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Abstract: In this paper, Dy co-doped ZnO:V1% was prepared using the sol–gel process. We studied
the impact of doping on the physical properties of the synthesized nanoparticles. In our synthetic
approach, under an esterification reaction the release of water was carried out slowly, and this step
was followed by drying beyond the critical point of ethanol then by calcination in air at 500 ◦C for 2 h.
The structural and morphological studies show the presence of wurtzite structure with an average
crystallite size of about 30 nm. In addition, no secondary phase was detected, which shows that the
doping elements reacted with the matrix. The reflectance measurements show that by increasing the
doping concentration the energy of the band gap energy decreases. Photoluminescence (PL) indicates
the presence of two emission bands situated at around 481 nm and 577 nm linked to doping with Dy.

Keywords: sol–gel; nanomaterials; luminescence; structural properties

1. Introduction

Due to their uses in different application areas such as optoelectronics, photonics, and
storage devices [1–4], semiconductor nanomaterials have attracted remarkable attention in
recent years. ZnO, possessing a large band gap (3.37 eV) and important exciton binding
energy (60 meV), has attracted great attention as a promising material for different appli-
cations such as in optoelectronics and electroluminescence [5–8]. Furthermore, its large
band gap energy made it an important candidate as a host lattice for the incorporation of
trivalent lanthanide ions due to its exceptional optical properties [9,10]. The narrow and
intense emission lines of the trivalent ions originating from the 4f-4f transitions made them
good luminescence centers [11,12]. The Dy3+ ion is one of the lanthanide elements that
produces the emission in the visible range by activating different inorganic lattices [13,14].
However, due to the parity forbidden nature of the 4f-4f transitions of these ions, it has
been shown that direct excitation for Dy3+ ions is generally inefficient, unlike the host
sensitized [13]. To synthesize ZnO doped with lanthanide elements, several methods have
been used. Among the different methods, the sol–gel method offers certain advantages, in
particular an almost uniform size and good dispersion of the dopant.

It is known that the use of ZnO in new magneto-optical applications is difficult
because of their diamagnetic and paramagnetic behaviors at room temperature. Room
temperature ferromagnetism (RTFM) in ZnO has been reported to result from vacancy
mediation [15–17]. Several works have been carried out to improve the RTFM in ZnO by
substituting the Zn atom with dopants of transition metals and rare earths. The doping of
ZnO to transition metals provides an RTFM linked to the d-d exchange coupling between
the non-localized 3d electron and the exterior of the transition metal [18–21]. Whereas
the stronger magnetization, relative to transition metals, in the case of doping with rare
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earth ions is related to the interaction of indirect 4f electron exchange via 5d or 6s con-
duction electrons [22–25]. Recently, co-doping with two transition metals has enhanced
magnetization as was the case of ZnO co-doped Ni, Co, Cu, and Fe [26–28]. In recent years,
different teams have explored the co-doping of ZnO with a transition metal and rare earth
element [29–32]. In this work, we study the vanadium doping jointly with dysprosium
of ZnO nanoparticles prepared by sol–gel. Therefore, we report the role of these doping
elements on the different physical properties of ZnO nanoparticles.

2. Materials and Methods
2.1. Preparation Details

For the synthesis of Zn0.99-xV0.01DyxO nanoparticles, we purchased from Sigma-
Aldrich zinc acetate dihydrate (Zn(CH3COO)2·2H2O), ammonium metavanadate (NH4VO3),
dysprosium nitrate hexahydrate Dy(NO3)3·6H2O, and methanol (CH3OH). All our sam-
ples were prepared by simple sol–gel route mixing the Zn(CH3COO)2·2H2O as precursor,
NH4VO3 and Dy(NO3)3·6H2O as dopants in methanol. After 15 min of magnetic stirring,
the solution was placed in an autoclave and dried under supercritical conditions of ethyl
alcohol (EtOH) [33,34].

2.2. Characterization Techniques

X-ray diffractograms and transmission electron microscopy images of our samples
were performed using a diffractometer Bruker D8 with Cu-Kα radiation (λ = 1.5406 Å) and
a transmission electron microscope JEM-200CX, respectively. Preparation of samples for
TEM is as described above in EL GHOUL et al. [30,34]. A SPECS using a PHIBOS100 energy
analyzer and Al-Kα radiation (1486.61 eV) was used for the XPS analysis. A Renishaw
inVia confocal Raman microscope with 785 nm excitation has been used for the Raman
measurement. The reflectance measurement was released by a Shimadzu UV-3101 PC
spectrophotometer coupled with an integrating sphere. The values of band gap energies
were estimated by using the first derivative reflectance method (dR/dλ) [35].

