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Abstract: Large-radius excitons in polar crystals are considered. It is shown that translation invariant
description of excitons interacting with a phonon field leads to a nonzero contribution of phonons
into the exciton ground state energy only in the case of weak or intermediate electron-phonon
coupling. A conclusion is made that self-trapped excitons cannot exist in the limit of strong coupling.
Peculiarities of the absorption and emission spectra of translation invariant excitons in a phonon
field are discussed. Conditions when the hydrogen-like exciton model remains valid in the case of
electron-phonon interaction are found.
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1. Introduction

The exciton theory is a comprehensive chapter of modern condensed matter
physics [1–5]. One of its branches is the theory of excitons in polar media [6,7]. As in the
case of polarons, a description of free excitons in a homogeneous polar medium should be
translation invariant (TI). This leads to numerous consequences. Being bosons, excitons,
like bipolarons, can form a Bose condensate. However, an experimental confirmation of
this possibility has been obtained only recently [8]. Some superconductivity theories are
also based on the involvement of excitons in the formation of a Bose condensate.

Extensive literature on excitons highlights in detail numerous phenomena concerned
with them. For this reason, we will only dwell upon some qualitative differences between
the theories of self-trapped excitons in polar media and translation—invariant theory of
excitons with electron-phonon interaction (EPI).

The authors of most modern papers on excitons, when interpreting their spectral lines
(see review [9] and references therein) simply ignore the occurrence of the environment,
in particular, the polar medium (in the case of polar crystals). If the influence of the
environment is taken into account, a clear picture of exciton spectral lines should be
lacking. However, experiments demonstrate clearly distinguishable peaks corresponding
to transitions to highly excited states with a very large number of energy level. It seems
quite incomprehensible how the presence of an environment and a strong EPI, which should
lead to shifting and widening of the exciton transition lines and distortion of the exciton
spectrum, leave the nearby lines of transitions to highly excited states distinguishable.

Numerous theoretical investigations of the problem gave rise to the idea of a consid-
erable contribution of EPI into the exciton coupling energy as a result of which a simple
hydrogen-like model was replaced by a modified one where the polarization cloud sur-
rounding an electron and a hole, that is, the polaron effect is taken into account by the
replacement of the Coulomb interaction by the screened one. The most popular interaction
potentials used in interpreting experimental observations are potentials by Haken [10],
Bajaj [11] Pollmann and Büttner [12]. In most of the papers, however, the simplest hydrogen-
like model is used.

The failure of the model potentials [10–12] can be explained as follows. The point
is that the model potentials [10–12] were obtained to approximate the exciton coupling
energy in the ground state and then they were used to calculate the energy levels in this
potential. In fact, it would be appropriate to put each excited state in correspondence with
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its (self-consistent) potential, for example, the way as it was carried out in [13] for F-centers.
This problem, however, was not solved in view of its great complexity. Hereinafter, we will
show that a solution of this problem is not actually required since in the case of a strong
EPI an exact exciton spectrum is hydrogen-like. This explains its widespread use.

Hence, the main result is that in TI systems self-trapped states of excitons caused by EPI
are impossible, neither is a self-trapped state of a polaron and a bipolaron possible [14–18].
At the same time, as we will show below, the presence of translation invariance leads to
some important peculiarities of the TI exciton spectra.

2. Hamiltonian of an Exciton in a Polar Crystal

A Hamiltonian of an exciton in a polar crystal is Pekar-Fröhlich Hamiltonian, which
describes an interaction of an electron and a hole with each other and with optical phonons:

Ĥ =− h̄2

2m1
∆r1 −

h̄2

2m2
∆r2 + ∑

k
h̄ω0(k)α+k αk −

e2

ε∞|r1 − r2|
(1)

+ ∑
k
(Vkeikr1 αk −Vkeikr2 αk + H.c.),

Vk =
e
|k|

√
2πh̄ω0(k)

V ε̃
, ω0(k) = ω0, ε̃−1 = ε−1

∞ − ε−1
0

where e—is an electron charge, m1 and m2—masses of an electron and a hole, ε∞ and ε0 are
optical and static dielectric permittivities, r1 and r2—are coordinates of an electron and a
hole, ω0(k)—is a phonon frequency which in the case of optical phonons is independent of
k and equal to ω0.

Hamiltonian (1) corresponds to the case of a continuous polar medium, that is, the case
of Wannier-Mott exciton in a polar medium. Different signs in the interaction potential (1)
correspond to different signs of the charge of an electron and a hole.

