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Abstract: We investigate the transport properties of charge carriers in disordered organic semicon-
ductors using a model that relates a mobility with charge carriers (not with small polarons) hopping
by thermal activation. Considering Miller and Abrahams expression for a hopping rate of a charge
carrier between localized states of a Gaussian distributed energies, we employ Monte Carlo simula-
tion methods, and calculate the average mobility of finite charge carriers focusing on a lower density
region where the mobility was shown experimentally to be independent of the density. There are
Monte Carlo simulation results for density dependence of mobility reported for hopping on regularly
spaced states neglecting the role of spatial disorder, which does not fully mimic the hopping of charge
carriers on randomly distributed states in disordered system as shown in recent publications. In this
work we include the spatial disorder and distinguish the effects of electric field and density which are
not separable in the experiment, and investigate the influence of density and electric field on mobility
at different temperatures comparing with experimental results and that found in the absence of the
spatial disorder. Moreover, we analyze the role of density and localization length on temperature
and electric field dependence of mobility. Our results also give additional insight regarding the value
of localization length that has been widely used as 0.1b where b is a lattice sites spacing.

Keywords: charge transport; charge carrier dependent mobility; temperature dependent mobility;
spatial disorder

1. Introduction

Organic polymers that show semiconducting properties because of the weak π-
bonding along the polymer chain have received widespread attention in the scientific
community due to their easy manufacturing and possible applications in modern elec-
tronic devices: Organic light-emitting diodes (OLEDs) [1], organic field effect transistors
(OFETs) [2–4], and organic solar cells [5]. The efficiency of organic disordered semiconduc-
tors (ODSs) based electronic devices depends mainly on the transport properties of charge
carriers in the semiconductors. The central transport parameter is the drift mobility µ of a
charge carrier which is much smaller than that in the inorganic counterparts. Consequently,
for the best utilization of ODSs as an active material in electronic devices, the charge
carriers transport properties have been widely studied [6–12], particularly, the dependence
of mobility on temperature (T), electric field intensity (F), and charge carriers density (p)
has been extensively studied both experimentally [13–20] and theoretically [6,9,21–27]. Yet,
there is no consensus on an expression which can uniformly describe the characteristics of
the charge carrier mobility in different disordered organic semiconducting polymers.

In ODSs the charge carriers are hopping between localized states that are thought
to represent the conjugated polymer chain segments that are assumed to be distributed
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randomly in space [6–10,16–18,22,23,25,26,28–30]. It is known that the energy of a charge
carrier at different states is not the same, and assumed to have a Gaussian distribution [6]:

ρ(ε) =
N√

2πσ2
exp

(
− ε2

2σ2

)
, (1)

where N is the total number of states, ε is the energy of the charge carrier on a site relative
to the center of the density of states (DOS) assumed to be zero in this case, and σ is the
energy distribution width that determines the amount of energy disorder whose value for
ODSs is in the range from 0.05 to 0.14 eV [6,19,31,32]. The cause for the energetic disorder
is believed to be the fluctuation in lattice polarization energies and the distribution of
segment length in the π or σ bonded main chain polymers. The Gaussian shape of the
DOS was assumed based on the Gaussian profile of the excitonic absorption band and
by recognizing that the polarization energy is determined by a large number of internal
coordinates, each varying randomly by small amounts [6]. The approximation made above
on the sites energies distribution was verified experimentally using the direct measurement
of the energies distribution in an electro-chemically gated polymer transistor [32].

The transport in ODSs occurs by a sequence of each charge carrier hopping from a
localized occupied state i to an unoccupied state j with the transition rate expressed by
Miller and Abrahams formalism [33]:

νij =

 ν0 exp
(
− 2rij

α −
ε j−εi
kBT

)
if ε j > εi,

ν0 exp
(
− 2rij

α

)
if ε j ≤ εi,

(2)

where rij is the displacement between the positions of a charge carrier before and after hop-
ping. The coefficient ν0 is an intrinsic rate, which can be regarded as an attempt frequency
that is determined by the tunneling (hopping) mechanism, and is simply assumed to be of
the order of phonon frequency ∼ 1013s−1, α is the localization length of the wave function
of a charge carrier which is assumed to be the same for sites i and j, kB is Boltzmann
constant, T is the temperature, and εi and ε j are the energies of a charge carrier when

at sites i and j, respectively. The term exp
(−2rij

α

)
is the overlap between the sites wave

functions which decreases exponentially with the inter site distance r. The Boltzmann
factor, exp

(
− ε j−εi

kBT

)
, shows an activated process or the probability of the existence of a

phonon of energy equal to ε j − εi which is either absorbed or emitted in order to conserve
energy in the hopping process. There is no other activation energy except the difference in
charge carrier energies between different sites that a carrier has to overcome in order to hop.