3. Results and Discussion
3.1. Structural and Morphological Analysis

Figure 1 shows typical XRD spectra of the undoped ZnO and Zn0.99-xV0.01DyxO
(x = 0.00, 0.04, and 0.08) samples. The diffractograms confirm the presence of polycrystalline
with hexagonal (wurtzite) structure (ICDD file No. 36-1451) with lattice parameters a and c
comparable to the undoped ZnO (Table 1) [36]. No diffraction peak linked to the doping
elements appeared, this indicates that the doping is totally successful in the ZnO lattice.
We notice, after doping, a small shift toward a larger angle, widening of the peaks, and a
decrease in the intensity of the peaks compared to ZnO (inset Figure 1). This is probably
linked to the fact that the ionic radii of the present elements are not close {(Zn = 0.74 Å),
(V = 0.54 Å), and (Dy = 1.03 Å)}. Likewise, it can also be due to the introduction of a stress or
a defect in the structure of crystal which decreases the crystallinity of the nanoparticles [37].

We used the Williamson–Hall formula to obtain some structural parameters like size
and strain of synthesized samples using the full width at half height (FWHM) of peak
(002) [30]. This result is in good agreement with the displacement of the peaks to higher
angles while observing a decrease in the size of the crystallites and strain (Table 1).

The DRX results were confirmed by TEM micrographs of doped samples shown in
Figure 2. These images reveal the presence of a spherical shape with crystallite sizes in the
range 25–40 nm.
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Figure 1. XRD patterns of undoped and Zn0.99-xV0.01DyxO (x = 0.00, 0.04, and 0.08) nanoparticles. 

 
Figure 2. TEM images of (a) Zn0.99V0.01O, (b) Zn0.95V0.01Dy0.04O, and (c) Zn0.91V0.01Dy0.08O nanoparticles. 
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(nm) Strain (ε) × 10−4 Bandgap (eV) 

Undoped ZnO 3.2498 5.2063 34.71 1.59 3.333 
x = 0.0 3.2497 5.2063 32.84 1.48 3.315 

x = 0.04 3.2494 5.2064 29.73 1.39 3.287 
x = 0.08 3.2495 5.2065 27.38 1.31 3.246 

Figure 1. XRD patterns of undoped and Zn0.99-xV0.01DyxO (x = 0.00, 0.04, and 0.08) nanoparticles.

Table 1. Variation of different physical parameters for all samples.

Sample a (Å) C (Å)
Crystallite
Size (nm) Strain (ε) × 10−4 Bandgap (eV)

Undoped ZnO 3.2498 5.2063 34.71 1.59 3.333

x = 0.0 3.2497 5.2063 32.84 1.48 3.315

x = 0.04 3.2494 5.2064 29.73 1.39 3.287

x = 0.08 3.2495 5.2065 27.38 1.31 3.246

3.2. Elemental Analysis

Figure 3 shows the EDX analysis of the sample. All the elements supposed to be
present have been identified, confirming the good synthesis of our samples. The sub-
stitution of doping ions was also confirmed with acceptable amounts. The elemental
composition indicated in the table inserted in Figure 3 shows a slight excess of V and Dy,
probably due to the uncertainty of the EDX analysis.

To know more about the characteristics of the constituent atoms, we used the XPS
technique by determining the binding energies of each element. The XPS spectrum of
Zn0.91V0.01Dy0.08O sample illustrated in Figure 4 shows the presence of peaks of the species
zinc, carbon, oxygen, vanadium, and dysprosium. The peak positions of Zn2p1/2 and Zn
2p3/2 orbitals located at 1044.20, 1022.21 eV indicate that the Zn is in the oxidation state
of Zn2+.

The dysprosium element is represented by the 4d core level located at 156.09 eV.
The appearance of this peak is a signal indicating that the Dy ion is with oxidation state
Dy+3 [38]. The peak located at 517.8 eV corresponds to the V 2p signal and confirms that
it is probably present in the V5+ state [39]. From this, we can conclude that Dy and V are
successfully doped into ZnO.
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Figure 4. XPS spectrum of Zn0.91V0.01Dy0.08O nanoparticles.