Having passed in Hamiltonian (1) from r1 and r2 to the coordinates of the center of
mass R and relative coordinates r:

r1 = R +
m2

M
r, r2 = R− m1

M
r, M = m1 + m2, µ =

m1m2

M
, (2)

we will get:

Ĥ =− h̄2

2M
∆R −

h̄2

2µ
∆r + ∑

k
h̄ω0(k)α+k αk −

e2

ε∞|r|
+ (3)

+ ∑
k

Vkαk[eik(R+m2r/M) − eik(R−m1r/M)] + H.c.

Having eliminated in (3) the coordinates of the exciton center of mass via Heisenberg
operator S = exp(− i

h̄ ∑ h̄kRα+k αk) and averaged the Hamiltonian obtained over the wave
function of the relative motion ψ(r) we will get:

ˆ̄H =
1

2M
(∑

k
kα+k αk)

2 + ∑
k

h̄ω0(k)α+k αk + ∑
k
[V̄kαk + H.c.] + T̄ + Ū, (4)

T̄ = − h̄2

2M

∫
ψ∗∆rψd3r, Ū = − e2

ε∞

∫
ψ∗

1
|r|ψd3r,

V̄k = Vk〈ψ| exp(ikrm2/M)− exp(−ikrm1/M)|ψ〉.

Let us consider different limiting cases for this Hamiltonian.
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3. Exciton Ground State in a Polar Crystal in the Case of Weak and Intermediate
Electron-Phonon Interaction

The contribution of EPI into the exciton energy in the case of weak coupling for
m1 6= m2 is nonzero and leads to a reduced energy of an exciton. This automatically
follows from expression (4), which differs from the case of a polaron by replacements
Vk → V̄k; m1, m2 → µ, M and addition of constants T̄ and Ū. As a result, for the ground
state energy of a resting exciton in the case of weak and intermediate coupling, according
to Lee-Low-Pines [19] we get:

E = T̄ + Ū −∑
k

|V̄k|2

h̄ω0(k) + h̄2k2/2M
. (5)

According to [20], the value of the ground state energy in the polaron limit of weak
coupling when R∞/ω0 << 1, where R∞ = µe4/2h̄2ε2

∞ is equal to:

E = −(α1 + α2)h̄ω0 − R0
µp

µ
, (6)

R0 = µe4/2h̄2ε2
0, µp =

mp
1 mp

2

mp
1 + mp

2
, mp

i = mi(1 + αi/6),

αi =
1
2

e2ui
h̄ω0 ε̃

, ui =
(2miω0

h̄

)1/2
,

where αi, i = 1, 2 are EPI constants for an electron and a hole, respectively.
Formula (6) has a simple meaning. Let us consider free electron and hole polarons

with energies −α1h̄ω0 and −α2h̄ω0 . At large distances between them, there must be a
residual Coulomb interaction. For an electron, it is produced by a polarization charge
eind = −e/ε̃, induced in a polar medium by a hole and a hole’s Coulomb field created by its
effective charge ee f f = e/ε∞. As a result, there will be an attractive potential between the
electron and the hole, induced by the total charge etot = eind + ee f f = −e/ε̃ + e/ε∞ = e/ε0.
This attractive potential leads to a contribution to the energy, determined by the second
term on the right-hand side of (6), which is the effective Rydberg, which involves ε0 and a
relative mass of the electron and hole polarons µp, determined by the polaron masses of
the electron and hole.

From (6) it follows that in the absence of a static Coulomb interaction between an
electron and a hole (ε0 = ∞) there is an ordinary polaron shift in the energies of an
electron and a hole moving independently. In another limiting case, when EPI is absent
ε̃ = ∞, from (6) follows the ordinary expression for the effective hydrogen atom in the
ground state.

In the region of an intermediate coupling constant the phonon contribution in the
ground state exciton energy for some crystals was calculated by Gerlach and Luczak
[20]. For example, for CuCl crystal with ε0 = 7.4, ε∞ = 3.7, m1 = 0.44m0, m2 = 3.6m0,
α1 = 2.005, α2 = 5.735, h̄ω0 = 27.2 meV, where m0 is the mass of free electron in vacuum,
it was obtained E = 443.91 meV for exciton in phonon field and E = 389.6 meV without
phonon input. Thus, the input of phonons to the ground state exciton energy in the region
of intermediate coupling can be significant. Note that no any “phase transition” between
weak and strong coupling limits occur in the region of intermediate coupling (see also
Section 7).