The probability for hopping downward in energy is just ν0 exp
(−2rij

α

)
by the principle of

detailed balance with the premise that there are phonons that are always existing to absorb
the energy difference between the final and initial states.

Bässler and coworkers [6] established an equation that expresses the temperature and
electric field dependence of a charge carrier mobility in ODSs based on Monte Carlo (MC)
simulations considering a Gaussian type distribution for on sites energies. According to
these studies, the temperature dependence of mobility has non-Arrhenius form µ ∝ e(

−2σ̂
3 )2

,

and the electric field dependence has a Poole–Frenkel mobility variation [34] µ = µ0e
√

F
F0

where σ̂ = σ
kBT , µ0, and F0 are material and temperature dependent constant parameters

that hold in a limited field range in variance with that demonstrated experimentally by
Gill in 1972 [13]. Following the equation established by Bässler and coworkers there
have been continuing efforts [22,27,35–41] to construct an equation so that it can describe
ln µ ∝ F1/2 [34] behavior over a much broader field range. The modifications have been
made mostly on the spatial correlations between the energies on different sites and the
solutions were found using analytical as well as MC simulation approaches.

In the equation formulated by Bässler [6] and Novikov et al. [22] the effects of
charge carriers density was not considered in the analysis made to understand the depen-
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dence of mobility on temperature and electric field. However, experimental studies, later
on, showed that the charge carrier mobility is dependent on the density in conjugated
polymers [10,14,15,18]. In these experiments, the mobility was measured for the same
amorphous conjugated polymer used as an active material in OFETs and OLEDs. The
results found show that the hole mobility of the film used in polymer FETs (PFETs) was
larger than that used in polymer LEDs (PLEDs) by 3 orders of magnitude. The possible
reasons suggested for the huge difference in mobility values obtained from this experiment
was the large difference in charge carrier densities in these devices. In addition to the
difference in the mobility values in both devices, the combined plots of mobility versus
density shown indicate that the hole mobility is constant for the density less than 1016 cm−3

and increases with a power law for densities greater than 1016 cm−3. In these experimental
setups of space-charge limited PLEDs it is difficult to separate the effects of density and
electric field on mobility since both charge carriers density and electric field are simul-
taneously increased with the increase of the voltage across the thickness of the polymer
film. However, in the analyses of experimental data the variation of electric field with the
voltage (for low voltages less than 3 V) and, consequently, the mobility dependence on the
field was not considered. In line with this, the experimental data for mobility as a function
of density, for the unified diode and field-effect measurements, was analyzed for different
temperatures on the basis of the equation derived by Vissenberg and Matters [42]. In this
equation, only the density dependent mobility is included, the effect of field on mobility is
disregarded, and the equation fails to reproduce the experimental current versus voltage
characteristics at low temperatures and high voltages.

Cognizant of what is lacking in this analysis, Pasveer and coworkers [16] formulated
an expression for the description of charge carrier mobility that encloses the effects of
temperature, charge carriers density, and electric field based on the numerical solution of
the master equation representing charge carriers hopping in a regularly spaced lattice sites
using α = 0.1b (where b is a lattice sites spacing) for the localization length value. The
conclusion made is that the charge carriers density dependence of mobility is dominant at
room temperature, while an electric field dependence of mobility is also important at low
temperatures. In the approach of Pasveer et al. [16], the spatial disorder that arises from the
variation of inter site wave functions overlap (off-diagonal disorder) was not incorporated.
However, the applicability of this approach for hopping of charge carriers on randomly
distributed states in disordered materials was challenged in recent literature [43,44] based
on the comparison made between the results found for hopping transport on regularly
spaced localized states and that for hopping transport on a randomly distributed localized
state. The effects of spatial disorder of localized hopping states on the transport of charge
carriers were presented in [27] using a kMC simulation approach considering uncorrelated
Gaussian DOS. The spatial disorder was included using irregular Voronoi lattice that is
formed by a shift of the states (sites) from the cubic lattice by a random value chosen
from a Gaussian distribution with the spatial disorder parameter σr, and the analysis was
made for σr = 0, 0.05b and 0.1b (the value for localization length), where σr = 0 means for
regularly spaced states. The results show that the spatial disorder changes the electric field
dependence of mobility when compared with the results found for regularly distributed
states, for different values of localization length, and also for different values of energy
distribution width. The effect of charge carriers density on mobility was not covered. In
other recent publications [19,20,24], the temperature dependence of mobility was shown
to vary with density and localization length, respectively. The influence of temperature
is more on the lower density, and on the lower localization length of charge carriers in
ODSs of the same energy distribution width. So far, to the best of our knowledge, we have
not seen MC simulation results reported to analyze the effects of density on mobility for
hopping on randomly distributed sites that better represents the disordered materials than
regularly spaced sites.