The asymmetric enlarged O1s peak, shown in Figure 5, reveal the presence of two
fitting Gaussians peaks located at 531.9 eV and 530.1 eV. These peaks can be attributed
to the Zn–OH bonding and O2 ions in the Zn–O bonding of the wurtzite structure of
ZnO, respectively.
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3.3. Raman Analysis

The chemical structure of the Zn0.91V0.01Dy0.08O nanoparticles was approved by the
Raman analysis and illustrated in Figure 6. It is known that the active modes A1, E1 can
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move into longitudinal (LO) and transverse (TO) optical modes. The E1 (LO) is related to
lattice defects, while B1 modes are considered as inactive Raman and infrared modes [40].
On the other hand, the vibrations of the oxygen and zinc elements in the lattice induce the
presence of the sub-modes of E2 high and E2 low [41].
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Figure 6. Raman spectrum of Zn0.95V0.01Dy0.04O nanoparticles.

This spectrum shows the presence of different acoustic and optical modes which are
known in the Wurtzite lattice [40]. The peaks around 660 cm−1, 430 cm−1, and 370 cm−1

are assigned to the two-phonon processes A1 (LO) + E2 (low), vibration mode E2 (high) and
transverse optical phonon mode E1 (TO), respectively [41–43]. We observe the appearance
of some peaks corresponding to the optical phonon mode of ZnO as B1(low) silent and
A1(TO) modes, in the range 220–350 cm–1. The existence of these types of modes is
probably related to the effects of different defects such as Vo and Zni. On the right side of
the spectrum, the appearance of certain peaks could be a sign of the presence of V doping
impurity phases or the optical-acoustic combinations [34,42].

3.4. Optical Properties

The reflectance spectra illustrated in Figure 7 approves characteristics of nano-ZnO,
showing a low reflectance in the UV spectral range and high reflectance in the visible
domain. The absorption edge, shown in inset, reveals a small shift leaving a modification
in the band gap energy.

The plot of the first derivative of the reflectance (dR/dλ) as a function of λ, as shown
in Figure 8, present a shift toward high wavelengths, that is to say a decrease in band gap
value after doping. We suggest that the band gap drop can be attributed to the effect of
doping elements in the host lattice [44].
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3.5. Photoluminescence (PL)

Figure 9 shows the PL spectra of Zn0.99-xV0.01DyxO (x = 0.00, 0.04, and 0.08) nanoparti-
cles excited with 330 nm at room temperature. The PL studies show that the appearance of
a band-edge emission occurs at 380 nm for the Zn0.99V0.01O which shifts to the red after Dy
doping, confirming the decrease in the bandgap. In addition, the PL spectra consist of two
others bands centered at around 481 nm and 577 nm which are attributed to the transitions
4F9/2→6H15/2 and 4F9/2→6H13/2, respectively [45]. No significant change in the position
or shape of the bands was manifested with the increase in the concentration of Dy3+. This
amounts to the protection of the 4f electrons by the outer 5s and 5p electrons.
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Zn0.91V0.01Dy0.08O nanoparticles without and with excitation are shown in the upper left.

The two transitions 4F9/2→6H15/2 and 4F9/2→4H13/2 are ascribed to a magnetic and
forced electric dipole transitions, respectively. The crystal field strength of host matrix
does not strongly affect the transition to the 6H15/2 level, while that the one toward 4H13/2
level is hypersensitive to the surroundings. We have noticed that the spectral intensity of
the 4F9/2→4H13/2 transition is higher than the 4F9/2→6H15/2 transition. This is due to the
localization of Dy3+ ions on sites of low symmetry without centers of inversion. A large
interaction between the host matrix and the RE ion is induced by asymmetry when the
intensity of the hypersensitive transition is high [46]. For ZnO nanoparticles, the quantum
efficiency of the visible emission can reach around 20% after UV excitation [47]. We see that
the quantum efficiency increases slightly with the addition of Dy, this may be related to
the decrease in particle size [47], confirming the result of XRD. Figure 10 shows the energy
level diagram of Dy3+-doped ZnO:V. As the excitation energy (330 nm) is greater than the
energy of 4F9/2 level (475 nm), the excess energy is lost through non-radiative channels.
This produces the radiative emission of the populated level 4F9/2.
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4. Conclusions

Zn0.99-xV0.01DyxO nanopowders were prepared by sol–gel route. XRD and TEM
analysis show the presence of polycrystalline wurtzite structure and average crystallite
size around 30 nm. The absorbance shows a red shift after doping, indicating the decrease
of the band gap due to creation of defects in the band gap. The photoluminescence study
shows the existence of two emission peaks centered at around 481 nm and 577 nm linked to
the effect of co-doping by Dy and confirming the absorption results. We suggest that these
emissions peaks are related to the transitions 4F9/2→6H15/2 and 4F9/2→6H13/2, respectively.
These results confirm the good synthesis of our samples and offer major advantage for
theirs use in the optoelectronic domain.
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