4. Exciton Ground State in a Polar Crystal in the Case of Strong
Electron-Phonon Interaction

Hamiltonian (4) is independent of the coordinates of the exciton center of mass R.
Therefore, trapping of an exciton, that is, the formation of an exciton localized in R-space
is impossible. The reason is that the total momentum of an exciton commutates with the
Hamiltonian, accordingly, the eigen wave functions of the Hamiltonian are, at the same
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time, the eigen wave functions of the total momentum operator P̂ (Section 5), that is, plane
waves in R-space.

Another important conclusion resulting from the form of (4), is that in the limit of
strong coupling with phonons an exciton is not polarizing. In other words, in the limit of
strong EPI an exciton behaves like a free exciton in a nonpolar medium.

Let us show this for the case when ω0(k) is independent of k. In this case Hamiltonian (4)
has the same structure as the bipolaron one considered in [14–18]. Repeating the calcula-
tions made in these papers for a bipolaron in the strong coupling limit we derive from (4)
the ground state energy in the form:

E = ∆E + 2 ∑
k

V̄k fk + ∑
k

f 2
k + T̄ + Ū, (7)

|ψ(r)|2 = (2/πl2)3/2 exp(−2r2/l2), (8)

fk = ±c(Vk/h̄ω0) exp(−k2/a2), (9)

where the sign “+” in (9) for fk refers to the case of m1 < m2, while the sign “−” to the
case of m1 > m2; a, l, c are variational parameters involved in variation functions ψ and fk,
∆E—is the so-called recoil energy [14–18].

Substituting (8), (9) into (7) we express the ground state energy as:

E =0.633
h̄2a2

M
− e2
√

2πε̃a

( 1√
l2m2

2
8M2 + 1

a2

− 1√
l2m2

1
8M2 + 1

a2

)2
+

+
3h̄2

2µl2 − 2

√
2
π

e2

ε∞l
, (10)

where minimization in c is already performed.
It should be noted that expression (10) yields a solution of the two-particle problem

with different masses in the case of repulsion between the particles also, if we replace the
sign “−” by “+” in the parentheses in (10) and in front of the last term in the right-hand
side of (10). In this case for m1 = m2 and a = 8/(

√
2l) this expression is transformed into

that obtained for a bipolaron in [14].
Expression (10) is obtained for the case of strong coupling when a → ∞. It can be

shown, however, that the function E = E(l, a) does not have a minimum in this limit.
The only minimum which E(l, a) has corresponds to the values: l = 3

√
π/8 h̄2ε∞

µe2 , a = 0,

Emin = −(4/3π)µe4/(h̄2ε2
∞), which correspond to the case of a free exciton.

Hence, our initial assumption made in deriving (10), about the existence of a phonon
contribution into the exciton energy in the case of strong EPI appeared to be erroneous.
The result obtained suggests that the phonon contribution into the exciton energy which
corresponds to a polarizing exciton can be nonzero only for finite values of α, that is, for
finite values of the EPI constant (Section 3).

It follows that for rather large values of the EPI constants of electrons and holes when
the energy of a polaronic exciton is close to the energy of a free exciton, it may become
energetically more advantageous for an exciton to decay into two independent polarons
with energies Ee

p and Eh
p for an electron and a hole, respectively.

The conditions of the exciton stability with respect to this decay is fulfillment of
the inequality:

|Eexc| ≥ |Ee
p|+ |Eh

p|. (11)
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In the case of strong coupling with the use of expressions for the energy of a free
exciton Eexc = −µe4/2ε2

∞ h̄2 and that of TI polarons: Ee,h
p = −0.06286×m1,2e4/ε̃2h̄2 [14–18]

the region of stability of an exciton, according to (11) will be determined by the condition:

0.5− 0.5
√

1− 0.5ε2
∞/ε̃2 < m1,2/M < 0.5 + 0.5

√
1− 0.5ε2

∞/ε̃2. (12)

It follows from (12) that, for the condition of the exciton stability to be fulfilled, the
value of the static dielectric permittivity ε0 should be less than 3.4ε∞.

Let us pay attention to the fact that functional (10) does not transform into the
functional for the F-center when any of the masses tends to infinity, since such a transition
would correspond to the loss of translational invariance of the initial system. As is shown
in [16], a free TI polaron will be captured by the Coulomb attractive charge of the F-center,
only for a certain critical value of the static dielectric constant. In the case of free electron
and hole TI polarons, such capture with the formation of an exciton state will occur only if
condition (12) is fulfilled.