In this work we include the role of spatial disorder on charge carriers transport by
considering randomly distributed hopping sites using a different approach from that used
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in Refs. [6,27]. We design the model so that a state is randomly localized anywhere inside
a sphere centered at regularly distributed sites. The radius of the sphere is related to the
localization radius. This assumption is based on the premise that charge carriers, basically
electrons, are localized in a certain region not strictly localized at one point. The size of
the region is related to the width of the wave function of a charge carrier. The hopping
is assumed to take place from a site placed in one sphere to a site in another sphere. For
a sphere of radius R, the hopping distance from inside one sphere to another nearest
neighbor sphere is in a range from (b− 2R) to (b + 2R) where b is the distance between the
centers of the neighboring spheres. With this model and assuming weak electron-phonon
coupling, we used uncorrelated Gaussian distributed energies and the Miller–Abrahams
rate equation to produce the required data using kMC simulations. We generate the data
for mobility versus density at constant electric field (∼5× 104 V/cm) or less, for different
density in the range from 1014 cm−3 to 1017 cm−3 at different temperatures less than or
equal to room temperature, and analyze the effects of charge carriers density on mobility
compared with the experimental results, and also with that found without incorporating
the spatial disorder. The simulation results we got show that the mobility is also dependent
on density in the lower density region. Our results for the lower density region is at
variance with the density independent mobility results shown in [14,15]. In addition to
this we present the effect of electric field on mobility in the low field region disregarded
in [14,15,18] for different values of localization length. The role of localization length on the
variation of mobility with other parameters are also presented and discussed. In general,
we analyze our results in comparison with the previous results [14–16,20,27], and also
propose that the value of localization length is close to 0.2b than to 0.1b. The rest of the
paper is organized as follows. In Section 2 we introduce the model and describe how the
parameters that influence the transport properties are incorporated into the MC simulation
methods. The main numerical results and discussions are presented in Section 3. Finally, a
summary and conclusions are given in Section 4.

2. Methodology

The model system is a super cell of a hypothetical simple cubic lattice with a lattice
parameter (b) in which each sub unit of a polymer chain is represented by a lattice point.
These lattice points, known as states or sites, are localized on different conjugated polymer
units (or segments). The distance from a site on one chain to any one of its neighboring sites
on the same chain is different from that on another nearby lying chain(s), and the hopping
process in a three-dimensional conjugated polymer system is anisotropic. As a consequence
it is not easy to identify the microscopic parameters of a polymer film and use them precisely
as the film is the aggregate of pattern-less and intermingled chains. Consequently, we
also approximate the lattice parameter b, as it is done elsewhere [6,16,19,22,27,39], as an
effective result of an average of inter chain and intra-chain lattice spacing. The geometry
of this material can be considered as a three dimensional rectangular box of sides Lx, Ly,
and Lz. An electric field is established by applying a voltage across the sample material.
The charge carriers are injected to the sample polymer film, and the electric field forces
the charge carriers to move so that their net direction of motion and electric field are the
same if the charge carriers are holes and vice versa if electrons. In a real experiment, the
density of charge carriers of ODSs is known to be varying in the range from 1014 cm−3

to 1016 cm−3 when used in PLEDs and from 1017 cm−3 to 1019 cm−3 in PFETs [14,15,18].
Taking this fact into consideration we introduce a certain number of charge carriers to the
model polymer film in such a way that the charge carriers density variation looks like
that described above for both PLEDs and PFETs. The direction of the electric field (F) is
taken to be along the x-axis, which also becomes the direction along which the mobility is
calculated. The magnitude of the electric field is approximated on the basis of the operating
values of the potential difference between the electrodes in a specific arrangement of a
device. The width of the conducting channel is in the y-direction, and the z-axis points
in a direction perpendicular to x and y-axes. Each position of the lattice array is assumed



Condens. Matter 2021, 6, 38 5 of 16

to coincide with the center of a sphere of radius R. The sphere is assumed to represent
the wave function of a charge carrier of localization length α ≈ R. In each sphere one
hopping site is randomly placed. The distance between the centers of nearest neighboring
spheres is the same as the lattice parameter b. However, the distance between the nearest
neighboring hopping sites is a random variable between b − 2R to b + 2R. In the case
when the spatial disorder is ignored, the positions of sites coincide with the centers of
spheres, and the minimum distance between hopping sites is b = N−1/3, where N is the
concentration of localized states. The estimated value of the parameter N for an organic
conjugated polymer is between N ≈ 1020 cm−3 and N ≈ 1021 cm−3 [45]. To these sites Nh

number of charge carriers, so that the charge carriers density Nh
N is in the required range,

are introduced and randomly placed on different sites. The electric field along the x-axis
due to the potential difference across the film (V) is assumed to be constant in the majority
of the region where charge carriers move as verified recently in Ref. [46]. Therefore, the
electric potential energy due to the electric field for a charge carrier at each site is:

