplementary Information for details) it is
possible to model the tilting of the Weyl cone. For the condition of a type-I Weyl where
C < |1| we select C = 0.5 (Figure 3A). Here we see that the Weyl cone is slightly tilted
but is still preserves lorentz invariance. C = 1 (Figure 3B) shows a similar dispersion.
When C = 5 (Figure 3C), the Weyl cone breaks lorentz invaraince and forms a type-
II over tilted Weyl dispersion. When C = −1 The Weyl cone becomes critically tilted
(Figure 3D) and forms a type-III Weyl cone. In the type-III Weyl phase it can be seen that
the chiral edge mode has a linear dispersion in k-space and transitions from the hole-band
to the electron-band.

Figure 3. Landau levels: (A) C = 0.5 Type-I Weyl. (B) C = 1 Type-I Weyl. (C) C = 5 Type-II Weyl
Semimetal. (D) C = −1 Type-III Weyl Semimetal.
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3.2. Wormhole Experimental Signatures
3.2.1. ARPES

Angle resolved photoemission spectroscopy (ARPES) is a valuable method to probe
the Weyl states in order to discover a type-III weyl phase in predicted materials. The ideal
ARPES signature of a type-III Weyl phase is a Weyl line that connects a hole-like conduction
band to an electron like valance band (Table 3). In addition, this line must not be parabolic
for a certain dispersion in k (crystal symmetry can preserve this condition). The Fermi
surface of a type-III Dirac and a type-III Weyl state will give similar features that cannot be
distinguished without spin-resolved ARPES (an enclosed loop or line between two points).
Thus, in order to confirm the topological nature of the Weyl line node it would be ideal
to conduct spin-resolved measurement to probe the spin states along the linear Weyl line.
Weyl arcs only posses one spin per arc; however, Dirac cones possess two spins per arc
that flip at the Dirac point. In the critically tilted type-III Dirac and Weyl phases this will
resolve into only one spin per arc in the Weyl phase.

Table 3. Features of different Weyl cones.

Type-I Type-II Type-III

Dispersion Weyl Cones Overtilted Weyl cones Critically tilted Weyl cones
Fermi surface (Kx,Ky) Fermi arc Fermi arc Weyl line

DOS (EF) singularity e and h pocket Weyl line
Fermi arc yes yes yes

Wormhole analogue Open WH Pinched WH Traversable WH
Typical Materials TaAs, NbAs WTe2 Co3In2Se2, Co3In2S2

3.2.2. Wormhole Anomaly in Magnetoresistance

Another way to confirm the existence of topological wormholes is to perform mag-
netoresistance measurements in type-III Weyl semimetals that are nonmagnetic. When
measuring the longitudinal resistance of a material as the magnetic field is rotated, it is
possible to measure the anisotropy in the sample in order to gain insight to the magne-
toresponse in relation to different crystal axis. This response is typically called butterfly
magnetoresistance because of how the anisotropy typically looks when plotted on a polar
plot [48–50]. The magnetoresistance is a function of the electron (hole) mobility in the
sample. The mobility is also correlated with the Fermi velocity. We know from previous
work that electrons (holes) that exist in the flat band will have zero Fermi velocity; this will
lead to no mangetoresponse at the angle where the DOS of the type-III Weyl cone lines up
with the magnetic field (Figure 4A). In order to simulate this response we construct a toy
model of the variable Fermi velocity as a function of angle for different chemical potentials
by using trigonometric functions. The actual magnetoresisistance can be measured by
magnetotransport. In a type-III Weyl semimetal which is composed of two pairs of Weyl
points, we expect to see typical butterfly magnetoresponse at the Weyl line, but as the
chemical potential moves away from the Weyl line level we expect to see that response to
decrease (Figure 4B,C) and show less of an intense mangetoresponse. The Fermi level can
be adjusted by backgating, top gating, or a combination of the two in order to access the
Weyl line states and to measure the electrical respose (e.g., Rxx vs. Vtopgate, Rxx vs. Vbackgate).
In the case of magnetic type-III WSMs (Co3In2Se2, Co3In2S2), the Weyl line contribution
can be convoluted with the normal magnetic response of the material. Type-III Weyl states
exist above the Fermi level in both Co3In2Se2 and Co3In2S2. In order for these states to be
more accessible, the chemical potential can be tuned by methods such as potassium doping
KxCo3In2Se2 (X ≤ 0.1) or impurity doping Co3In2Se2−xIx (X ≤ 0.1).
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Figure 4. Butterfly magnetoresistance: (A) Magnetoresistance near the Weyl line energy level E
(B) E + ∆E a small energy difference from the Weyl line (C) E + ∆E a large energy difference from the
Weyl line level.