5. Spectrum of a TI Exciton

To find the spectrum of Hamiltonian (3) we will seek a solution of problem (3) in
the form:

Ψ = |ψ(r)〉|X(R, {αk}).〉 (13)

Then the average value of Hamiltonian (3) with respect to |ψ(r)〉 will have the form:

ˆ̄H = 〈ψ|Ĥ|ψ〉 = − h̄2

2M
∆R + ∑

k
h̄ω0(k)α+k αk

+ ∑
k

V̄k[eikRαk + H.c.] + T̄ + Ū, (14)

which coincides with the polaron Hamiltonian with an accuracy of constants T̄ and Ū and
the replacement of Vk by V̄k , determined by (4). Below we will believe h̄ = 1.

Following [21], we will choose the wave function |X〉, involved in (13), in the transla-
tion invariant form:

|X(P)〉 =
[
CPeiPR+

+
∞

∑
N=1

∑
k1 ...kN

CP,k1 ...kN · e
i(P−k1−k2−...−kN)Rα+k1

α+k2
. . . α+kN

]
|0, 〉 (15)

where: CP and Cp,k1 ...kN —are normalized constants, |0〉—is a vacuum wave function, P—is
a vector of eigen values of the total momentum operator:

P̂ = −i∂/∂R +
∞

∑
i=1

kiα
+
ki

αki
. (16)

Since the total momentum operator (16) commutates with Hamiltonian H̄, the wave
function |X(P)〉 is at the same time their eigen wave function:

ˆ̄H|X(P)〉 = E(P)|X(P)〉, (17)

P̂|X(P)〉 = P|X(P).〉

Let |X(P)〉 be the wave function of the ground state. Then, according to [21], the wave
function of the excited one-phonon state |ψ(Kj)〉:
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|ψ(Kj)〉 = α+kj
|X(P), 〉 (18)

where Kj has the meaning of the total momentum in the j-th excited state, will possess
the properties:

P̂|ψ(Kj)〉 = Kj|ψ(Kj)〉 = (P + kj)|ψ(Kj)〉, (19)
ˆ̄H|ψ(Kj)〉 = ε(Kj)|ψ(Kj)〉 = (E(P) + ωkj

)|ψ(Kj)〉 =

= (E(K−Kj) + ωkj
)|ψ(Kj).〉

Hence, the spectrum of the excited states has the form:

ε(K) = E(Kj − kj) + ω0(kj), ω0(kj) = ωkj
. (20)

For the quantity E(Kj − kj) it was shown in [21] that:

E(Kj − kj) ≤ E(0) +
(Kj − kj)

2

2M
. (21)

Actually, according to [22], in this case instead of inequality (21) the exact equality
takes place and for Kj = 0 the spectrum has the form:

ε(kj) = E(0) + ω0(kj) + k2
j /(2M). (22)

It should be noted that in the general case the wave function of an excited state
containing N phonons is written as:

|ψk1,...,kN 〉 = α+k1
α+k2

. . . α+kN
|X(P), 〉 (23)

for which the inequality holds:

ε(k1, . . . , kN) ≤ E(0) +
N

∑
i=1

ω0(kj) +
(K− k1 − . . .− kN)

2

2M
, (24)

where K—is the total momentum corresponding to N phonon excitations.
It should also be noted that in the case of an exciton, when there is a set of electron

excitations numbered by index n (n can have the meaning of a set of quantum numbers),
(22) takes the form:

ε1(k = 0) = E1(0) = Eexc (25)

εn(k 6= 0) = En(0) + ω0(k) + k2/2M, n = 1, 2, . . .

6. Peculiarities of Light Absorption and Emission by TI Excitons

Let us consider the case of optical phonons when ω0(k) is independent of k, that is,
the case of polar crystals. For direct excitons, according to (25), in addition to an ordinary
discrete spectrum En(0) there is a quasi-continuous spectrum with energies En(0) + ω0 +
k2/2M, which makes spectrum En(0) discernable only when ω0 > |E1(0) − E2(0)|. If
the condition:

|ε1 − εnc+1| > ω0 > |ε1 − εnc | (26)

is fulfilled, only nc first levels of an exciton will be discernible. This result can be used to
investigate soft phonon modes concerned with structure phase transitions in crystals, for
example, in cuprate superconductors. Thus, if away from a phase transition condition (26)
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is fulfilled for nc = 2, then an optical transition of an exciton from the ground state to the
first excited one will make a contribution into the absorption. At the point of the phase
transition when ω0 ≈ 0 this contribution will be lacking since all discrete levels of an
exciton En(0) fall into the quasi-continuous spectrum.