USD(x, y, z) = Fe(0− x), (3)

where the minimum is fixed at the right edge of the sample polymer film, at x = Lx in this
case. Note that x measures the distance along the field direction with a step distance of
variable length that varies from b− 2R to b + 2R. In the presence of an electric field, USD(i)
and USD(j) are added to the energy εi and ε j in Equation (2), respectively. In consistent with
the GDM all sites to which a hop of a charge carrier is possible are assigned random energies
sampled from a zero-centered Gaussian distribution function given in Equation (1) for a
fixed value of distribution width (σ). Likewise in Refs. [6,16] these energies are assumed to
be spatially uncorrelated.

The hopping rate from an occupied site i to an empty site j, which are separated
from each other by distance rij, is assumed to be governed by Miller and Abrahams
formalism [33] given by Equation (2). Using this equation we determine the transition
probability of a system of charge carriers from one configuration to another, and also the
average time between successive transitions. We assume that double occupancy of the same
site does not occur as it is not energetically favorable for the level of the charge carriers
density we are now dealing with. We have also neglected the effects of the Coulomb
interaction for the sample volume of a lower density less than or equal to 1017 cm−3.
Here, the rectangular coordinates of all the sites are known in the code during the three
dimensional sites formation. And the charge carriers are also identified with the names from
1 to Nh given to them when they are first introduced to the sites. Therefore, the coordinates
of each charge carrier are known at every moment in the code, and the magnitude of the
distance between any two sites rij is:

r =
√
(xi − xj)

2 + (yi − yj)
2 + (zi − zj)

2. (4)

In our simulation, we start the procedures by forming a three dimensional lattice of
Lx × Ly × Lz regularly-spaced positions which are the centers of spheres with the same
radius R. In the second procedure, we assign an energy that a charge carrier can have
at each site which is the sum of ε(x, y, z) and USD(x, y, z). In the third step we introduce
Nh number of charge carriers to the system by randomly placing them on the sites that
are at randomly distributed positions in the spheres formed in the first procedure. Nh
correspond to densities between 1014 cm−3 to 1017 cm−3. In the fourth procedure, the exact
three dimensional charge carriers distribution governed by the effective energy introduced
above is realized. Initially, the charge carriers are distributed randomly throughout the
total volume of the film. An equilibrium state of charge carriers distribution is assumed
to be achieved in a certain number of Monte Carlo time steps (MCTSs). That is, we pick
the first particle and check if its neighboring sites are empty or occupied. If there is no
empty site we assign zero for its probability of hopping, and go to the second particle.
However, if there is (are) neighboring unoccupied site(s), we calculate the change in energy
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of the particle at a proposed neighboring empty site and initial site. Then we solve for the
transition rate using Equation (2) excluding ν0 for each possible hopping site. We repeat
this procedure for all charge carriers, and divide each transition rate to the sum of the total
transition rates to find the probability of hopping for each possible path from the equation:

Pij =
νij

Nh
∑

i=1

l
∑

j=1
νij

, (5)

where νij are the value obtained from Equation (2), j is an integer that counts the possible
nearest neighboring sites for each charge carriers, say from one to l, and i counts the
number of charge carriers from one to the last, say Nh. Equation (5) ensures that a detailed

balance condition is satisfied in the steady state condition. Obviously,
Nh
∑

i=1

l
∑

j=1
Pij = 1 and,

therefore, these probabilities generate a sequence of length intervals between 0 and 1. The
sum of the probabilities for all possible paths is normalized to one, and the transition
from one configuration to another takes place by one of the Nh charge carriers along one
path. This means that we use the probability length for each path and realize a transition
of a system of charge carriers from one configuration to another by moving one of the
charge carriers based on a stochastic approach. To decide for a particular hop we generate
a random number ω from a uniform distribution in the interval between 0 and 1, which
points at a particular interval and consequently at a particular destination site to which
one of the the charge carriers jumps with the scheme [47]:

Nh−1

∑
i=0

l−1

∑
j=0

Pij ≤ ω <
Nh

∑
i=1

l

∑
j=1

Pij, (6)

where we have defined P00 = 0. We have restricted the possible destination sites j in
Equation (5) to the 26 nearest neighbor sites in an average volume of 3× 3× 3 lattice
sites. Even if there is a higher number of possible destinations involved, a vast majority of
the hopping events occur to the nearest neighbor sites, and the effect of this restriction is
negligible. This step is repeated for a certain number of MCTSs until we record enough data.
One MCTS corresponds to moving one charge carrier after choosing from all charge carriers
according to the procedure described above. Using an expression described in [6,48,49], the
mean dwelling time τ of a charge carrier at site i which is equivalent to the mean time for
the transition that occurs between the states identified by the procedure described above is
given as:

τ =
1

Nh
∑

i=1

26
∑

j=1
νij.