4. Discussion

In order to form a type-III Weyl phase in a crystal lattice, it is necessary to satisfy
several conditions. Firstly, perfectly flat bands must exist with a large enough momentum
dispersion to connect two bands (or a band must be flat for a period between these two
bands). The band must be chiral and connect a hole-like band to an electron-like band; this
condition allows for inversion symmetry to be preserved (from band inversion). Materials
that satisfy this condition only satisfy a type-III Dirac semimetal phase; therefore, in order
to break time reversal symmetry and turn the Dirac cone into two Weyl nodes, magnetism
(or spin orbit interactions) must also exist in these materials in order for there to be a type-III
Weyl phase. The best materials that satisfy these conditions are Kagome magnets. Kagome
materials are known for having flat bands near the Fermi level which upon the inclusion of
magnetism turn into Weyl semimetals. Recently, Co3Sn2S2 has gained a great interest for
being a Weyl type Kagome material that hosts a Weyl line. However, this Weyl line has
been determined to be composed of a nearly critically tilted type-I Weyl cone [51–55]. In
the case of Co3Sn2S2 type Kagome systems, the R3m (No. 166) space group can protect
the existence of flat bands. This work identifies Co3In2S2 (Table 2) and Co3In2Se2 (Table 1)
as excellent candidates that host flat bands near the Fermi level. Co3In2S2 has perfectly
flat type-III Weyl cones at both ∼150 meV and ∼350 meV above the Fermi level upon the
inclusion of magnetism (Figure 5A,B).

Figure 5. Co3In2S2 band structure: (A) Bulk band structure of Co3In2S2 (B) Zoomed-in view of the
Z-Γ high symmetry line.

It is well understood that Dirac Fermions can be described as a superposition of two
Weyl Fermions of opposite chirality [16] with short range entanglement. There have been
several ongoing experiments in order to discover the existence of a quasi-black hole in
the type-III Dirac phase [29,34,56]. If a black hole excitation is found in a type-III Dirac
semimetal and a wormhole is discovered in a type-III Weyl semimetal, this supports the
Einstein–Rosen (ER)= Einstein–Podolsky–Rosen (EPR) conjecture in astrophysics [57,58]
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within a condensed matter system. The ER=EPR conjecture states that wormholes are two
entangled black holes.

5. Conclusions

In conclusion, this work has outlined the parameters that can allow for a topologically
protected wormhole in a type-III Weyl semimetal. Several experimental measurements
are put forward as a test of a type-III Weyl phase, such as ARPES and electronic transport.
Finally, materials Co3In2S2 and Co3In2Se2 are identified as materials that host flat bands
needed for critically tilted type-III Weyl cones. Co3In2Se2 is discovered as a new magnetic
Kagome material via crystal synthesis and DFT prediction. Finally, it is postulated that the
ER=EPR conjecture can be confirmed by discovering a black hole excitation in a type-III
Dirac semimetal and a wormhole excitation in a type-III Weyl semimetal. This future
research direction may provide the insight needed in order to unify general relativity and
quantum mechanics.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/condmat6020018/s1, Description of Weyl points and a derivation of Landau Levels.
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