As shown in [14–18], the excitation spectrum (25) can be treated as a spectrum of
renormalized EPI phonons, which represent the initial phonon with which an electron
and a hole are associated. Scattering of light by such phonons with frequency ν will give
rise to satellite frequencies νe

n,k,+ = ν + |εn(k)| and νe
n,k,− = ν− |εn(k)| in the scattered

light. Hence, depending on the values of the parameters involved in these expressions, the
absorption/emission spectrum of a TI exciton can be more complicated than that of a free
exciton. For example, when condition (26) is fulfilled with nc = 2 absorption (emission) of
light can take place without changes in the main quantum exciton number n. In this case
the absorption (emission) curve will have a characteristic double-peaked distribution of
intensity with maxima for νexc

1,± ≈ ν±ω0 [23].
Polaron character of excitons was also observed in such hybrid organic-inorganic semi-

conductors as two-dimensional lead-halide perovskites by implementing high-resolution
resonant impulsive stimulated Raman spectroscopy (RISRS). The observed peaks display
well-defined Lorentzian lineshapes which correspond to phonons with the energy of few
meV and with full-width-at-half-maximum = 0.33 meV [24].

Like bipolarons, TI excitons, being bosons, can experience Bose condensation which
was predicted in papers [25,26]. As distinct from the bipolaron Bose gas, to which a statisti-
cally equilibrium description is suitable, for the exciton gas occurring in a quasiequilibrium
photoexcited state, this description can be applicable only for long-living exciton states
which can be realized in semimetals, gapless semiconductors, systems of nanodots or
indirect semiconductors.

In paper [8] exciton condensation was probably observed in a semimetal compound
TiSe2. Since the TI-exciton Hamiltonian (4) is similar to the bipolaron one, all the results
obtained in the statistical description of the TI-bipolaron gas are valid for the case of the
TI-exciton gas. In particular, for the temperature of Bose condensation of the TI-exciton
gas, we get [22]:

Tc(ω0) =
(

F3/2(0)/F3/2(ω0/Tc)
)2/3

Tc(0),

Tc(0) = 3.31h̄2n2/3
exc /M, F3/2(x) =

2√
π

∫ ∞

0

t1/2dt
et+x − 1

,

where nexc—is the concentration of TI excitons. Accordingly, a phase transition to the
Bose-condensate exciton phase should be of the second order with heat capacity jumps
during the transition.

7. Conclusions

In this paper, we answered the fundamental question of the role of polaron effects in
exciton physics. Though the important role of EPI for excitons in polar media was revealed
in a lot of experiments, the question of why the hydrogen-like model appears to be valid
under these conditions has remained open thus far [27]. In this paper, we have shown
that, in the case of exciton-phonon interaction described by Fröhlich Hamiltonian, the
hydrogen-like model turns out to be applicable if the energy of a transition to the excited
state does not exceed the energy of an optical phonon.

The Pekar-Fröhlich polaron model is an essential component of a wide range of
problems concerned with description of the properties of a particle interacting with a boson
reservoir. This model, which was initially introduced to describe the behavior of electrons
interacting with phonons in crystals, has been used in such different fields as strongly
correlated electron systems, quantum information, high energy physics. Recently, it has
been actively used to describe impurity atoms embedded into the Bose-Einstein condensate
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of ultra cold atoms. The results obtained here, in particular, explain a clearly discernible
structure of highly excited (Rydberg) atoms surrounded by the Bose condensate [28].

In conclusion it should be noted that both in the polaron theory and the theory of
an exciton interacting with phonons, it is widely believed that self-trapped polaron and
exciton states are possible. Thus, for example, by analogy with a polaron, self-trapped
exciton states were considered in [29–36]. It was thought there that as the EPI constants
exceed a certain critical value, an exciton is trapped by a self-consistent potential produced
by it which leads to a possible annihilation of the electron and the hole and disappearance
of the exciton. It was also believed that, in the case of a very strong EPI, the energy of
the lattice deformed by the exciton can exceed the energy of excitons in a rigid lattice.
A change in the energy of such deformed excitons, being negative with respect to excitons
in a rigid lattice, can make advantageous spontaneous formation of excitons in crystals
with a small gap value, for example, in gapless polar semiconductors (exciton matter [5,37]).
In this connection notice that there are a lot of works devoted to excitons trapped on defects
which interact with optical phonons (i.e., in systems with broken translation symmetry.
For review see [38]). It is found that the coupling with phonons always lowers the energy
for the delocalized systems, that is, biexcitons and bipolarons. However, for the localized
systems, this coupling can lead to the decrease as well as to the increase of the binding
depending on material parameters.

The results obtained in the paper rule out the possibility of the formation of self-
trapped exciton states in translation invariant systems. The conclusions of the possibility
of self-trapped excitons in them are based either on an improper choice of probe variation
functions, or on erroneous calculations with the use of such functions.
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