(7)

The transition time τh between states is distributed about the mean time τ is expressed as:

τh = −τ ln(1− ξ), (8)

where ξ is a random number drawn from a uniform distribution between 0 and 1 different
from that in Equation (6). This approach, which introduces a stochastic behavior in both
the transition path and the time needed for the transition, ensures that the mean transition
time is simply the mean of the inverse transition rates between these two states.

We let the system pass through 1× 105 MCTSs to ensure that the system has reached
a steady state distribution. It should be noted that different generations of the on-site
energies from the GDM results in small but notable differences in the simulation results.
The results are, therefore, averaged over 10 different generations of energy distributions.
The fifth and final simulation procedure involves recording of the displacement of the
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charge carriers along the length in the direction of electric field together with the time taken
for this displacement to occur. The recording is performed for the last 1× 106 MCTSs. The
displacement of the charge carriers along the length in the direction of the electric field as a
function of time gives the velocity, and the mobility of the charge carriers is obtained from
the ratio of the velocity and electric field. This means that we obtain detailed information
regarding the transport properties of charge carriers. Finally, simulation data are collected
as a function of the charge carriers density, electric field, and temperature for different
localization lengths.

3. Results and Discussion

Our calculation results are produced for charge carriers hopping conduction that takes
place in a cubic sample of volume 200 nm × 200 nm × 200 nm with a periodic boundary
condition. In the calculations we fixed the total number of sites, which are formed to have
the corresponding concentration of N = 1021 cm−3, and varied the density (p) by varying
the number of charge carriers. The mobility is expressed mostly in terms of lattice parameter
b, disorder energy parameter σ, a unit charge on electron e, and phonon frequency ν0 (or in

units of b2ν0e
σ ). When these parameters are known explicitly, the mobility is also expressed

explicitly. The range of the magnitudes of electric field used for our calculations is chosen to
highlight regimes of different transport behaviors. Most experimental data [13–16,41,50,51]
fall, however, into the regime which is below low field strength (or less than or equal to
1× 105 V cm−1). The results we display below are obtained for different temperatures, two
different values of localization lengths and corresponding spatial disorder parameter, and
the on-site energy distribution width (σ = 0.1 eV) since the values for different disordered
organic polymers as specified elsewhere [6,16,19,31,52] is in between 0.06 eV to 0.14 eV. The
data generated for hopping on regularly distributed states ignoring the spatial disorder are
also plotted together with that for randomly distributed states for two reasons; the first is
to compare our results with the previously established results [16] for hopping on perfect
lattice, and the second is to specify the difference between the MC simulation results found
for hopping transport excluding the spatial disorder and that found with the inclusion of
the spatial disorder. In all the figures where there are both broken and solid curves, the
broken curves represent the mobility calculated for the hopping on randomly distributed
states, and the solid ones represent the mobility calculated for the hopping on regularly
distributed states excluding the spatial disorder. Our discussion will be based on the results
that incorporate the spatial disorder except when we compare the results represented by
broken and solid curves.

We first present a charge carrier mobility as a function of an electric field for different
values of σ̂ = σ

kBT and also two different values of localization length (α). The mobility is
plotted on a logarithmic scale and the electric field is expressed in units of σ

eb for σ̂ in the
range from 1 to 6, for two different values of localization length, α = 0.1b and 0.2b, and for
the same density as shown in Figure 1.

The curves in both panels of Figure 1 show that the mobility in the lower electric
field region decreases with the increase of σ̂ as verified and justified in the previous
reports [6,14–16]. In the lower electric field region the mobility is more influenced by
temperature than electric field, the transport mainly occurs due to diffusion and the
mobility remains almost constant. At an electric field larger than σ

eb the impact of activation
barriers on a charge carrier hopping decreases with the increase of the electric field and the
conduction is dominantly caused by the drift due to the field, and the mobility increases
with the electric field until a saturation value is attained corresponding to each σ̂ greater
than 1. Whereas, for the lower value of localization length, α = 0.1b, mobility increases
with the electric field until it reaches saturation. The change becomes significant when σ̂
gets larger. The saturated mobility values for different σ̂ are nearly the same and reach at
nearly the same electric field provided that α is the same. The reason for the occurrence
of saturation is due to the fact that the electric field reduces the barrier height for an
energetic uphill jumps from the transport energy level in the field direction and thereby
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enhances the mobility in the hopping conduction of charge carriers as described in [34].
The drift mobility is calculated from the µ = v/F relation which leads to mobility reduction
with the increase of electric field, where v is the drift velocity of a charge carrier due
to the electric field (F). This means that increasing the electric field is more effective in
reducing the activation barrier, though it also reduces mobility, until the electric potential
energy difference between any two sites separated by a distance x along the electric
field, eFx, approaches (but does not surpass) the energy scale (σ). If eFx is greater than
σ an excess energy from eFx above σ which is the same as eFx − σ does not have any
contribution to speed up hopping conduction but reduces mobility since it appears in the
mobility calculation, µ = v/F. We can also interpret eFx as an energy that reduces the
activation barrier, and the increase of mobility with electric field is effective provided that
the difference between eFx and the average activation barrier height between hopping
sites separated by a distance x is significant. The reference energy value we took here, σ, to
justify the statement that electric field raises mobility until eFx reaches σ may not be exact
and needs experimental verification though it makes sense and seems reasonable. Due
to this reason the effect of electric field in increasing the mobility is more significant for
the larger σ. Similarly, temperature plays a crucial role in reducing the difference between
the energies at the transport level and that of the hopping particle at the equilibrium level
as discussed elsewhere [19,24]. Most of the solid (or broken) curves in Figure 1 show an
overall similar behavior except that there is an increase of mobility with the increase of
localization length. We also observe that the mobility saturates at a lower electric field in the
case of a larger localization length. This indicates that a charge carrier conduction increases
with the localization length and the effect of the electric field on mobility decreases with the
increase of localization length. The possible justification for this is that when α increases
the probability for a charge carrier hopping to a site at a larger distance increases. This
gives rise to the increment of eFx, which will, consequently, increase the role of electric
field to reduce the barrier height between hopping sites separated by a distance x. This
can be the reason for the mobility saturation observed at relatively lower electric field than
when the localization length is smaller. The charge carrier hopping rarely occurs when
the localization length is small (or the state is strongly localized) at a relatively high σ̂ in a
lower electric field region. Another important point that we can infer from our simulation
results is that the possible value of the localization length is closer to 0.2b than to 0.1b.
The argument here for this suggestion, though it needs experimental verification, is that
the mobilities found are in the same order with that demonstrated experimentally [13–15]
when the localization length is 0.2b than that found for α = 0.1b which is much lower.
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Figure 1. The logarithm of a charge carrier mobility ln(µ) versus electric field (F) for different values
of σ̂ and α and for the same density (p = 1× 1016 cm−3). (a) α = 0.1b, (b) α = 0.2b, where b is a
lattice parameter, and µ0 = b2ν0e

σ .

Furthermore, when we compare each pair of broken and solid curves corresponding
to each σ̂ greater than a value of 2 we observe that the mobility variation with the electric
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field is more pronounced for the solid curves than the broken ones. Besides this, we also
see that mobility is larger for hopping on regularly distributed sites than that on randomly
distributed sites except in the low field region when σ̂ is less than 4. The curves for σ̂ = 2, 3,
and 4 in Figure 1, particularly in the first panel, show similar trends with that shown in [27]
for randomly distributed sites with the same reduced disorder energy σ̂ and localization
length α = 0.1b. In the low field portion for σ̂ = 4, 5, and 6, each of the solid curves
is below the corresponding broken curves, and we see that each solid curve crosses the
corresponding broken curve at a certain value of electric field which testifies that the
influence of electric field on mobility is more when hopping conduction is on regularly
distributed sites than on randomly distributed sites. The reason for observing a solid curve
above the broken curve for the same σ̂ testifies that the spatial disorder adds additional
hindrance on the hopping conduction of charge carriers for lower σ̂. In the case when σ̂
is large and the electric field is low, the favorable destination site for a charge carrier is a
state with less energy at a closer distance. For hopping on randomly distributed states the
distance between the states in the nearest neighbor spheres vary from (b− 2R) to (b + 2R),
and there is a probability of finding a favorable destination state at a distance less than
the mean value (or lattice parameter) which is zero for the hopping on regularly spaced
states. This can be the reason for observing a solid curve below the broken curve for larger
σ̂ values in the low field region. In the case when σ̂ is small, the activation barrier is small
and a charge carrier can also hop to sites at larger distances. However, since there are sites
at nearby distance the probability of hopping to sites in the nearby is large, and due to this
a charge carrier which can hop to a site at larger distance chooses to jump to a site at a lesser
distance when hopping on randomly distributed sites than that on regularly distributed
sites. Similarly, the presence of sites at a distance less than the mean value reduces the
influence of electric field on hopping of charge carriers on randomly distributed sites when
compared to its influence on hopping of charge carriers on equally spaced sites of the same
site spacing.

Our next simulation results displayed in Figure 2 together with that in Figure 1 give
us additional insights on the role of electric field, energetic and spatial disorder, and
localization length on a charge carrier mobility when the density of charge carriers changes
from 1× 1016 cm−3 to 1× 1015 cm−3, keeping the rest parameters constant.
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Figure 2. The logarithm of a charge carrier mobility ln(µ) versus electric field (F) for different values
of σ̂ and α and for the same charge carriers density (p = 1× 1015 cm−3). (a) α = 0.1b, (b) α = 0.2b,
where b is a lattice spacing, and µ0 = b2ν0e

σ .

The curves in Figure 2 show the change of mobility with the electric field in a similar
way that the corresponding curves in Figure 1 show regardless of the values of charge
carriers density. Like that shown in Figure 1, the mobility increases with the electric field
until the saturation value attained for σ̂ is greater than 1. The increment becomes more
pronounced when σ̂ increases. We also observe an increment of mobility with charge
carriers density though the density is low (in the range of the density for light emitting
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diodes [14,15]). The reason for the increment of mobility with the charge carriers density is,
as suggested elsewhere [27], due to the fact that the number of deep states, in the Gaussian
density of states, that are filled with charge carriers increase with the increase of density.
As a consequence more states with near lying energies become available for charge carriers
hopping when the density gets higher. It means that at high charge carriers density the
density of occupied states close to the Fermi energy gets larger, and more states within a
small energy range are available as a hopping destination, and thus the activation energy
barriers reduce their impact. In both Figures 1 and 2, we observe that the effect of the
electric field on mobility gets stronger when σ̂ gets larger except in the low electric field
region. In the low field portion we see that mobility is independent of the electric field
in Figures 1b and 2a when σ̂ = 6. The reason for not observing this behavior clearly in
Figure 2b can be attributed to density and localization length difference. The electric field
dependence of mobility decreases with density as suggested in [15]. The localization length
in Figure 2b is larger than that in Figure 2a, and since the electrostatic energy eFx is larger
for larger localization length we see the changes of mobility with the field only for larger
localization length. The results we obtained for larger values of σ̂ are similar with that
shown in [16] though there is a difference for σ̂ = 6 in the low density region which has
similarity with that suggested in [15]. To understand the reason for the slight variation
with the experimental ones, we have calculated mobility as a function of charge carriers
density for different temperatures fixing the electric field; we will present and discuss more
on this below.

The simulation results for a charge carrier mobility versus charge carriers density
for fixed electric fields at F = 0.1× σ

eb and F = 0.05× σ
eb are presented in Figures 3 and 4,

respectively. The mobility as well as the charge carriers densities are expressed (on a

logarithmic scale) in units of µ0 = b2ν0e
σ and cm−3 for two different values of localization

length α = 0.1b, 0.2b and different temperatures.
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Figure 3. The logarithm of a charge carrier mobility ln(µ) as a function of charge carriers density for
the same disorder energy σ = 0.1 eV, different temperatures (T), the same electric field F = 0.1× σ

eb .
(a) α = 0.1b, and (b) α = 0.2b.

The curves results plotted in Figures 3 and 4 show that the increment of mobility
increases with charge carriers density for both the lower and higher densities for all
the temperatures specified here. However, at temperature T = 235 K the mobility is
independent of density in the low density region in a narrow range between 1014 to
4× 1014 cm−3. The reason for the increment of mobility with charge carriers density in
a disordered Gaussian energy system is connected to the filling of the deep states due
to, as described above, the impact that the density has on Fermi-energy, and also on the
localization length. When the density increases the deep states are filled and the Fermi-
energy are lifted up. Increasing charge carriers density can, also, increase the localization
length [20]. These lead to an increment of the average hopping rate of a charge carrier,
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which in turn leads to the increment of a charge carrier mobility. This means that mobility
variation with the density presupposes the presence of deep states (or states with lower
energies) and because of this the variation of mobility with density is more pronounced
when, for the disorder energy, the energy distribution width (σ) is more or the temperature
is less. Our simulation results found in the higher density region has similarity with the
results demonstrated experimentally [14,15,18]. However, the results we got for the lower
density region, though similar with the numerical results reported in [16], are at variance
with the general conclusion made in [14,15] which says that mobility is independent of
density in the low density region. The variation shown with the experimental results is due
to the fact that the effects of electric field and density were not separated in the experiment.
The effect of density on mobility, particularly, in the low density region can be compromised
with that of the electric field which is visible when we examine the curves for two different
electric fields shown in Figures 3 and 4. The charge carriers density dependence on mobility
is more vivid in Figure 4 where the electric field is F = 0.05× σ

eb than in Figure 3 where
F = 0.1× σ

eb . The value of the electric field used in these experiments was close to the latter
and because of this the influence of the charge carriers is suppressed.
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Figure 4. The logarithm of a charge carrier mobility ln(µ) as a function of charge carrier density
for the same σ = 0.1 eV, at different temperatures T and α for the same electric field F = 0.05× σ

eb .
(a) α = 0.1b, and (b) α = 0.2b.

When we compare the broken curves with the corresponding solid ones shown for
each temperature in both Figures 3 and 4 we observe that the influence of density on
mobility is stronger in the presence of the spatial disorder. Apart from this we also see
the broken curves at the top of the corresponding solid curves at a low temperature and
vice versa at high temperature in both figures for larger localization length, α = 0.2b. And,
in general, we see that each of the broken curves tends to move from the bottom of the
corresponding solid curves to the top as the temperature changes from high to low, like
that observed in Figures 1 and 2. A similar tendency is observed in the kMC simulation
results presented in [27] for mobility (with and without spatial disorder) versus electric
field at σ̂ = 2 when the localization length increases from 0.1b to 0.5b for spatial disorder
σr = 0.01b, and fixed low charge carriers density. The possible justification for this was
already presented above in connection with Figures 1 and 2.

We observed that charge carriers density reduces the influence of the electric field on
mobility. Similarly, it determines also the dependence of mobility on an energetic disorder
parameter or temperature. The graphs in Figure 5 support this claim for at least the lower
density region. The graphs show similar behaviors for all charge carriers densities when
σ̂ is in the range between 1 to 3. However, for when σ̂ is greater than 3 the mobility
variation with σ̂ depends on are different for different densities. The mobility decreases
more with the increase of σ̂ in the case of lower charge carriers densities than the higher
ones qualitatively similar to that demonstrated in [19]. This reveals that in a hopping
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transport the role of temperature is more when the charge carriers density is less, and also
displays a transition from a non–Arrhenius to Arrhenius form of temperature dependence
similar to that demonstrated experimentally [17,53].
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Figure 5. The logarithm of a charge carrier mobility versus disorder parameter σ̂ in the range
from 1 to 6 for different charge carriers densities p = 1× 1014 cm−3, 5× 1014 cm−3, 1× 1015 cm−3,
5× 1015 cm−3, and 1× 1016 cm−3 at the same electric field F = 0.1× σ

eb .

4. Summary and Conclusions

In this work, we have studied and presented a generalized view on the effects of
specific materials and external parameters such as energetic and spatial disorders, charge
carriers density, localization length, temperature, and applied electric field on the transport
properties of charge carriers in disordered organic semiconductors using kMC simula-
tion methods. Particularly, we have concentrated on the determination and analysis of
identification of the effects of charge carriers density on mobility and also its influence
on other intrinsic and extrinsic parameters dependence of charge carriers mobility. Our
study was based on incoherent hopping of charge carriers between localized states that are
regularly and randomly distributed in space. Using a Gaussian disordered model [6] and
employing Miller and Abrahams formalism [33] for a hopping rate, we generated data and
analyzed the dependence of mobility on temperature, applied electric field, and charge
carriers density. We distinguished the effects of electric field from that of density and found
results that show change of mobility with density also in the low density region. On the
other hand, for hopping on regularly spaced sites in the low density region, the mobility
change with density is found to decrease when with σ̂ decreases and becomes constant
for σ̂ less than or equal to 3. At a higher σ̂, for both regularly and randomly distributed
sites, mobility increases with the increase of density. Consequently, we concluded that
the effect of the disorder parameter (σ̂) on mobility, in the low density region, is more
pronounced than that of the density. Moreover, we observed that mobility is less for
hopping on randomly distributed system than for that on regularly distributed system at
low energetic disorder and vice versa for the larger energetic disorder. We also found that
the dependence of density on mobility is stronger for hopping on randomly distributed
states than on regularly distributed states. The generated data also yielded information
on the localization length of the wave function of a charge carrier when analyzed in com-
parison with experimental data. For this parameter, different values have been used in
the literature [6,16,54]. The value of the localization length (α = 0.1b used in [16]) seems
small and could not lead to results mostly in the range between 10−7 cm2V−1s−1 that
were demonstrated experimentally [13–15]. The consistency of our numerical data with
the previous MC simulation and experimental results support the assumption we made to
model a disordered system for the simulation studies, notably the statistical nature of the
irregularly distributed hopping sites. On the basis of this agreement we can conclude that
the material parameters that describe the charge carriers properties of the system, that is,
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the charge carrier localization length, the energetic disorder, and the lattice sites spacing
have been given appropriate values.
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